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ABSTRACT 
Speech recognition has gradually improved over the years, 

phoneme recognition in particular. Phoneme recognition plays 

very important role in speech processing. Phoneme strings are 

basic representation for automatic language recognition and it 

is proved that language recognition results are highly 

correlated with phoneme recognition results.  

Nowadays, many recognizers are based on Artificial neural 

networks have been applied successfully in speech recognition 

applications including multi-layer perceptrons, time delay 

neural network, recurrent neural network and self-organizing 

maps (SOM), but present some weaknesses if patterns involve 

a temporal component. Let’s note for example in speech 

recognition or contextual information, where different of the 

time interval, is crucial for comprehension. 

In this paper, we propose a new variant SOM made of spiking 

neurons, with a view to emphasising the temporal aspect of 

the data which might serve as an input, in order to improve 

phoneme classification accuracy. The proposed variant, the 

Leaky Integrators Neurons, is like the basic SOM, however it 

represents the characteristic to modify the learning function 

and the choice of the best matching unit (BMU). The 

proposed SOM variant, show good robustness and high 

phoneme classification rates. 

General Terms  
Spiking neural networks, Self-organizing map, Speech 

processing, Neural Networks. 

Keywords 

Kohonen map, Temporal self organizing map, Leaky 

Integrator neurons, phoneme classification. 

1. INTRODUCTION 
The generality of engineering of processing and pattern 

recognition suppose that the dynamic process to recognize is 

stationary. Nevertheless, the static classification of the pattern 

is not a sufficient method when the dynamics of the pattern is 

an important characteristic of the information; it means that 

when the last information is necessary for the interpretation of 

current information. Let’s note for example in speech 

recognition or contextual information, on different of the 

time interval, is crucial for comprehension. Spontaneous 

speech production is a continuous and dynamic process. This 

continuity is reflected in the acoustics of speech sounds, and, 

in particular, in the transitions from one speech sounds to 

another [1]. To take account of time in a system of data 

processing poses two great constraints.  First, this system must 

be able to manage the succession of the various events which 

must be treated in a sequential way, it is then a question of 

sequential treatment. Thus, if the duration of the events is 

relevant for the task to carry out, the system must be able to 

treat the temporal structure. However, in the context of the 

speech recognition, the use of the static networks of neurons is 

difficult sight the absence of the parameter time in their 

structure.   

In order to classify temporal sequences many technique have 

been used to model temporal relation in connectionist model 

[2] [3] like the networks of recurring neurons [4], the temporal 

self-organizing map [5] [6] [7] and networks of impulse 

neurons [8] [3] which prove the existence of robust techniques 

of recognition and classification. 

In our model the temporal information is taken into account 

by using spiking neurons. Spiking neural networks (SNN) 

have become quite popular recently, due to their biological 

plausibility. Using spiking neuron models, SNN are able to 

encode temporal information into both spike timing and 

spiking rates. The model which realizes the spiking neurons as 

coincidence detectors encodes the training input information 

in the connection delays. 

Spiking neural models can account for different types of 

computations, ranging from linear temporal summation of 

inputs and coincidence detection to multiplexing, nonlinear 

operations and preferential resonance [9]. Several recent 

studies employing rigorous mathematical tools have 

demonstrated that through the use of temporal coding, a 

pulsed neural network may gain more computational power 

than a traditional network (i.e., consisting of rate coding 

neurons) of comparable size [10]. A simple spiking neural 

model can carry out computations over the input spike trains 

under several different modes [9]. Thus, spiking neurons 

compute when the input is encoded in temporal patterns, firing 

rates, firing rates and temporal correlations, and space–rate 

codes. An essential feature of the spiking neurons is that they 

can act as coincidence detectors for the incoming pulses, by 

detecting if they arrive in almost the same time [11] [12]. 

In the following, we present the self-organizing map of 

Kohonen (SOM), then, we present some temporal self-

organizing map models, thereafter we propose the Leaky 

Integrator neurons model (LIN). Finally, we illustrate 

experimental results of the application of SOM variant in 

phoneme classification.   

