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ABSTRACT 

Software systems require the validation of design features 

through regression testing. Two primary challenges in system 

validation are ensuring that test suites reflect actual system 

usage, and managingthe test suite size to keep testing costs 

low while keeping testing results meaningful.To create a test 

environment that is close to actual system usage, we propose 

using Markov chains to create system behavioral models from 

available system usage data.Knowing that certain factors are 

not captured in system usage, we will use the Markov 

Modulated Markov Process to model hidden processes. The 

models are used to create test plans that employ a unique, 

likelihood-based, test prioritization scheme. The proposed 

methodology not only provides a stochastic modeling 

framework for software systems, but also considerably 

improves the coverage factor of generated test suites. This 

paper also presents a real-world web application case study to 

demonstrate the capabilities of the proposed system validation 

methodology. 
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1. INTRODUCTION 

Software testing continues to be an expensive yet integral part 

of the software engineering development life cycle. Testing 

enables the developer to verify the product and provides the 

means for the end user to validate the system according to 

their expectations. Traditional software engineering relies on 

system “shall” requirement statements for deriving test 

sequences. However, large, complex software systems can 

end up having unmanageably large numbers of test sequences, 

and the high cost of performing such tests can make it 

unreasonable to run them. An alternative approach is model-

based testing, which greatly reduces the complexities 

associated with the system development life cycle.  

The choice of a software modeling scheme depends on the 

type of testing to be performed on the system. Typically, 

testing activities are performed throughout the design and 

deployment phases of a software project. Although there are 

multipletypes of testing techniques forcapturingthe various 

aspects of system functionality and failure modes[1], the 

primary goal of  all software testing is to improve the quality 

of the designed system by uncovering as many faults as 

possible within the allocated time.[2–5].  

The research question that we address in this study is whether 

model-based engineering activities used in system validation 

improve overall system reliability. One problem with existing 

systemtest plans is that they are large, ad-hoc, and manually 

generated thus generating a number of usage paths and 

scenarios that do not accurately reflect how a system is used 

in real time. A gap that we address here is that up till now, no 

one has attempted to use 'likelihood of a test plan representing 

actual usage' as a criterion in test suite reduction or test plan 

generation techniques. We attempt to fill this gap. 

Figure 1 presents the framework used for ourresearch. First, 

an existing system usage data set is identified and a system 

behavioral model is created using Markov Chains.The 

generated model is used to create test plans and prioritize 

them. This paper presents a functional testing or “black box 

testing” methodology that relies on modeling of available 

system usage data. We also present acomparative study to 

help explainthe effectiveness of the proposed solution. 

Figure 1: Research Framework
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2. RELATED WORK 

The use of models specifically for system testing has made 

huge advances in the last few decades. As described by Dalal 

et al.[5], model-based testing depends upon three key 

technologies:  

• The notation for modeling,  

• The test generation algorithm and  

• The tools for supporting infrastructure. 

There are a number of standard notations for describing a 

system model. These notations are categorized by [6] and [7] 

into state-based (Post/Pre), data-flow based, function-based, 

operational, transition-based, and stochastic notations. The 

approach we propose is influenced by the transition-based and 

stochastic approaches described in the literature. 

2.1 State and Flow-based model notations 

The state-based notation model describes the internal system 

state as a collection of variables using a post and pre condition 

definition. The use of model-based specification languages, 

such as Z and VDM, to derive formal specifications 

forsystems and for test-case generation has been extensively 

researched [8], [9]. T-Vec is another language used for state-

based functional specifications of the system [10]. The paper 

by Zweben et al. [11] was one of the earliest to propose the 

use of flow graphs as a testing technique. The technique 

presented in [11] used data-flow and control-flow to represent 

the system functions as nodes (states) of the graphs and 

applied them to abstract data types. A similar approach was 

proposed by Offutt [12] using specification graphs. 

Specification graphs differ from flow graphs in thatthe 

graphsrepresent the behavioral states in the system instead of 

functions. 

