
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

13

Model based Testing for Software Systems: An
Application of Markov Modulated Markov Process

Abhinav Kashyap, Thomas Holzer, Shahryar Sarkani, Tim Eveleigh

Department of Engineering Management and Systems Engineering

The George Washington University

1776 G Street, NW, Washington DC, USA-20052

ABSTRACT

Software systems require the validation of design features

through regression testing. Two primary challenges in system

validation are ensuring that test suites reflect actual system

usage, and managingthe test suite size to keep testing costs

low while keeping testing results meaningful.To create a test

environment that is close to actual system usage, we propose

using Markov chains to create system behavioral models from

available system usage data.Knowing that certain factors are

not captured in system usage, we will use the Markov

Modulated Markov Process to model hidden processes. The

models are used to create test plans that employ a unique,

likelihood-based, test prioritization scheme. The proposed

methodology not only provides a stochastic modeling

framework for software systems, but also considerably

improves the coverage factor of generated test suites. This

paper also presents a real-world web application case study to

demonstrate the capabilities of the proposed system validation

methodology.

General Terms

Software testing, System Validation, Test Case Prioritization

Keywords

System Validation; State Transition Diagram, Model-based

Testing; Markov chains

1. INTRODUCTION

Software testing continues to be an expensive yet integral part

of the software engineering development life cycle. Testing

enables the developer to verify the product and provides the

means for the end user to validate the system according to

their expectations. Traditional software engineering relies on

system “shall” requirement statements for deriving test

sequences. However, large, complex software systems can

end up having unmanageably large numbers of test sequences,

and the high cost of performing such tests can make it

unreasonable to run them. An alternative approach is model-

based testing, which greatly reduces the complexities

associated with the system development life cycle.

The choice of a software modeling scheme depends on the

type of testing to be performed on the system. Typically,

testing activities are performed throughout the design and

deployment phases of a software project. Although there are

multipletypes of testing techniques forcapturingthe various

aspects of system functionality and failure modes[1], the

primary goal of all software testing is to improve the quality

of the designed system by uncovering as many faults as

possible within the allocated time.[2–5].

The research question that we address in this study is whether

model-based engineering activities used in system validation

improve overall system reliability. One problem with existing

systemtest plans is that they are large, ad-hoc, and manually

generated thus generating a number of usage paths and

scenarios that do not accurately reflect how a system is used

in real time. A gap that we address here is that up till now, no

one has attempted to use 'likelihood of a test plan representing

actual usage' as a criterion in test suite reduction or test plan

generation techniques. We attempt to fill this gap.

Figure 1 presents the framework used for ourresearch. First,

an existing system usage data set is identified and a system

behavioral model is created using Markov Chains.The

generated model is used to create test plans and prioritize

them. This paper presents a functional testing or “black box

testing” methodology that relies on modeling of available

system usage data. We also present acomparative study to

help explainthe effectiveness of the proposed solution.

Figure 1: Research Framework

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

14

2. RELATED WORK

The use of models specifically for system testing has made

huge advances in the last few decades. As described by Dalal

et al.[5], model-based testing depends upon three key

technologies:

• The notation for modeling,

• The test generation algorithm and

• The tools for supporting infrastructure.

There are a number of standard notations for describing a

system model. These notations are categorized by [6] and [7]

into state-based (Post/Pre), data-flow based, function-based,

operational, transition-based, and stochastic notations. The

approach we propose is influenced by the transition-based and

stochastic approaches described in the literature.

2.1 State and Flow-based model notations

The state-based notation model describes the internal system

state as a collection of variables using a post and pre condition

definition. The use of model-based specification languages,

such as Z and VDM, to derive formal specifications

forsystems and for test-case generation has been extensively

researched [8], [9]. T-Vec is another language used for state-

based functional specifications of the system [10]. The paper

by Zweben et al. [11] was one of the earliest to propose the

use of flow graphs as a testing technique. The technique

presented in [11] used data-flow and control-flow to represent

the system functions as nodes (states) of the graphs and

applied them to abstract data types. A similar approach was

proposed by Offutt [12] using specification graphs.

