
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

25

The Early Identification of Functional and Non-

Functional Crosscutting Concerns

Narender Singh

Department of Computer Science & Applications,

Maharshi Dayanand University, Rohtak, India.

Nasib Singh Gill

Department of Computer Science & Applications,

Maharshi Dayanand University, Rohtak, India.

ABSTRACT

Over the last few years, several research efforts have been

devoted for handling crosscutting concerns at the early phases

of software development especially at requirements level. These

efforts are meaningless unless all the crosscutting concerns are

properly identified. Many approaches only consider non-

functional concerns as crosscutting concerns. However,

crosscutting concerns may also be functional. In this paper, we

are proposing an integrated approach that supports complete

separation of concerns i.e. handles both functional and non-

functional concerns as crosscutting. Our work will surely

contribute some positive in this direction.

Keywords

Separation of concerns, crosscutting concerns, aspect-oriented

programming, aspect-oriented requirements engineering.

1. INTRODUCTION
The term separation of concerns [1] was first introduced by E.

Dijkstra, where, a concern [2] is any matter of interest in a

software system. This described the process of dividing the

large complex problem into smaller ones for reducing the

complexity of software systems. A lot of significant work exists

on separation of concerns in the literature such as viewpoints

[3], use cases [4], and goals [5]. Some success in the direction

to modularize the complex software system has been achieved.

But, still it is difficult to achieve complete separation of

concerns through today’s most popular programming paradigm

such as Object-Oriented Programming (OOP) because some

concerns are too tightly coupled with others hence spanning

over multiple classes and are so called as crosscutting concerns.

They are responsible for scattering and tangling. Several

empirical studies provide evidence that crosscutting concerns

degrade code quality because they negatively impact internal

quality metrics such as program size, coupling, and separation

of concerns [6]. However, these approaches do not explicitly

focus on crosscutting concerns. The work on advanced

separation of concerns [7], therefore, complements these

approaches by providing systematic means for handling such

crosscutting concerns.

Aspect-Oriented Programming (AOP) introduced by Kiczales et

al. [8] is an alternative programming paradigm to Object-

Oriented Programming (OOP). It is also based on the concept of

separation of concerns [9]. It is a step towards achieving

improved modularity during software development and

provides a solution to some difficulties encountered with

object-oriented programming, sometimes scattering and

tangling. It focuses on crosscutting concerns by providing

means for their systematic identification, separation,

representation and composition [10]. It encapsulates

crosscutting concerns in separate modules, known as aspects. It

later uses composition mechanism to weave them with other

core modules at loading time, compilation time, or run-time

[11].

Aspect-orientation is firstly implemented at code level and

many aspect-oriented programming languages have been

proposed such as AspectJ [12], AspectC [13], AspectC++ [14],

JBoss AOP [15], JAsCo [16], HyperJ [17] etc. A lot of

significant work also has been carried out at the design level

mainly through extensions to the UML meta-model e.g. [18]

[19]. Research on the use of aspects at the requirements

engineering stage is still young. Aspect-Oriented Requirements

Engineering (AORE) [20] [2 1] improves the modular

representation by focusing on identifying, analyzing,

specifying, verifying, and managing the crosscutting concerns

at the early stages of software development. This early

understanding of aspectual trade-offs plays a signi ficant

role in shaping the system architecture [22].

Over the last few years, several research efforts have been

devoted for handling crosscutting concerns at the early phases

of software development especially at requirements level. These

efforts are meaningless unless all the crosscutting concerns are

properly identified. Many approaches only consider non-

functional concerns as crosscutting concerns. However,

crosscutting concerns may also be functional, such as auditing,

or validation [23] [24]. In this paper, we have proposed a

systematic approach to identify both the functional and non-

functional crosscutting concerns during requirements

engineering along with its application on a case study. Our

approach supports the identification of both the functional and

non-functional concerns as crosscutting concerns.