2. SELF ORGANIZING MAP OF 

KOHONEN 
A self-organizing map (SOM) is an unsupervised neural 

network algorithm that uses competitive learning [13] [14].  
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Competitive learning means that as data is input to the SOM, 

there is a competition among the neurons or nodes of the map 

to determine which neurons will represent the input data. The 

neurons of competitive networks learn to recognize groups of 

similar input vectors. Self-organizing maps learn to recognize 

groups of similar input vectors in such a way that neurons 

physically near each other in the neuron layer respond to 

similar input vectors [15]. 

The self-organizing map output represents the result of a 

vector quantization algorithm that gives a fixed number of 

references or prototype vectors onto high dimensional data 

sets in an ordered fashion. A mapping from a high 

dimensional data space (ℜn) onto a two dimensional lattice of 

units is thereby defined. 

An input vector x ∈ ℜn is compared with all mi, in any metric; 

in practical applications, the smallest of the Euclidian 

distances is usually used to define the best matching unit 

(BMU). The BMU is the neuron whose weight vector mi is 

closest to the input vector x determined by: 

 |  -  ||   min{||  -  ||},     [1.. ]| x m x m i nc i            (1)                                        

Where n is the number of map units and ||x – mi|| is a distance 

measure between x and mi. 

After finding the BMU, his weight vector is updated so that 

the BMU is moved closer to the current input vector. The 

topological neighbors of the BMU are also updated. This 

adaptation procedure stretches the BMU and its topological 

neighbors towards the sample vector. Kohonen update rule for 

weight vector of the unit i in the BMU neighborhood is: 

                              

( 1)  ( ) ( ) ( ) [ ( ) -  ( )],    [1.. ]  m t m t t h t x t m t i ni i ci i        (2)                              

x(t) is the input vector randomly drawn from the input data set 

at time t, hci(t) the neighborhood kernel around the winner unit 

c and α(t) the learning rate at time t [16]. 

The neighborhood function hci is usually a function that 

decreases with the distance (in the output space) to the 

winning unit, and is responsible for the interactions between 

different units. During training, the radius of this function will 

usually decrease, so that each unit will become more isolated 

from the effects of its neighbors. It is important to note that 

many implementations of SOM decrease this radius to 1, 

meaning that even in the final step of training each unit will 

have an effect on its nearest neighbors, while other 

implementations allow this parameter to decrease to zero. 

3. TEMPORAL SELF ORGANIZING 
MAP MODELS 

3.1 Spatio-temporal kohonen maps 
Mozayyani [17], have proposed the method to encode the time 

dependent data explicitly by extending the field of the SOM 

inputs from the real domain R into the complex plane C. 

Each event is represented as a complex number: 

( ) ( )
( ) ( ) ( )

i t iarct t
x t p t e p t e

 
                            (3) 

Where µ constant.  

In order to establish uniqueness between the time variable t 

and the phase Φ, the past events with the negative time are 

restricted to be in the interval (- π/2; 0) while the positive time 

values (future events) are in (0; + π /2). The data samples are 

restricted to be always positive, p > 0. 

The ST-Kohonen map [18] algorithm works in the same 

manner as classical kohonen one however, the winner is 

chosen according to the Hermetien distance:   

( , )Dist X W X W= -                                                     (4)                                                                                                          

( , ) ( )( )
1

n
Dist X W x w x wj j j j

j
= - -å

=
                   (5)                                        

x desingnes the map input and wi is the weighting vector of 

the neuron i. Both the input and the weight vectors are defined 

in the complex domain C. the adaptation rule for ST-Kohonen 

is the same the one presented in kohonen, yet we manage 

complex vectors instead of real. 

3.2 Recurrent self organizing map 
The recurrent SOM [19] [20] is an extension to the Kohonen’s 

SOM that enables neurons to compete to represent temporal 

properties in the data. Therefore, the RSOM that allows 
storing information from the past input vectors. The 

information is stored in the form of difference vectors in the 

map units. The mapping that is formed during training has the 

topology preservation characteristic of the SOM. Recurrent 

SOM differs from the SOM only in its outputs. In the training 

algorithm, an episode of consecutive input vectors x(n) 

starting from a random point in the input space is presented to 

the map. The difference vector yi(n) in each neuron of the map 

is updated as follows: 

( ) (1 ) ( 1) ( ( ) ( ))y t y t x t m ti i i                     (6) 

Where yi(n) is the leaked difference vector in unit i, 0 < α ≤  1 

is the leaking coefficient. x(t) is the input vector and mi(t) is 

the weight vector of the unit i. 