Specification graphs differ from flow graphs in thatthe

graphsrepresent the behavioral states in the system instead of

functions.

2.2 Transition-based model notations

Transition-based models use node and arc-like graphical

representations to describe the transition between various

system states. Finite State Machines (FSM) are widely used

for modeling the system state transitions. In [13], the authors

used FSM to model the system behavior and a model-based

test generator to derive test suites. State-charts are another

transition-based approach for modeling a system. State-charts

are considered an extension of FSM with several augmented

concepts for complex systems specification modeling. In [14],

the authors present a method for the selection of test

sequences from state-charts and for enabling requirement

verification. Pretschneret. al.[15] alsopresented a test-

generation tool using state transition diagrams to capture

system behavior. Activity diagrams have also been used for

automated test generation. In [16], the authors create UML

activity diagrams for a JAVA program and then generate test

cases using an adequacy criterion.

2.3 Stochastic model notations

Stochastic models define the system as a probabilistic model

of events. Markov chains are an example of a stochastic

approach. They are used to model the expected usage of a

system. Markov chains are mathematical representation of

transition between finite states of a system. The transitions are

characterized by a random process which has a property of

memorylessness i.e. the next state only depends upon next

state.Whittaker and Thomason [17] describe an approach

using Markov chains to model the behavioral functional

diagram of a system. In [18], the authors present a similar

technique to generate test cases using Markov chains from

operational profile data. The authors of [19]provided a

framework for usage-based statistical testing. It uses the

frequency count of interactions between the system

environment and the target system. In [20] the authors present

the use of concept analysis to cluster the user sessions/test

cases thereby reducing the test suite for web applications. The

approach we present in this paper is different from [20] in that

we created a model that can be reused in system regression

testing or in system upgrades.

The test-generation algorithm is another key element in

model-based testing as described by Dalal et al. [5]. In recent

years, the focus has shifted from manual methods to automatic

test-case generation. The goal of automation is to generalize

the techniques and develop automated tools for supporting the

testing infrastructure, including the expected outcomes.

Regression testing, for example requires a test-generation

approach that can regenerate the test cases in accordance with

changing requirements. The ability to prioritize test cases for

some goal, such as increasing the rate of fault detection is

another highly desirable feature for an automated test-case

generator. Numerous prioritization techniques have been

described in the reference literature[21], [22]. In [21] the

authors present a comparative case study using eight C

Programs and various prioritization techniques, such as

branch coverage and statement coverage. The techniques

presented are code based, i.e., the test cases include coverage

of code elements. Large systems can require thousands of

lines of code to be tested and may consist of millions of

interactions between the objects and different user profiles,

making it difficult to apply code-based techniques. The

approach suggested by [20] differs from code-based

approaches in that it generates usage statistics obtained

through operational profiles to generate and prioritize the test

cases. Our approach relies on modeling of the available

system usage data, but it differs from [20] in that we created a

model that can be reused in system regression testing or in

system upgrades.Wong et al.[23] describe an algorithm based

on increased cost per additional coverage of the software

code. In [24] the authors present a comparison of a greedy

algorithm, a genetic algorithm, and a hill-climbing algorithm

for test-case prioritization. These algorithms are heuristic

search algorithms that find an optimal solution in a given

search space.

3. MODELING A SOFTWARE SYSTEM

Modeling a software system requires mapping the

functionality that the software offers to the programmed

objects. Consider the example of an Automated Teller

Machine (ATM) software system, as shown in Figure 2.

Figure 2: Functions of an ATM software system

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

15

An ATM can be used to achieve various goals – for example,

to check the current balance, to withdraw money, to deposit

money or to transfer money. When simulating a software

system using FSM, various system functionalities can be

described in the form of stimuli to the system and responses in

the form of state progressions. To keep this analysis simple,

we can demonstrate the system functionality of the ATM

using five states: (a) Start; (b) Stop; (c) Withdraw; (d)

Deposit; and (e) Check balance. It is expected that this system

would always start in the Start state and end in the Stop state.