The rest of paper is organized as follows: Section 2 presents the

related work; Section 3 outlines the proposed systematic

approach to identify crosscutting concerns at requirements

level. Section 4 illustrates proposed approach by means of a

case study. Section 5 draws some conclusions and points to

directions of future work.

2. RELATED WORK
An approach called Aspect-Oriented Component Requirements

Engineering (AOCRE) was proposed by John Grundy [25]. Its

main focus was on the identification and specification of both

the functional and non-functional requirements each component

provides or requires. Early-aspects: a model for aspect-oriented

requirements engineering was proposed by Rashid et al. [26].

Baniassad and Clarke [27] proposed an approach called Theme

that is based on Theme/UML which is augmented by the

Theme/Doc process. Aspect-oriented software development

with use cases by Jacobson et al. [28] is an extension to the

traditional Use Case approach proposed by the same authors. Z.

Jingjun et al. [29] proposed aspect-oriented requirements

modeling based on UML (Unified Modeling Language) aiming

to apply AOP paradigm at requirements level of software

development. Here, core concerns and crosscutting concerns are

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

26

identified using OOP and AOP respectively and then

represented as core class and aspect class in UML. An approach

to identify and model candidate aspects from functional and

non-functional requirements of the system was proposed by

Hamza and Darwish [30]. It uses Formal Concept Analysis and

Enduring Business Themes to understand the interaction among

NFRs and FRs, and to identify candidate aspects in early stages

of the development. A use case and non-functional scenario

template-based approach was proposed to identify aspects by

Liu et al. [31]. Use cases and scenario templates are described

first here and later they are mapped to specific functional use

case features.

3. PROPOSAL OUTLINE
A lot of approaches exist in literature for handling crosscutting

concerns are discussed in section 2 of this paper. But, most of

them lack in handling both the functional and non-functional

crosscutting concerns. Here, we are proposing an integrated

approach that supports complete separation of concerns. The

approach consists of following systematic activities:

3.1 Identify Concerns
The first activity in our approach is to identify concerns. A

concern [2] is any matter of interest in a software system and

can be defined as a set of coherent requirements. Each set

defines a property that the future system must provide. This

activity is further divided in many sub-activities like identify

actors and use cases, identify relationship among actors and

use-cases, elicit functional concerns (FCs), elicit non-functional

concerns (NFCs), and finally integrate the NFCs with use cases.

The description of each sub-activity is as follows:

3.1.1 Identify Actors and Use Cases

The first sub-activity during identifying concerns is to identify

all stakeholders that may interact with the future system. We

call these stakeholders as actors and they may be human being

or some other system. An actor is a role abstraction that can

play various roles in different times. A use case describes the

behaviour of the system from an external point of view and

used to represents the functionality of the system as a complete

flow of events.

3.1.2 Identify Relationships among Actors and Use

cases
After identifying the actors and use cases, we need to identify

relationship among them. Many types of relationships are

established for reducing the complexity of use case diagrams

and increasing the understandability of the models. The

communication relationship is established among actors and use

cases when information is exchanged between them. It is

represented by a solid line between the actor and the use case

along with <<initiate>> or <<participate>> stereotype. The

<<initiate>> stereotype is used for the actor who initiate the use

case whereas the <<participate>> stereotype is used by all those

actors who did not initiate the use case but having

communication with the use case. Hence, by establishing such

relationships, we can specify access control for the system i.e.

which actor can access that functionality and which cannot. The

include relationship is established to identify the commonalities

among the use cases. If two or more use cases share the

common behaviour, then factor out that behaviour into a

separate use case. The main advantages of it are to reduce the

complexity of the model and fewer redundancies. The extend

relationship is established by including the behaviour of one

use case with another use case for exceptional cases like errors,

help, and other unexpected conditions. In Unified Modelling

Language (UML), we represent include relationships as dashed

open arrow starting from including use case and labelled with

<<include>> stereotype whereas extend relationship is labelled

with <<extend>> stereotype.