In fact, RSOM defines a difference vector for each unit of the 

map which is used for selecting the best matching unit and 

also for adaptation of weights of the map. Difference vector 

captures the magnitude and direction of the error in the weight 

vectors and allows learning temporal context. Weight update 

is similar to the SOM algorithm, except that weight vectors 

are moved towards recursive linear sum of past difference 

vectors and the current input vector [21] 

3.3 Merge self organizing map 
Barbara Hammer and Marc Strickert, have proposed a new 

method, merge SOM (MSOM), for unsupervised sequence 

processing for temporal data [22] [23]. The MSOM model 

combines a noise-tolerant learning architecture which 

implements a compact back-reference to the previous winner 

with separately controllable contribution of the current input 

and the past with arbitrary lattice topologie. In general, the 

merge SOM context refers to a fusion of two properties 

characterizing the previous winner: the weight and the context 

of the last winner neuron are merged by a weighted linear 

combination. During MSOM training, this context descriptor 

is kept up-to-date and it is the target for the folowing context 

vector of the winner neuron and its neighbourhood. In fact, 

MSOM accounts for the temporal context by an explicit 

vector attached to each neuron which stores the preferred 

context of this neuron. The way in which the context is 

represented is crucial for the result, since the representation 

determines the induced similarity measure of sequences [24]. 

For training, data vectors are iteratively presented, and the 

weights of the closest neuron and its neighbors in the grid are 

adapted towards the currently processed data point. The 

update formula for neuron I given pattern xj is given by the 

formula [23]: 

. ( ( , ).( )w h d i I x w
i j i

             (7) 
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where I is the winner, i.e. the neuron with smallest distance 

from xj, and h is a decreasing function of increasing 

neighborhood distance, e.g. a Gaussian bell-shaped curve or a 

derivative of the Gaussian. 

4. THE PROPOSED VARIANT OF THE 

SOM 
We present an algorithm to train the temporal behavior of 

leaky integrator networks in the context of spiking neuron 

networks. In the algorithm proposed here, we given a set S of 

m-dimensional input vectors s = (s1, ..., sm) and a spiking 

neuron network with m input neurons and n output neurons, 

where each output neuron vj receives synaptic feedforward 

input from each input neuron ui with weight wij and lateral 

synaptic input from each output neuron vk, with weight wkj. At 

every epoch of the learning procedure one sample is chosen 

and the input neurons are made fire such that they temporally 

encode input vectors [25] [26]. 

In order to use leaky integrator units to create spiking neural 

network models for simulation experiments, a learning rule 

that works in continuous time is needed. The following 

formulation is motivated by [27] and describes how a 

backpropagation algorithm for leaky integrator units can be 

derived. 

In this approach, the state of each neuron (i) is represented by 

a membrane potential Pi(T), which, is a function of the input 

I(t) which measures the degree of matching between the 

neuron’s weight vector and the current input vector.  

The differential equation of a membrane potential is: 

 

(8)                                                                                                                                                                                                        

Where η < 0.  

Particularly, the discrete version of the equation (8), often 

written as:   

(9)                                                                                                                        

LIN memorise the last activation of each neuron i by means 

of a Leaky Integrators potential noted ai(t) [28] [29] [30]: 

 

                                                                           (10) 

where  λ is a depth memory constant( 0  λ  1), x(t) is 

the input vector, and wi(t) is the weight vector of neuron 
i. Comparing equations (9) and (10), we find that Ii(t)  =  

-(½)   x(t) – wi(t)
2. 

5. EXPERIMENTAL RESULTS 

5.1 Representation of speech data 
We have used the TIMIT corpus for the purpose of developing 

and evaluating the proposed SOM variant for phonemes 

recognition in continuous speech and speaker independent. 