There are multiplepaths that the system can follow between

these terminal states. One straightforward way to describe the

system functionality would be to describe each and every

possible path under various scenarios, as shown in Figure 3.

This methodology is comprehensive but exhaustive, and it

could become quite complicated as the system functionality is

developed.

Figure 3: Scenarios for an ATM software system

Another method for capturing all the system functions is to

describe the functions of the system in the form of a state

transition model. Figure 4 shows a model of the system with

various possible paths. By using the state transition model, we

reduce the complexity of the system. The model can be used

togenerate as many scenarios as required for deriving various

system functionalities.However, amajor issue with model-

based engineering is that the created model may be as

complicated as traditional methods, because model based

techniques can generate a large number of possible scenarios.

Although this could help in defining the system behavior in a

comprehensive manner, it might not be useful for large

systems where the system offers an unmanageable number of

functions/states.

Figure 4: Flow-paths for an ATM software system

Going back to the ATM example, the system offers a total of

only 3functions, yet the system can be used in 28 different

ways. Some of the possible scenarios would occur only rarely

in actual system usage and some would never occur.The

model would need to be modified to be able to capture the

frequency response of a particular functionality. As described

in Section 2, Markov chains have been widely used for

capturing the stochastic behavior of systems. Figure 5 shows a

Markov chain-based model of the ATM software system.

With probabilistic information, the system can be described in

a more analytical mannerby defining state progression in

terms of likelihood. For example, referencing to figure 5 a

customer is more likely to check the balance after withdrawal

than to proceed directly to exit the system. The model can be

further improved by modeling the probabilities in continuous

time. The state progression in continuous time would be

modeled using continuous time Markov chains (CTMC).

When modeling the system using CTMC, instead of assigning

a discrete probability, we assign a transition rate. For

example, the ATM software system would have a transition

rate of 5 seconds when going from start to deposit and a

transition rate of 9seconds going from start to stop. In CTMC,

the transition rates are modeled using exponential random

variables and the transitions are modeled using Markov

chains.

Figure 5: ATM software system state transitions modeled using discrete time Markov chains

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

16

Figure 6: ATM software system state transitions and customer queue lengths modeled as MMMP

3.1 Markov Modulated Markov Process

A common problem in modeling real world processes is that

the output signal from a system gets distorted due to the

change in environmental conditions affecting the source. In

signal processing literature, Hidden Markov Models (HMM)

have been used for modeling the signals in learning about the

sources where the overall system behavior is described by a

doubly stochastic process [25]. In this paper, software systems

which have doubly stochastic characteristics are modeled as

Markov Modulated Markov Processes (MMMP). An MMMP

is a process where the system has two continuous time

processes: 1) the observable process, visible in the system

usage data, and 2) the underlying process, not visible but

directly affecting the transition rates of the observable

process.

Again referring to theexample of an ATM software system,

system transitions are modeled as MMMPs, as shown in

Figure 6. The underlying process here is the type of queue, as

it transitions from one state to another. Here the queue

assumes two distinct states, a longer queue and a shorter

queue. Depending upon the queue length, the user would have

a different response while using the system. The underlying

process itself is modeled as a CTMC. For each underlying

process, the ATM system would have a set of transition

probabilities. Taking the underlying process transition

probabilities together with the observable process transition

probabilities, we can define the complete system behavior in a

stochastic manner. The generator for an MMMP is given by

Equation 1:

 Φ= {Q, G1, G2…Gr} (1)

Here, Q represents the observable process transition

probabilities and G1; G2 ...Gr represents the transition

probability matrix for the underlying process, where r is the

number of underlying states.

3.2 Parameter Estimation

Creating the stochastic model of the software system using

MMMP requires an estimate of the probabilities associated

with both the observable process and the underlying process.