3.1.3 Elicit Functional Concerns (FCs)
Functional requirements describe the interaction between the

system and its environment independent of its implementation.

The environment includes the user and any other system that

interacts with the system. A concern may be addressed by a

single or multiple requirements. Hence by analyzing the

functional requirements, we can identify functional concerns.

3.1.4 Elicit Non Functional Concerns (NFCs)
NFCs are usually system-wide quality concerns that are not

directly related to the functional behaviour of the system. They

are described as declarative statement including a broad variety

of requirements such as usability, reliability, robustness,

performance, response time, security etc. They must be defined

during concern identification because they can not be modelled

directly using use cases and also have much impact on the

development cost of the system. To identify NFCs efficiently,

both the client and the developers need to collaborate. In

practice, an analyst uses taxonomy such as unified process for

generating a check list of questions for understanding the non-

functional behaviours of the system. This check list of questions

can be organized by roles of actors, as they are already

identified in the first sub-activity.

3.1.5 Integrate NFCs with Use Cases
The final sub-activity of identifying concerns is to integrate

NFCs identified earlier with the base use cases. This is

accomplished by using a special stereotyped <<constrain>>

relation that extends and links the base use cases to non-

functional use cases stereotyped as <<NFC>>.

3.2 Specify Concerns
To specify a concern, we use the modified template of [32] and

[33] as shown in table 1. The name field contains the name of

the concern. The description field contains the short description

in terms of textual explanation of the concern. The primary

actor field names the principal actor. The decomposition field

shows the decomposition of concerns into simpler concerns if

possible. The classification field describes the concern

according to its type, e. g. functional, non-functional. The

precondition field and postcondition field contain the conditions

to be satisfied before and after the execution of the concerns

respectively. The list of Responsibilities field lists all the

operations that the concern must provide. The list of

contributions field lists positive or negative interactions which

the concern has with other concerns. This field helps detecting

conflicts whenever concerns contribute negatively to each

other. These conflicts may be resolved through the Stakeholder

priorities field, which assigns priorities to concerns from the

stakeholders’ perspective. Finally, the Required concerns field

acts as a dependency reference to other concerns in the system.

This field will be used to identify which concerns are

crosscutting.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

27

Table 1: Template to specify a concern

3.3 Identify Crosscutting Concerns
It is significant to identify crosscutting concerns i.e. candidate

aspect at early stages because they may create differing

situations and result as undesirable affect on later stages of

software development. This is achieved by considering the list

of required concerns field in concern specification template and

building a matrix shown as table 2 to relate concerns to each

other and identifying their crosscutting nature.

In matrix depicted as table 2, both rows and columns represent

the concerns identified earlier in section 3.1. Each row

represents that the concern requires other concerns and contains

the value 1 if the column concern is required by row concern, 0

if not required, and X for diagonal values. Crosscutting

concerns refer to those concerns that are required by more than

one concern. After analyzing the table, we are able to identify

both the functional and non-functional crosscutting concerns.

4. CASE STUDY

For illustrating the approach, we apply it to a case study

presented in [34]. The case study is about the First Responder

Interactive Emergency Navigational Database (FRIEND), an

accident management system. The system is being developed to

help and manage the enormous amounts of information

involved with accident management [35]. It supports several

classes of users including first responders (workers in the field),

field supervisors, Dispatchers, and resource allocators. These

users collaborate with the help of this system to manage the

information associated with an accident(s), including resource

information, activities and actions taken in response to an

accident, geographical information, Emergency Operations Plan

(EOP) information, and hazardous materials information. The

requirements are stated as follows: “In FRIEND system, a field

officer, such as a police officer or fire fighter, has access to a

wireless computer that enables them to interact with a

Dispatcher. The Dispatcher in turns can visualize the current

status of all its resources, such as a police van or a fire unit or a

paramedic unit, on a computer screen and dispatch a resource

by issuing commands from a workstation. The system

administrator is responsible for managing all users and

terminals and also for assigning permissions to different users.