Speech utterance was sampled at a sampling rate of 16 KHz 

using 16 bits quantization. Speech frames are filtered by a first 

order filter whose transfer function is: 

H(z) = 1 – a.z-1, 0.9  a  1.0                                (11) 

Where z-1 is the delay operator. In our experiments, a is 

chosen to be 0.95. 

After the pre-emphasis, speech data consists of a large amount 

of samples that present the original utterance. Windowing is 

introduced to effectively process these samples. This is done 

by regrouping speech data into several frames. In our system, 

a 256 sample window that could capture 16 ms of speech 

information is used. To prevent information lost during the 

process, an overlapping factor of 50% is introduced between 

adjacent frames. 

After regrouping, each individual frame needs to be further 

pre-processed to minimize signal discontinuities at the 

beginning and at the end of each frame. A commonly used 

technique is to multiply the signal data with the hamming 

function. The earlier has smoothing effects at edges of the 

filter. This function can be described by the following 

equation: 

Where n is the sample number and N is the total number of 

samples per window. In our case, N is 256. 

Thereafter, mel frequency cepstral analysis was applied to 

extract the 12 mel cepstrum coefficients. The mel scale is an 

equi-pitch scale describing the subjective and perceptual 

response to frequency of human listener. The implemented 

neural networks are trained by presenting them with 12 input 

values from 9 frames selected at the middle of each phoneme. 

Table 1 shows the list of phonemes of each macro-class of 

TIMIT data base.  

Table 1. List of phonemes of phonemic classes of each 

macro-class 

Macro-class Phonemes 

affricates /jh/, /ch/ 

Stops /b/, /d/, /g/, /p/, /t/, /k/, /dx/, /q/, /bcl/, 

 /dcl/, /gcl/, /pcl/, /tcl/, /kcl/ 

Others /pau/, /epi/, /h#/ 

Nasals /m/, /n/, /ng/, /em/, /en/, /eng/, /nx/ 

Semi-vowels /l/, /r/, /w/, /y/, /hh/, /hv/, /el/ 

Fricatives /s/, /sh/, /z/, /zh/, /f/, /th/, /v/, /dh/ 

Vowels /iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /aw/, /ay/, 

/ah/, /ao/, /oy/, /ow/, /uh/, /uw/, /ux/, /er/, 

/ax/, /ix/, /axr/, /axh/ 

 

5.2 Classification process  
Classification is performed at frame level and performance is 

evaluated by comparing each classified frame with reference 

one.  

In the case of the classic Kohonen model, a classification 

decision is operated as follows: for a given sample input 

vector, we search for its BMU. Thereafter, we look for its 

label. 

In the case of the proposed SOM variant, a classification 

decision is operated in two steps. At a first step, for a test 

sample vector presented to a SOM variant we search for the 

BMU among all general centroid prototype vectors (GCPV) of 

  ( )  ( )
dPi P t I ti i
dt

h= +

( )  (  -  1)  ( )P t P t I ti i il= +

1 2
( )   (  -  1) - ( ) -  ( )

2
a t a t x t w ti i il= P P

2
( ) 0.54 - 0.46*cos( ) 0 , 1 (12)

-1

n
h n n N N

N


   
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a map. Thereafter, inside selected BMU unit, we search for 

the best prototype vector of different classes, in terms of 

maximal activities. 

5.3 Results and discussions 
We have implemented the Kohonen model based on 

sequential learning and the proposed SOM variant. The 

realized system is composed of three main components [31] 

[32]: a pre-processor sounds and producing mel cepstrum 

vectors. The sound input space is composed by 12 mel 

cepstrum coefficients each 16 ms frame. 9 frames are selected 

at the middle of each phoneme to generate data vectors. The 

second component is a competitive learning module. The third 

component is a phoneme recognition module.  

All maps are trained for 80 iterations using a data set 

consisting of 31070 sample vectors. For all maps, the learning 

rate decrease linearly from 0.9 to 0.05. The radius width 

decrease also linearly from half the diameter of the lattice to 

one. All maps of the same size have same initial conditions 

(that is the same mi (0)). The neural lattice was bidimensional. 