One of the key features of this research is that we use the

available system usage data to estimate these

probabilities.Using the available system usage data reduces

the gap between actual system behavior and the created

system model. We created anMMMP model for the system by

estimating the generator, Φ. We used the EM algorithm

developed by Roberts and Ephraim [26]. In our previous work

[27] we reviewedthe essential equations for using this

algorithm. Readers are encouraged to review the equations

and to refer to [27] for a more detailed review of the

algorithm. To keep the discussion system-oriented, a pseudo

code of the algorithm is provided in Figure 7.

1. Initialize parameters {Q, G1, G2…Gr} with Φ0={Q0,

G0
1, G

0
2…G0

r}.

2. Compute complete log likelihood Lcl of Φl given the

observation data χ.

3. E Step. Using forward–backward recursion, compute

mean estimates of:

a. Dwell times in underlying state i where

i=1,2, 3…r.

b. Number of jumps from underlying state i

to state j, where i,j =1,2…r and i≠j.

c. Dwell times in observable states l=1,2,

3…N given underlying state i.

d. Number of jumps from observable state l

to state n given underlying state I.

4. M Step: Maximize the estimated probabilities and

compute new estimate of Φl+1

a. Compute new estimates of Q by dividing

3b with 3a.

b. Compute new estimates of G1, G2…Gr

by dividing 3d with 3c

.

5. Repeat 2 to 4 until convergence, which could be

Lcl+LCL+1/Lcl<desired limit.

 Figure 7: Pseudo code for EM algorithm for MMMP [27]

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

17

The first step is to initialize the parameters that need to be

estimated. Next, the log likelihood is estimated using all the

available observable data. The third step is the expectation

step (E-Step), in which the forward-backward recursion

procedure computes the dwell times and the number of jumps

associated with the observable and underlying processes. In

the maximization step (M-Step), new estimates for the

transition probabilities are generated. The convergence

criterion used for the EM algorithm is the improvement in the

likelihood function between the previous and the new

estimates.

3.3 Likelihood-based Prioritization
The test sequence prioritization problem as defined in[21] is

as follows:

Given: T, a test suite; PT, the set of permutations of T; f, a

function from PT to the real numbers.

Problem: Find T'∈ PT such that,

 (∀ T')(T'' ∈ PT)(T'' ≠ T') [f (T') ≥ f (T'')].

Here, PT represents the set of all possible

prioritizations(Orderings) of T, and f is a function that, applied

to any such ordering, yields an award value for that ordering.

In the proposed methodology, we used a likelihood-based

approach for prioritizing the test sequences. The likelihood-

based prioritization scheme works on the principle of

choosing a subset of test sequences from the set of test

sequences.Likelihood is used asan objective function to solve

the prioritization problem. Figure 8 summarizes the

prioritization scheme used in this study.

Figure 8: Proposed test sequence prioritization scheme

A large number of test sequences are generated from the

models, which are in the form of CTMCs. The likelihood

function is calculatedfor each transition sequence. The

likelihood function for MMMP is given in the equation below.

1
11

1
1

);,(




















M
M

s

k
s

k
s

k
sk

k
s

k
ss

q
e

q

qq
eqSP

M

k




1
11

1

1

1

1

1




























N

k
s

N
x

k
s

n
x

k
s

n
x

n
xn

k
S

n
x

N

n

k
S

n
x

M

k

s

x

Tg
e

g

gTg
eg



The derivation and explanation of the complete likelihood

equation can be found in our previous work [27]. In the next

step, the test sequences are prioritized by sorting the test

sequences, based upon likelihood. From the prioritized test

sequences, the top 'n' test sequences are chosen based on

testing requirements such as the estimated cost or the time

allotted for the testing activities.

4. ILLUSTRATIVE CASE STUDY

The system behavior model neededto be created from the

available system usage data. Since the system behavior is

modeled using the time spent in a particular state, we

reviewed data sets that included time aspects of system usage.

Most software systems change states in the time domain, and

such data can easily be recorded. Modeling of a software

system has many possible uses – for instance, the model can

be used in design improvement activities, in testing of current

features, in extracting user demographic information, in

testing browser compatibility, or in improving the user

experience. Like software systems, web-based applications

also collect time-based system data, which is reflected in the

click stream data. To demonstrate our proposed methodology

for a system behavior model and test-sequence generation, we

chose WebKDD cup 2000 website click stream data[28].