2.2 Transition-based model notations 

Transition-based models use node and arc-like graphical 

representations to describe the transition between various 

system states. Finite State Machines (FSM) are widely used 

for modeling the system state transitions. In [13], the authors 

used FSM to model the system behavior and a model-based 

test generator to derive test suites. State-charts are another 

transition-based approach for modeling a system. State-charts 

are considered an extension of FSM with several augmented 

concepts for complex systems specification modeling. In [14], 

the authors present a method for the selection of test 

sequences from state-charts and for enabling requirement 

verification. Pretschneret. al.[15] alsopresented a test-

generation tool using state transition diagrams to capture 

system behavior. Activity diagrams have also been used for 

automated test generation. In [16], the authors create UML 

activity diagrams for a JAVA program and then generate test 

cases using an adequacy criterion. 

2.3 Stochastic model notations 

Stochastic models define the system as a probabilistic model 

of events. Markov chains are an example of a stochastic 

approach. They are used to model the expected usage of a 

system. Markov chains are mathematical representation of 

transition between finite states of a system. The transitions are 

characterized by a random process which has a property of 

memorylessness i.e. the next state only depends upon next 

state.Whittaker and Thomason [17] describe an approach 

using Markov chains to model the behavioral functional 

diagram of a system. In [18], the authors present a similar 

technique to generate test cases using Markov chains from 

operational profile data. The authors of [19]provided a 

framework for usage-based statistical testing. It uses the 

frequency count of interactions between the system 

environment and the target system. In [20] the authors present 

the use of concept analysis to cluster the user sessions/test 

cases thereby reducing the test suite for web applications. The 

approach we present in this paper is different from [20] in that 

we created a model that can be reused in system regression 

testing or in system upgrades. 

The test-generation algorithm is another key element in 

model-based testing as described by Dalal et al. [5]. In recent 

years, the focus has shifted from manual methods to automatic 

test-case generation. The goal of automation is to generalize 

the techniques and develop automated tools for supporting the 

testing infrastructure, including the expected outcomes. 

Regression testing, for example requires a test-generation 

approach that can regenerate the test cases in accordance with 

changing requirements. The ability to prioritize test cases for 

some goal, such as increasing the rate of fault detection is 

another highly desirable feature for an automated test-case 

generator. Numerous prioritization techniques have been 

described in the reference literature[21], [22].   In [21] the 

authors present a comparative case study using eight C 

Programs and various prioritization techniques, such as 

branch coverage and statement coverage. The techniques 

presented are code based, i.e., the test cases include coverage 

of code elements. Large systems can require thousands of 

lines of code to be tested and may consist of millions of 

interactions between the objects and different user profiles, 

making it difficult to apply code-based techniques. The 

approach suggested by [20] differs from code-based 

approaches in that it generates usage statistics obtained 

through operational profiles to generate and prioritize the test 

cases. Our approach relies on modeling of the available 

system usage data, but it differs from [20] in that we created a 

model that can be reused in system regression testing or in 

system upgrades.Wong et al.[23] describe an algorithm based 

on increased cost per additional coverage of the software 

code. In [24] the authors present a comparison of a greedy 

algorithm, a genetic algorithm, and a hill-climbing algorithm 

for test-case prioritization. These algorithms are heuristic 

search algorithms that find an optimal solution in a given 

search space. 

3. MODELING A SOFTWARE SYSTEM 

Modeling a software system requires mapping the 

functionality that the software offers to the programmed 

objects. Consider the example of an Automated Teller 

Machine (ATM) software system, as shown in Figure 2. 

 

Figure 2: Functions of an ATM software system 
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An ATM can be used to achieve various goals – for example, 

to check the current balance, to withdraw money, to deposit 

money or to transfer money. When simulating a software 

system using FSM, various system functionalities can be 

described in the form of stimuli to the system and responses in 

the form of state progressions. To keep this analysis simple, 

we can demonstrate the system functionality of the ATM 

using five states: (a) Start; (b) Stop; (c) Withdraw; (d) 

Deposit; and (e) Check balance. It is expected that this system 

would always start in the Start state and end in the Stop state. 

There are multiplepaths that the system can follow between 

these terminal states. One straightforward way to describe the 

system functionality would be to describe each and every 

possible path under various scenarios, as shown in Figure 3. 

This methodology is comprehensive but exhaustive, and it 

could become quite complicated as the system functionality is 

developed. 