In our experiments, we have used the New England dialect 

region (DR1) composed of 31 male and 18 female. The corpus 

contains 31070 phonetic units for training and test. Each 

phonetic unit is represented by 9 frames selected at the middle 

of each phoneme to generate data vectors. Training has been 

made on phonemes for the seven macro classes of TIMIT data 

base. Table 2 shows the frame number of training and test data 

set of TIMIT speech corpus and the size of map for each 

macro classes. 

Table 2. Number of samples of training and test data set of 

TIMIT speech corpus and the size of map 

According to table 3, Leaky Integrator neurons (LIN) provides 

the best classification rate 93.20%. The LIN provides best rate 

for the phoneme /ch/ 94.39% in test set. 

With LIN we obtained an improvement of the classification 

rate in comparison with SOM in order to 16 % in training and 

test set. From table 6, LIN provides best classification 

accuracy in comparison with SOM. With LIN we obtained an 

improvement of the classification rate in comparison with 

SOM in order to 19 % in training set and 33% in test set  

 

 

 

Table 3. Affricates recognition rates  

Phonemes SOM LIN 

Training test Training test 

jh 74.03 64.70 92.30 84.31 

ch 80.39 80.37 94.11 94.39 

Average  77.18 72.72 93.20 89.47 

According to table 4, Leaky Integrator neurons (LIN) provides 

best classification rate in order to 93% in training set.  

With LIN we obtained an improvement of the classification 

rate in comparison with SOM in order to 31 % in test set. 

However, LIN model reach good recognition rates (in the 

range of 85 and 100%). 

Table 4. Semi-vowels recognition rates 

Phonemes SOM LIN 

Training test Training test 

l 70.31 67.32 79.88 80.69 

r 91.10 86.00 95.25 95.00 

w 72.38 57.76 88.56 89.32 

y 92.00 76.47 91.80 97.05 

hh 91.23 62.43 100 92.68 

hv 64.61 26.60 96.81 92.61 

el 93.62 41.37 97.01 89.65 

Average  82.16 59.66 92.76 91.00 

From table 5, with LIN we obtained an improvement of the 

classification rate in comparison with SOM in order to 18 % 

in training set and 21% in test set.  

The LIN model provides the best recognition accuracy in test 

set 86.85%. 

Table 5.  Nasals recognition rates 

Phonemes SOM LIN 

Training test Training test 

m 57.14 55.26 80.29 90.13 

n 48.51 52.90 79.20 69.67 

ng 55.82 40.00 85.92 80.00 

em 100 100 100 100 

en 44.5 70.19 77.50 88.74 

eng 100 0 100 0 

nx 82.50 74.17 98.00 92.71 

Average  69.85 65.49 88.73 86.85 

. The LIN model provides the best rate 100 % for the phoneme 

/axh/ in training and test set. 

Macro-class Frame 

number of 

training set 

Frame 

number  

of test set 

 

Size of 

map 

Affricates 268 209 10*7 

Stops 6206 2839 22*15 

Nasals 1666 913 16*12 

Semivowels 3959 1423 20*15 

Fricatives 3899 1227 19*15 

Vowels 12329 4036 26*19 

Others 2743 1211 18*14 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.15, May 2012 

38 

Table  6. Vowels recognition rates  

Phonemes SOM LIN 

Training test Training test 

iy 85.14 65.04 87.92 65.04 

ih 39.72 15.19 44.86 42.64 

eh 23.95 30.24 35.72 57.56 

ey 47.51 24.27 64.21 69.41 

ae 67.40 36.27 79.60 69.11 

aa 50.59 54.68 65.53 79.80 

aw 100 51.20 100 89.85 

ah 39.20 44.55 64.55 40.09 

ay 40.12 16.01 48.50 56.79 

ao 65.94 13.93 72.04 73.63 

oy 30.15 39.02 62.50 78.53 

ow 13.43 26.36 44.66 60.19 

uh 47.20 32.67 87.60 89.10 

uw 86.70 38.00 95.04 67.00 

ux 41.20 48.25 83.60 80.10 

er 64.61 15.68 84.89 76.96 

ax 26.74 18.81 57.48 42.57 

ix 29.22 24.50 36.97 47.50 

axr 41.61 17.64 60.75 60.78 

axh 91.20 75.50 100 100 

Average  51.58 34.38 68.80 67.33 

Table 7 shows that LIN provides the best recognition accuracy 

both in training and test set. With LIN we obtained an 

improvement of the classification rate in comparison with 

SOM in order to 9% in training set and 20% in test set. 