WebKDD cup click stream data consist of the user sessions

for a commercial retail website. This final set of click stream

data was taken from the web server between January 30, 2000

and March 31, 2000. The click stream data are from a retail

website which closed its operation in April 2000. There were

777,480 records, each with 217 fields.

4.1 Data Description

Each record of the clickstream data has information about a

page visited by a user. There could be multiple page visits

from a user in the usage data. The length of a user session is

derived from the number of pages visited and the time spent

on each page. There is lot more information available from

each record – for example, session ID, cookie ID, and first

page visited. For our case study, the fields required from the

data set weresystem states, i.e., the web pages visited by the

user and the dwell time in that particular state. We

reorganized the click stream data by calculating dwell times

for each state, which we did by subtracting the time between

clicks for each successive web page visited. We also separated

one session from another by using session ID as the criterion

for identifying a unique session.To perform the modeling at

an abstract level, all the web pages were categorized into one

of the four categories. Table 1 shows the categorization of

web page types.

Table 1: Categorization for web application case study

Category Type

1 Account Activity, Billing

2 Company Information, News

3 Departments, Browse

4 Home Page, Start, Returns, Replenish

After the web pages were categorized, all user sessions were

transformed into state sequences, which consist of system

states and dwell times.

4.2 User Behavior and System Interaction

To describe the underlying user behavior, we used user states

as defined in [29]. The hidden states are purchase and non-

purchase states. There are other possible ways of categorizing

user behaviors. For example, we might have used purchase,

non-purchase and casual browsing. The number of

categorization levels used really depended upon the level of

analysis required.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

18

4.3 Web Application MMMP Model

Before modeling the web application usage data using

CTMCs, we validated the dwell times for each state to

haveexponential distribution. Once the data had been

formatted – i.e., the web page data had been transformed to

states and validated for appropriate random variables – we

created two estimated probability distribution matrices, one

for underlying processes and one for observable processes.

The first probability matrix consisted of the estimated

transition rates for the underlying process. For this case study,

we used an equal probability distribution as the initial

probability distribution for a user going from the purchase

state to the non-purchase state. The second probability matrix

was the probability distribution for the observed process.

These probabilities together formed the generator Φ, as

described in Equation 1. Next, we estimated new parameters

using the EM algorithm, as described in Section 3.2. Table 2

and Table 3 show the initial and the final estimatesof the

transition rates for the underlying and observable states.

Table 2: Initial and final estimates of transition rates for

the Underlying Continuous Time Markov Process

 Initial Estimate Final Estimate

 Purchase Non-

Purchase

Purchase Non-

Purchase

Purchase -5 5 -9 9

Non-

Purchase

1 -1 5 -5

Table 3: Initial and final estimates of transition rates for

the Observable Continuous Time Markov Process

 Initial Estimate Final Estimate

G1 -233 82 69 82 -169.12 4.37 52.61 112.13

96 -199 13 88 32.96 -114.39 13.22 68.19

19 11 -105 72 26.83 3.36 -74.87 44.67

13 78 68 -163 41.66 9.24 17.15 -68.06

Initial Estimate Final Estimate

G2 -164 90 40 33 -34.08 3.25 21.55 9.28

95 -178 22 59 9.59 -35.48 12.30 13.59

20 91 -135 21 8.52 1.46 -13.07 3.07

36 45 19 -104 10.23 5.53 18.30 -34.08

4.4 Test Sequence Prioritization and

Stopping Criterion

Using the likelihood-based methodology as described in

Section 3.3, we created and then prioritized one thousand test

sequencesfrom the estimated probabilities.It is important to

note that since we used a sorting scheme to prioritize test

sequences, the computational complexity of the algorithm

reaches O (n log n).We could improve the results by using an

advanced sorting algorithm such as smooth sort, strand sort or

cycle sort. This area of our research was also a good candidate

for implementing heuristic search algorithms to identify test

sequences based on an objective function, for which we could

use likelihood, as well. Due to the nature of sorting, it is

expected that as the number of test sequences increases, the

benefit of the prioritization scheme diminishes. Since running

the whole test suite could be a costly endeavor, the tester

could use the likelihood vs. number of test sequences graph to

choose a stopping criterion, based on the level of testing

required. For our analysis, the final test suite was limited to

the top 100 test sequences.