 

Figure 3: Scenarios for an ATM software system 

Another method for capturing all the system functions is to 

describe the functions of the system in the form of a state 

transition model. Figure 4 shows a model of the system with 

various possible paths. By using the state transition model, we 

reduce the complexity of the system. The model can be used 

togenerate as many scenarios as required for deriving various 

system functionalities.However, amajor issue with model-

based engineering is that the created model may be as 

complicated as traditional methods, because model based 

techniques  can generate a large number of possible scenarios. 

Although this could help in defining the system behavior in a 

comprehensive manner, it might not be useful for large 

systems where the system offers an unmanageable number of 

functions/states. 

 

Figure 4: Flow-paths for an ATM software system 

Going back to the ATM example, the system offers a total of 

only 3functions, yet the system can be used in 28 different 

ways. Some of the possible scenarios would occur only rarely 

in actual system usage and some would never occur.The 

model would need to be modified to be able to capture the 

frequency response of a particular functionality. As described 

in Section 2, Markov chains have been widely used for 

capturing the stochastic behavior of systems. Figure 5 shows a 

Markov chain-based model of the ATM software system. 

With probabilistic information, the system can be described in 

a more analytical mannerby defining state progression in 

terms of likelihood. For example, referencing to figure 5 a 

customer is more likely to check the balance after withdrawal 

than to proceed directly to exit the system. The model can be 

further improved by modeling the probabilities in continuous 

time. The state progression in continuous time would be 

modeled using continuous time Markov chains (CTMC). 

When modeling the system using CTMC, instead of assigning 

a discrete probability, we assign a transition rate. For 

example, the ATM software system would have a transition 

rate of 5 seconds when going from start to deposit and a 

transition rate of 9seconds going from start to stop. In CTMC, 

the transition rates are modeled using exponential random 

variables and the transitions are modeled using Markov 

chains. 

Figure 5: ATM software system state transitions modeled using discrete time Markov chains 
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Figure 6: ATM software system state transitions and customer queue lengths modeled as MMMP

3.1 Markov Modulated Markov Process 

A common problem in modeling real world processes is that 

the output signal from a system gets distorted due to the 

change in environmental conditions affecting the source. In 

signal processing literature, Hidden Markov Models (HMM) 

have been used for modeling the signals in learning about the 

sources where the overall system behavior is described by a 

doubly stochastic process [25]. In this paper, software systems 

which have doubly stochastic characteristics are modeled as 

Markov Modulated Markov Processes (MMMP). An MMMP 

is a process where the system has two continuous time 

processes: 1) the observable process, visible in the system 

usage data, and 2) the underlying process, not visible but 

directly affecting the transition rates of the observable 

process.  

Again referring to theexample of an ATM software system, 

system transitions are modeled as MMMPs, as shown in 

Figure 6. The underlying process here is the type of queue, as 

it transitions from one state to another. Here the queue 

assumes two distinct states, a longer queue and a shorter 

queue. Depending upon the queue length, the user would have 

a different response while using the system. The underlying 

process itself is modeled as a CTMC. For each underlying 

process, the ATM system would have a set of transition 

probabilities. Taking the underlying process transition 

probabilities together with the observable process transition 

probabilities, we can define the complete system behavior in a 

stochastic manner. The generator for an MMMP is given by 

Equation 1: 

 Φ= {Q, G1, G2…Gr}  (1) 

Here, Q represents the observable process transition 

probabilities and G1; G2 ...Gr represents the transition 

probability matrix for the underlying process, where r is the 

number of underlying states. 

3.2 Parameter Estimation 

Creating the stochastic model of the software system using 

MMMP requires an estimate of the probabilities associated 

with both the observable process and the underlying process. 

One of the key features of this research is that we use the 

available system usage data to estimate these 

probabilities.Using the available system usage data reduces 

the gap between actual system behavior and the created 

system model. We created anMMMP model for the system by 

estimating the generator, Φ. We used the EM algorithm 

developed by Roberts and Ephraim [26]. In our previous work 

[27] we reviewedthe essential equations for using this 

algorithm. Readers are encouraged to review the equations 

and to refer to [27] for a more detailed review of the 

algorithm. To keep the discussion system-oriented, a pseudo 

code of the algorithm is provided in Figure 7. 

 
1. Initialize parameters {Q, G1, G2…Gr} with Φ0={Q0, 

G0
1, G

0
2…G0

r}. 

 

2. Compute complete log likelihood Lcl of Φl given the 

observation data χ. 