LIN reaches good classification rate in order to 81%in training 

set and 80% in test set.  

The SOM variant provides the best classification rate for the 

phoneme /epi/ in order to 91.79% in training set and 81.75% 

in test set. 

Table 7. Others recognition rates 

 

From table 8, with LIN we obtained an improvement of the 

classification rate in comparison with SOM in order to 11% in 

training set and 17% in test set.  

The LIN model provides the best classification rate for the 

phoneme /g/ in order to 77.22 % in test set. 

Table 8. Stops recognition rates  

According to table 9, The SOM variant provides the best 

classification rate in order to 78.27% in training set and 

75.95% in test set.  

With LIN we obtained an improvement of the classification 

rate in comparison with SOM in order to 10 % in training and 

20% in test set.   

Table 9. Fricatives recognition rates 

Phonemes SOM LIN 

training test training test 

s 74.75 63.39 76.71 73.85 

sh 66.42 55.62 85.18 90.06 

z 53.31 51.89 75.67 70.88 

zh 100 95.45 100 90.90 

f 70.27 57.41 71.49 87.09 

th 84.31 34.66 92.15 52.00 

v 68.31 76.77 75.99 90.32 

dh 30.67 14.57 48.62 51.65 

Average 68.56 56.39 78.27 75.95 

 

6. CONCLUSION  
In this paper, we have proposed a new variant of self 

organizing neural network algorithm in the unsupervised 

learning category, and we are interested in phoneme 

classification from TIMIT data base by means of new SOM 

variant with impulse neurons, named Leaky Integrator 

neurons.  

The Leaky Integrator neurons model is based on the 

conservation of information, which makes it possible to 

consider the temporal order between the successive samples 

Phonemes SOM LIN 

Training test Training test 

pau 0 0 0 0 

epi 74.50 53.00 91.79 81.75 

h# 59.62 56.26 67.73 76.90 

Average  71.48 59.70 80.63 79.52 

Phonemes SOM LIN 

Training test Training test 

k 33.55 25.36 48.83 56.58 

kcl 14.00 6.86 20.00 33.33 

dcl 56.62 22.77 56.29 40.59 

q 47.03 24.87 68.42 65.17 

g 51.65 45.05 64.57 77.72 

p 36.75 40.09 70.53 45.54 

t 47.40 23.76 61.36 57.92 

b 68.10 71.14 54.48 68.15 

d 41.72 43.5 50.33 55.50 

bcl 61.71 53.88 63.03 48.05 

dx 63.27 68.31 72.13 80.19 

gcl 39.60 28.57 48.18 55.66 

pcl 41.11 58.93 61.51 53.13 

tcl 15.89 16.83 27.48 20.79 

Average  44.20 37.86 54.84 54.13 
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by using a mechanism called Leaky Integrators. In this 

approach, the state of each neuron is performed by a 

membrane potential which is function of the input, this 

potential measure the adaptation degree between the neuron 

weight vector and the current input vector. 

The use of impulse neurons in the SOM variant makes it 

possible to establish temporal associations between the 

consecutive models in a temporal order through the impulses 

produced according to the entry and makes it possible to 

improve the taking into account of the temporal parameters in 

the recurring SOM. 

The case study of such learning algorithms is phoneme 

classification in continuous speech and speaker independent. 

The proposed SOM variant provides best classification rates 

in comparison with the basic SOM model. The LIN provides 

the best general recognition rates of the 7 macro-classes of 

TIMIT data base in order to 80% in training set and 75% in 

test set. 

As a future work, we propose to implement a cooperative 

system of SOM for phoneme recognition in order to improve 

classification rates. The system of SOM is based on the 

association of different SOM variants of supervised and 

unsupervised learning algorithms. We suggest also to 

hybridize SOM and genetic algorithm on one hand to fine tune 

SOM parameters and on the other hand for training data set 

input in the objective to ameliorate recognition rates  
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