4.5 Statistical Comparative Analysis

Ourprimary research question in this work was whether the

proposed prioritization scheme would increase the likelihood

of a test plan being a better representative of real-world usage

compared to the ad-hoc random generation of a test plan. For

this problem, the research hypotheses are as follows:

Null Hypothesis H0: Likelihood Ad-hoc= Likelihood Model

Alternative HypothesisH1: Likelihood Ad-hoc≤ Likelihood Model

To investigate this hypothesis, we compared the likelihoods of

25 test plans for the ad-hoc test plan generation technique

with the likelihoods of 25 test plans for the proposed model-

based test plan generation and prioritization technique. For the

ad-hoc test plan, we created test plans each consisting of 100

test sequences randomly selected from WebKDD cup web

navigation data. Using the proposed methodology, we

generated the other set of test plans, with each of them also

consisting of 100 test sequences. In the next step, we

calculated the total test-plan likelihood for both sets of test

plans. Total likelihood was the product of all likelihoods of

test sequences within a test plan. Given that the likelihood

data has an acceptable fit with normal distribution, we used a

two-tailed student-t test to test the null hypothesis at a

significant level of alpha = 0.05. Table 4 summarizes the

results of the hypothesis testing.

Table 4: Hypothesis testing for likelihood-based test

sequence prioritization scheme

 Prioritized Un-prioritized

Mean 2794.787 448.7143

Variance 18854.96 372480.7

Observations 25 25

Pearson Correlation 0.003256

Hypothesized Mean

Difference

0

Df 24

t Stat 18.76462

P(T<=t) one-tail 3.79E-16

t Critical one-tail 1.710882

P(T<=t) two-tail 7.57E-16

t Critical two-tail 2.063899

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

19

5. CONCLUSION

The previous section provided an analytical comparison based

on likelihood function. Since the p-value of 7.57E-16 for the

two-tailed test is less than alpha of 0.05, the null hypothesis

H0 is rejected and the alternate hypothesis H1 is accepted.

Additionally it is clear from the two means of likelihood

functions is that the proposed methodology provides a higher

coverage of the most likely usage scenarios.

The methodology we have presented has three contributions

to system analysis and testing:

a) A system modeling approach that captures the

stochastic nature of system behavior. Not only do we

capture the observable progression of a system, but we

also capture an underlying phenomenon that would

affect the system behavior.

b) A test-sequence generation scheme for the Markov

Modulated Markov process model. The presented

scheme could be used for automated test-case

generation. There are numerous applications for

automated test-case generation – for example, during

system upgrades, commercial off-the-shelf analysis,

system maintenance, or legacy system comparison.

c) A test-sequence prioritization scheme that uses

likelihood as an objective. The presented scheme

exploits the stochastic nature of the system model in

improving the coverage of the test suite.

Another area of this research explored the impact of the length

of the test suite on likelihood function. In Figure 9, a

cumulative likelihood versus number of test sequences for the

web application case study has been plotted. Such data

analysiswould provide a direct feedback to the system

validation team about the time and cost required to run the

extent ofthe test suite.

Figure 7: Cumulative Likelihood vs. Number of test

sequences

Other researchers have suggestedvarious objective functions

as a stopping criterion for test suite prioritization such

asaverage percentage of fault detected [30].Likeaverage

percentage of fault detected , a likelihood function could be

used as a stopping criterion. For example, a tester could stop

the proposed test suite generation at 100 test sequences for a

cumulative likelihood value of 2000.