The system administrator should be able to store the different

users and their permissions, restricting their access.”

Table 2: Matrix representing relation among concerns

C
1

C
2

C
3

C
4

C
5

. . .

C
n

C1 X 1 1 1 0 0 0 0 1

C2 0 X 0 1 0 1 1 0 1

C3 1 0 X 0 0 0 1 0 0

C4 1 0 0 X 0 1 1 0 0

C5 1 0 0 0 X 1 0 0 1

. 0 0 0 0 0 X 0 0 1

. 0 0 0 0 0 0 X 0 1

. 1 0 0 0 0 1 1 X 0

Cn 1 0 0 1 0 1 1 0 X

4.1 Identifying Concerns

The first activity is to identify concerns which is further divided

in many sub-activities like identify actors and use cases,

identify relationship among actors and use-cases, identify non-

functional concerns (NFCs), and finally integrate the NFCs with

use cases.

4.1.1 Identify actors and use cases
For example in FRIEND system, many actors are identified

such as FieldOfficer who is a police and fire officer and

responsible for responding to an incident, Dispatcher who is a

police officer and responsible for answering 1073 calls and

allocating resources to an incident, SystemAdministrator who is

responsible for managing all users and end terminals, and

Librarian who is responsible for archiving an incident and

generating reports. The other actors are investigator, governor,

mayor, and other databases.

The identified use cases in FRIEND system are

ReportEmergency to notify a Dispatcher about a new

emergency, OpenIncident to create an incident report and

initiate the incident handling, AllocateResource to assign the

additional resources to an incident, ArchieveIncident to archive

an incident, SearchArchive to search an incident and generate

reports from archived incidents, and use cases for system

administration e.g. ManageUser for managing users and

ManageTerminal for managing end terminals.

After the identification of actors and use cases, we can easily

define the boundaries of the system. The actors are outside the

boundary of the system, whereas the use cases are inside the

boundary of the system. The use case diagram for FRIEND

system is depicted in figure 1. To simplify the complexity of the

case study, we here consider only three use cases

ReportEmergency, OpenIncident, and AllocateResources and

two actors FieldOfficer and Dispatcher.

Name The name of the concern.

Description Short description of the intended

behaviour of the concern.

Primary actor Name of the principal actor.

Stakeholders Users that need the concern in order to

accomplish their job.

Decomposition Concerns can be decomposed into

simpler ones

Classification Helps the selection of the most appropriate

approach to specify the concern. For

example: functional, non-functional, goals.

Preconditions Condition to be satisfied before the

execution of the concern.

Post conditions Condition to be satisfied after the

execution of the concern.

List of Responsibilities

Ri List of what the concern must perform;

knowledge or proprieties the concern must

offer.

List of Contributions

Ci List of concerns that contribute or affect

this concern. This contribution can be

positive (+) or negative (-)

List of Priorities

Stakeholder Expresses the importance of the concern

for a given stakeholder. It can take the

values: Very Important, Important,

Medium, Low and Very Low.

List of Required Concerns

RCi List of concerns needed or requested by

the concern being described.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

28

Figure 1: Use case diagram of FRIEND

4.1.2 Identify relationships among actors and use

cases
In our case study, there are communication relationships among

the actor FieldOfficer and use case ReportEmergency; among

the actor Dispatcher and use cases ReportEmergency,

OpenIncident and AllocateResources; among the actor librarian

and use cases ArchiveIncident and SearchArchive; and among

the actor SystemAdministrator and use cases ManageUsers and

ManageTerminals. The Dispatcher views the city map to find

out the exact position of incident happening and also for

allocating the resources to the incident nearby. Here, both the

use cases OpenIncident and AllocateResource share the

common behaviour of viewing the city map. Hence, a new use

case ViewMap can be described using include relation for

sharing this common behavior as shown in figure 2 [36]. Also,

suppose that there may be network failure at any time during

communication between the FieldOfficer and Dispatcher.