 

 

3. E Step. Using forward–backward recursion, compute 

mean estimates of: 

a. Dwell times in underlying state i where 

i=1,2, 3…r. 

b. Number of jumps from underlying state i 

to state j, where i,j =1,2…r and i≠j. 

c. Dwell times in observable states l=1,2, 

3…N given underlying state i. 

d. Number of jumps from observable state l 

to state n given underlying state I. 

 

4. M Step: Maximize the estimated probabilities and 

compute new estimate of Φl+1 

a. Compute new estimates of Q by dividing 

3b with 3a. 

b. Compute new estimates of G1, G2…Gr 

by dividing 3d with 3c 

. 

5. Repeat 2 to 4 until convergence, which could be 

Lcl+LCL+1/Lcl<desired limit. 

 Figure 7: Pseudo code for EM algorithm for MMMP [27] 
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The first step is to initialize the parameters that need to be 

estimated. Next, the log likelihood is estimated using all the 

available observable data. The third step is the expectation 

step (E-Step), in which the forward-backward recursion 

procedure computes the dwell times and the number of jumps 

associated with the observable and underlying processes. In 

the maximization step (M-Step), new estimates for the 

transition probabilities are generated. The convergence 

criterion used for the EM algorithm is the improvement in the 

likelihood function between the previous and the new 

estimates. 

3.3 Likelihood-based Prioritization  
The test sequence prioritization problem as defined in[21] is 

as follows: 

Given: T, a test suite; PT, the set of permutations of T; f, a 

function from PT to the real numbers.  

Problem: Find T'∈ PT such that, 

 (∀ T')(T'' ∈ PT )(T'' ≠ T') [f (T') ≥ f (T'')]. 

Here, PT represents the set of all possible 

prioritizations(Orderings) of T, and f is a function that, applied 

to any such ordering, yields an award value for that ordering. 

In the proposed methodology, we used a likelihood-based 

approach for prioritizing the test sequences. The likelihood-

based prioritization scheme works on the principle of 

choosing a subset of test sequences from the set of test 

sequences.Likelihood is used asan objective function to solve 

the prioritization problem. Figure 8 summarizes the 

prioritization scheme used in this study. 

 

Figure 8: Proposed test sequence prioritization scheme 

A large number of test sequences are generated from the 

models, which are in the form of CTMCs. The likelihood 

function is calculatedfor each transition sequence. The 

likelihood function for MMMP is given in the equation below. 
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The derivation and explanation of the complete likelihood 

equation can be found in our previous work [27]. In the next 

step, the test sequences are prioritized by sorting the test 

sequences, based upon likelihood. From the prioritized test 

sequences, the top 'n' test sequences are chosen based on 

testing requirements such as the estimated cost or the time 

allotted for the testing activities. 

4. ILLUSTRATIVE CASE STUDY 

The system behavior model neededto be created from the 

available system usage data. Since the system behavior is 

modeled using the time spent in a particular state, we 

reviewed data sets that included time aspects of system usage. 

Most software systems change states in the time domain, and 

such data can easily be recorded. Modeling of a software 

system has many possible uses – for instance, the model can 

be used in design improvement activities, in testing of current 

features, in extracting user demographic information, in 

testing browser compatibility, or in improving the user 

experience. Like software systems, web-based applications 

also collect time-based system data, which is reflected in the 

click stream data. To demonstrate our proposed methodology 

for a system behavior model and test-sequence generation, we 

chose WebKDD cup 2000 website click stream data[28]. 

WebKDD cup click stream data consist of the user sessions 

for a commercial retail website. This final set of click stream 

data was taken from the web server between January 30, 2000 

and March 31, 2000. The click stream data are from a retail 

website which closed its operation in April 2000. There were 

777,480 records, each with 217 fields. 

4.1 Data Description 

Each record of the clickstream data has information about a 

page visited by a user. There could be multiple page visits 

from a user in the usage data. The length of a user session is 

derived from the number of pages visited and the time spent 

on each page. There is lot more information available from 

each record – for example, session ID, cookie ID, and first 

page visited. For our case study, the fields required from the 

data set weresystem states, i.e., the web pages visited by the 

user and the dwell time in that particular state. We 

reorganized the click stream data by calculating dwell times 

for each state, which we did by subtracting the time between 

clicks for each successive web page visited. We also separated 

one session from another by using session ID as the criterion 

for identifying a unique session.To perform the modeling at 

an abstract level, all the web pages were categorized into one 

of the four categories. Table 1 shows the categorization of 

web page types. 