6. LIMITATIONS AND FUTURE

RESEARCH

This study uses Markov chains to explore the time domain

progression of a system. Not all software systems have usage

data consisting of time domain data, and this imposes a

limitation on the applicability of the technique we

havepresented to some systems. In cases where time domain

data are unavailable, the system would need to be modeled

using Discrete Markov Chains and Hidden Markov Models,as

required.

A second limitation of this study is that the presented case

study does not validate the proposed methodology by testing

the fault detectioncapabilities. To understand the fault

detection capabilities of the methodology, we would need to

develop asystem where a known number of faults could be

seeded and tested with the generated test plans.

Thirdly,techniquewe have presented models the underlying

process in categories based upon user behavior and

preferences. There may be other ways of performing this

categorization, for example, on the basis of environmental

conditions or of the economic condition of system users. We

would need amore comprehensive study to capture other

underlying process models.

Lastly, the proposed model could be greatly affected by the

social-cultural aspect of the system environment. Building a

more comprehensive framework for the proposed

methodology might be considered for future work.

7. ACKNOWLEDGMENTS

The authors would like to thank Blue Martini Software for

making the WebKDD cup 2000 data available for this

research. We would also like to thank Dr. William J. J.

Roberts for his productive discussions and for providing

valuable suggestions for improving this research.

8. REFERENCES

[1] L. Huang and B. Boehm, “How Much Software Quality

Investment Is Enough: A Value-Based Approach,”

Software, IEEE, vol. 23, no. 5, pp. 88 –95, Oct. 2006.

[2] K.-C. Chiu, J.-W. Ho, and Y.-S. Huang, “Bayesian

updating of optimal release time for software systems,”

Software Quality Control, vol. 17, no. 1, pp. 99–120,

Mar. 2009.

[3] Y. F. Li, M. Xie, and T. N. Goh, “A study of project

selection and feature weighting for analogy based

software cost estimation,” Journal of Systems and

Software, vol. 82, no. 2, pp. 241–252, Feb. 2009.

[4] S.M.K Quadri and Sheikh Umar Farooq,” Software

Testing-Goals, Principles and Limitations,” International

Journal of Computer Applications, Volume 6-No.9,

September 2010.

[5] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.

Lott, G. C. Patton, and B. M. Horowitz, “Model-based

testing in practice,” in Software Engineering, 1999.

Proceedings of the 1999 International Conference on,

1999, pp. 285 –294.

[6] M. Utting, A. Pretschner, and B. Legeard, “A Taxonomy

of model-based testing,” Apr. 2006.

[7] A. van Lamsweerde, “Formal specification: a roadmap,”

in Proceedings of the Conference on The Future of

Software Engineering, New York, NY, USA, 2000, pp.

147–159.

[8] J. Dick and A. Faivre, “Automating the Generation and

Sequencing of Test Cases from Model-Based

Specifications,” in Proceedings of the First International

0

1000

2000

3000

4000

5000

6000

7000

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

 C
u

m
u

la
ti

v
e

L
ik

el
ih

o
o
d

Number of Test Sequences

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.14, May 2012

20

Symposium of Formal Methods Europe on Industrial-

Strength Formal Methods, London, UK, UK, 1993, pp.

268–284.

[9] R. M. Hierons, “Testing from a Z Specification,”

Software Testing, Verification and Reliability, vol. 7, no.

1, pp. 19–33, Mar. 1997.

[10] M. R. Blackburn and R. D. Busser, “T-VEC: A tool for

developing critical systems,” in In Proceedings of the

1996 Annual Conference on Computer Assurance

(COMPASS 96, 1996, pp. 237–249.

[11] S. Zweben, W. Heym, and J. Kimmich, “Systematic

Testing of Data Abstractions Based on Software

Specifications,” Software Testing, Verification, and

Reliability, vol. 1, no. 4, pp. 39–55, 1992.

[12] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann,

“Generating test data from state-based specifications,”

The Journal of Software Testing, Verification and

Reliability, vol. 13, pp. 25–53, 2003.