Hence, we need a new use case that describes the flow of events

needed to recovery due to network failure. ConnectionDown is

new use case that extends the use case ReportEmergency,

OpenIncident, and AllocateResource as shown in the figure 3

[36].

Figure 2: Include relationship among use cases

Figure 3: Extend relationship among use cases

4.1.3 Elicit the Functional Concerns (FCs)
The functional requirements for FRIEND system are:

o The FieldOfficer must be logged into FRIEND

system.

o The FieldOfficer reports an emergency into FRIEND

system.

o FRIEND system responds by presenting a form to the

FieldOfficer.

o The FieldOfficer fills out the form by selecting

emergency level, type, location, and brief description

of the situation. Once the form is completed, he/she

submitted the form.

o FRIEND system acknowledges the successful

submission to the FieldOfficer.

o FRIEND system receives the form and notifies the

Dispatcher.

o The Dispatcher reviews the submitted information

and creates an incident in the database.

o The dispatcher selects a response and acknowledges

the report to the FieldOfficer.

o The Dispatcher in turns can visualize the current

status of all its resources, such as a police van or a fire

unit or a paramedic unit, on a computer screen and

dispatch a resource by issuing commands from a

workstation.

A concern may be addressed by a single or multiple

requirements. Hence by analyzing the functional requirements,

we can identify functional concerns. The Functional Concerns

identified here are login system, report emergency, open

incident, allocate resources, view map, and connection down.

These FCs are shown in Table 3.

4.1.4 Elicit the Non-Functional Concerns (NFCs)

To identify NFCs efficiently, both the client and the developers

need to collaborate. In practice, an analyst uses taxonomy such

as Unified Process for generating a check list of questions for

understanding the non-functional behaviours of the system. For

example, NFCs for our case study are derived from these NFRs:

Concurrency:

o The primary purpose of FRIEND is to provide users

concurrent access to a set of shared information. They

may access the data simultaneously or serially.

o Concurrent users must see changes to the data as

quickly as possible.

o

Dispatcher

<<initiate>> ReportEmergency

OpenIncident

AllocateResource

s

ArchieveIncident

SearchArchive

ManageUsers

ManageTerminals

Librarian

SystemAdministrator

FieldOfficer

<<initiate>>

<<initiate>>

Viewmap

OpenIncident

<<include>>

AllocateResources

<<include>>

ReportEmergency

AllocateResources

ConnectionDown OpenIncident

<<extend>>

<<extend>>

<<extend>>

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

29

Response Time:

o Responds within time (<t) by presenting a form to

FieldOfficer when the FieldOfficer activates the

“Report Emergency” function from his/her terminal.

o Responds within time (<t) by acknowledging the

successful submission of form to the FieldOfficer.

o Responds within time (<t) by notifying the Dispatcher

about new emergency after receiving the form

submitted by FieldOfficer.

o Responds within time (<t) by acknowledging

FieldOfficer the selected response submitted by

Dispatcher.

Logging:

o When the connection downs, the situation is logged

by the system and recovered when the connection is

re-established.

o The system administrator is responsible for

monitoring different activities that occur in the system

e.g. check-in operations.

Accuracy:

o During an accident, decisions about resource

allocations must be made quickly and correctly.

Mobility:

o The system must handle mobility as the accident

management personnel will need to access the system

on the move during his/her tour. The mobility

required by accident management personnel requires

FRIEND system to employ state-of-the art wireless

communication technology.

Compatibility:

o The system must be compatible with the external

services it has to interact with; in particular, hotel and

theatre ticket reservations.

Availability:

o The system must always be available to react to be

accessed by the FieldOfficer and Dispatcher.