Table 1: Categorization for web application case study 

Category Type 

1 Account Activity, Billing  

2 Company Information, News 

3 Departments, Browse 

4 Home Page, Start, Returns, Replenish 

After the web pages were categorized, all user sessions were 

transformed into state sequences, which consist of system 

states and dwell times. 

4.2 User Behavior and System Interaction 

To describe the underlying user behavior, we used user states 

as defined in [29]. The hidden states are purchase and non-

purchase states. There are other possible ways of categorizing 

user behaviors. For example, we might have used purchase, 

non-purchase and casual browsing. The number of 

categorization levels used really depended upon the level of 

analysis required. 
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4.3 Web Application MMMP Model 

Before modeling the web application usage data using 

CTMCs, we validated the dwell times for each state to 

haveexponential distribution. Once the data had been 

formatted – i.e., the web page data had been transformed to 

states and validated for appropriate random variables – we 

created two estimated probability distribution matrices, one 

for underlying processes and one for observable processes. 

The first probability matrix consisted of the estimated 

transition rates for the underlying process. For this case study, 

we used an equal probability distribution as the initial 

probability distribution for a user going from the purchase 

state to the non-purchase state. The second probability matrix 

was the probability distribution for the observed process. 

These probabilities together formed the generator Φ, as 

described in Equation 1. Next, we estimated new parameters 

using the EM algorithm, as described in Section 3.2. Table 2 

and Table 3 show the initial and the final estimatesof the 

transition rates for the underlying and observable states. 

Table 2: Initial and final estimates of transition rates for 

the Underlying Continuous Time Markov Process 

 Initial Estimate Final Estimate 

 Purchase Non-

Purchase 

Purchase Non-

Purchase 

Purchase -5 5 -9 9 

Non-

Purchase 

1 -1 5 -5 

 

Table 3: Initial and final estimates of transition rates for 

the Observable Continuous Time Markov Process 

 Initial Estimate Final Estimate 

G1 -233 82 69 82 -169.12 4.37 52.61 112.13 

96 -199 13 88 32.96 -114.39 13.22 68.19 

19 11 -105 72 26.83 3.36 -74.87 44.67 

13 78 68 -163 41.66 9.24 17.15 -68.06 

 

Initial Estimate Final Estimate 

G2 -164 90 40 33 -34.08 3.25 21.55 9.28 

95 -178 22 59 9.59 -35.48 12.30 13.59 

20 91 -135 21 8.52 1.46 -13.07 3.07 

36 45 19 -104 10.23 5.53 18.30 -34.08 

4.4 Test Sequence Prioritization and 

Stopping Criterion 

Using the likelihood-based methodology as described in 

Section 3.3, we created and then prioritized one thousand test 

sequencesfrom the estimated probabilities.It is important to 

note that since we used a sorting scheme to prioritize test 

sequences, the computational complexity of the algorithm 

reaches O (n log n).We could improve the results by using an 

advanced sorting algorithm such as smooth sort, strand sort or 

cycle sort. This area of our research was also a good candidate 

for implementing heuristic search algorithms to identify test 

sequences based on an objective function, for which we could 

use likelihood, as well. Due to the nature of sorting, it is 

expected that as the number of test sequences increases, the 

benefit of the prioritization scheme diminishes. Since running 

the whole test suite could be a costly endeavor, the tester 

could use the likelihood vs. number of test sequences graph to 

choose a stopping criterion, based on the level of testing 

required. For our analysis, the final test suite was limited to 

the top 100 test sequences. 