[13] E. Farchi, A. Hartman, and S. S. Pinter, “Using a model-

based test generator to test for standard conformance,”

IBM Syst. J., vol. 41, no. 1, pp. 89–110, Jan. 2002.

[14] H. S. Hong, Y. G. Kim, S. D. Cha, D. H. Bae, and H.

Ural, “A test sequence selection method for statecharts,”

Software Testing, Verification and Reliability, vol. 10,

no. 4, pp. 203–227, Dec. 2000.

[15] A. Pretschner, O. Slotosch, E. Aiglstorfer, and S.

Kriebel, “Model-based testing for real,” International

Journal on Software Tools for Technology Transfer

(STTT), vol. 5, pp. 140–157, Mar. 2004.

[16] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li,

“UML Activity Diagram-Based Automatic Test Case

Generation For Java Programs,” The Computer Journal,

vol. 52, no. 5, pp. 545 –556, 2009.

[17] J. Whittaker and M. Thomason, “A Markov Chain

Model for Statistical Software Testing,” IEEE Trans.

Softw. Eng., vol. 20, no. 10, pp. 812–824, Oct. 1994.

[18] A. Avritzer and E. J. Weyuker, “The Automatic

Generation of Load Test Suites and the Assessment of

the Resulting Software,” IEEE Trans. Softw. Eng., vol.

21, no. 9, pp. 705–716, Sep. 1995.

[19] B. Regnell, “Towards integration of use case modelling

and usage-based testing,” Journal of Systems and

Software, vol. 50, pp. 117–130, Feb. 2000.

[20] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A.

S. Greenwald, “Applying Concept Analysis to User-

Session-Based Testing of Web Applications,” Software

Engineering, IEEE Transactions on, vol. 33, no. 10, pp.

643 –658, Oct. 2007.

[21] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test

Case Prioritization: A Family of Empirical Studies,”

IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 159–182,

Feb. 2002.

[22] S. Elbaum, A. G. Malishevsky, and G. Rothermel,

“Prioritizing test cases for regression testing,” in

Proceedings of the International Symposium on Software

Testing and Analysis - ISSTA ’00, Portland, Oregon,

United States, 2000, pp. 102–112.

[23] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal,

“A study of effective regression testing in practice,” in

PROCEEDINGS The Eighth International Symposium

On Software Reliability Engineering, 1997, pp. 264 –

274.

[24] Z. Li, M. Harman, and R. M. Hierons, “Search

Algorithms for Regression Test Case Prioritization,”

IIEEE Trans. Software Eng., vol. 33, no. 4, pp. 225–237,

Apr. 2007.

[25] L. R. Rabiner, “A tutorial on hidden markov models and

selected applications in speech recognition,”

PROCEEDINGS OF THE IEEE, vol. 77, p. 257–286,

1989.

[26] Y. Ephraim and W. J. J. Roberts, “An EM Algorithm for

Markov Modulated Markov Processes,” IEEE Trans.

Signal Process., vol. 57, no. 2, pp. 463–470, Feb. 2009.

[27] A. Kashyap, W. Roberts, S. Sarkani, and T. Mazzuchi,

“A Model Driven approach for System Validation,” in

IEEE International Systems Conference, Vancouver, BC,

Canada, 2012.

[28] R. Kohavi, C. E. Brodley, B. Frasca, L. Mason, and Z.

Zheng, “KDD-Cup 2000 organizers’ report: peeling the

onion,” SIGKDD Explor. Newsl., vol. 2, no. 2, pp. 86–

93, Dec. 2000.

[29] A. L. Montgomery, S. Li, K. Srinivasan, and J. C.

Liechty, “Modeling Online Browsing and Path Analysis

Using Clickstream Data,” Marketing Science, vol. 23, no.

4, pp. 579–595, 2004.

[30] S. Elbaum, G. Rothermel, S. Kanduri, and A. G.

Malishevsky, “Selecting a Cost-Effective Test Case

Prioritization Technique,” Software Quality Control, vol.

12, no. 3, pp. 185–210, Sep. 2004.