4.5 Statistical Comparative Analysis 

Ourprimary research question in this work was whether the 

proposed prioritization scheme would increase the likelihood 

of a test plan being a better representative of real-world usage 

compared to the ad-hoc random generation of a test plan. For 

this problem, the research hypotheses are as follows: 

Null Hypothesis          H0: Likelihood Ad-hoc= Likelihood Model 

Alternative HypothesisH1: Likelihood Ad-hoc≤ Likelihood Model 

To investigate this hypothesis, we compared the likelihoods of 

25 test plans for the ad-hoc test plan generation technique 

with the likelihoods of 25 test plans for the proposed model-

based test plan generation and prioritization technique. For the 

ad-hoc test plan, we created test plans each consisting of 100 

test sequences randomly selected from WebKDD cup web 

navigation data. Using the proposed methodology, we 

generated the other set of test plans, with each of them also 

consisting of 100 test sequences. In the next step, we 

calculated the total test-plan likelihood for both sets of test 

plans. Total likelihood was the product of all likelihoods of 

test sequences within a test plan. Given that the likelihood 

data has an acceptable fit with normal distribution, we used a 

two-tailed student-t test to test the null hypothesis at a 

significant level of alpha = 0.05. Table 4 summarizes the 

results of the hypothesis testing. 

Table 4: Hypothesis testing for likelihood-based test 

sequence prioritization scheme 

  Prioritized  Un-prioritized 

Mean 2794.787 448.7143 

Variance 18854.96 372480.7 

Observations 25 25 

Pearson Correlation 0.003256  

Hypothesized Mean 

Difference 

0  

Df 24  

t Stat 18.76462  

P(T<=t) one-tail 3.79E-16  

t Critical one-tail 1.710882  

P(T<=t) two-tail 7.57E-16  

t Critical two-tail 2.063899   
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5. CONCLUSION 

The previous section provided an analytical comparison based 

on likelihood function. Since the p-value of 7.57E-16 for the 

two-tailed test is less than alpha of 0.05, the null hypothesis 

H0 is rejected and the alternate hypothesis H1 is accepted. 

Additionally it is clear from the two means of likelihood 

functions is that the proposed methodology provides a higher 

coverage of the most likely usage scenarios. 

The methodology we have presented has three contributions 

to system analysis and testing:  

a) A system modeling approach that captures the 

stochastic nature of system behavior. Not only do we 

capture the observable progression of a system, but we 

also capture an underlying phenomenon that would 

affect the system behavior. 

b) A test-sequence generation scheme for the Markov 

Modulated Markov process model. The presented 

scheme could be used for automated test-case 

generation. There are numerous applications for 

automated test-case generation – for example, during 

system upgrades, commercial off-the-shelf analysis, 

system maintenance, or legacy system comparison. 

c) A test-sequence prioritization scheme that uses 

likelihood as an objective. The presented scheme 

exploits the stochastic nature of the system model in 

improving the coverage of the test suite. 

Another area of this research explored the impact of the length 

of the test suite on likelihood function. In Figure 9, a 

cumulative likelihood versus number of test sequences for the 

web application case study has been plotted. Such data 

analysiswould provide a direct feedback to the system 

validation team about the time and cost required to run the 

extent ofthe test suite.  

 

Figure 7: Cumulative Likelihood vs. Number of test 

sequences 

Other researchers have suggestedvarious objective functions 

as a stopping criterion for test suite prioritization such 

asaverage percentage of fault detected [30].Likeaverage 

percentage of fault detected , a likelihood function could be 

used as a stopping criterion. For example, a tester could stop 

the proposed test suite generation at 100 test sequences for a 

cumulative likelihood value of 2000. 

6. LIMITATIONS AND FUTURE 

RESEARCH 

This study uses Markov chains to explore the time domain 

progression of a system. Not all software systems have usage 

data consisting of time domain data, and this imposes a 

limitation on the applicability of the technique we 

havepresented to some systems. In cases where time domain 

data are unavailable, the system would need to be modeled 

using Discrete Markov Chains and Hidden Markov Models,as 

required.  

A second limitation of this study is that the presented case 

study does not validate the proposed methodology by testing 

the fault detectioncapabilities. To understand the fault 

detection capabilities of the methodology, we would need to 

develop asystem where a known number of faults could be 

seeded and tested with the generated test plans.  

Thirdly,techniquewe have presented models the underlying 

process in categories based upon user behavior and 

preferences. There may be other ways of performing this 

categorization, for example, on the basis of environmental 

conditions or of the economic condition of system users. We 

would need amore comprehensive study to capture other 

underlying process models.  

Lastly, the proposed model could be greatly affected by the 

social-cultural aspect of the system environment. Building a 

more comprehensive framework for the proposed 

methodology might be considered for future work. 
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