Security:

o The system administrator is responsible for managing

all users and terminals and also for assigning

permissions to different users.

o The system administrator should be able to store the

different users and their permissions, restricting their

access.

Hence, in our case study, we have identified NFCs:

concurrency, response time, logging, availability, mobility,

accuracy, compatibility and security. These NFCs are shown as

in table 3.

4.1.5 Integrate NFCs with Use Cases
To simplify the complexity of the case study, we here consider

only Response Time NFC to integrate with use cases. The

refined use case diagram of FRIEND system after integrating

NFCs with use cases is depicted in following figure 4. Also, all

the identified concerns in FRIEND are represented in table 3.

4.2 Specify Concerns
To specify a concern, we use the template shown as table 1.

Report Emergency concern and Response Time concerns are

specified using the template as shown in table 4 and table 5

respectively.

Table 3: Concerns identified in FRIEND system

Concern Description

FC1 Login system Functional

Concerns (FCs)

identified
FC2 Report emergency

FC3 Open incident

FC4 Allocate resources

FC5 View map

FC6 Connection down

NFC1 Concurrency Non-functional

Concerns (NFCs)

identified
NFC2 Response time

NFC3 Logging

NFC4 Accuracy

NFC5 Mobility

NFC6 Compatibility

NFC7 Availability

NFC8 Security

Figure 4: Refined Use Case Diagram of FRIEND system after Integrating NFCs with Use Cases

FieldOfficer Dispatcher

<<extend>>

ReportEmergency

ConnectionDown OpenIncident

ViewMap

AllocateResource

Responsetime

<<NFC>>

<<extend>>

<<extend>>

<<constrain>

>

<<constrain>

>

<<constrain>

>

<<include>>

<<include>>

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

30

Table 4: Specifying Report Emergency concern

Name ReportEmergency

Description The FieldOfficer reports an emergency

into FRIEND system.

Primary actor Fieldofficer

Stakeholders FieldOfficer, Dispatcher

Decomposition <None>

Classification Functional

Preconditions The FieldOfficer must be logged into

FRIEND system.

Post conditions The FieldOfficer must be received an

acknowledgment and selected response

from the Dispatcher, OR

The FieldOfficer must be received an

explanation indicating why the

transaction could not be processed.

List of Responsibilities

1. Responds by presenting a form to the FieldOfficer.

2. Receives the form filled by the FieldOfficer.

3. Acknowledges the successful submission to

FieldOfficer.

4. Notifies the Dispatcher.

List of Contributions

<None>

List of Priorities

1. FieldOfficer: Very Important

2. Dispatcher: Very Important

3. Developer: Important

List of Required Concerns

1. Login system

4.3 Identify Crosscutting Concerns
To identify crosscutting concerns, we use a matrix shown as

Table 2. Hence it results as a matrix shown as table 6 relating

all identified concerns (LS: Login System, RE: Report

Emergency, OI: Open Incident, AR: Allocate Resources, VM:

View Map, CD: Connection Down, CN: Concurrency, RT:

Response Time, LG: Logging, AC: Accuracy, MB: Mobility,

CP: Compatibility, AV: Availability, SC: Security).

After analyzing the table, we identify LS (login system), VM

(View Map), CD (Connection Down), CN (Concurrency), RT

(Response Time), LG (Logging), AC (Accuracy), MB

(Mobility), AV (Availability), and SC (Security) as crosscutting

concerns. Crosscutting concerns may be functional or non-

functional concern. For example, LS (Login System) and VM

(View Map) are functional crosscutting concerns. The non-

functional crosscutting concerns are Connection Down,

Concurrency, response Time, Logging, Accuracy, Mobility, and

Security.

5. CONCLUSION AND FUTURE WORK

It is beneficial to handle crosscutting concerns at early stages of

software development rather than handling them at later stages

because it not only makes the design simpler, but also helps to

reduce the cost and defects that occur in the later stages of

development. Over the last few years, several research efforts

have been contributed for handling crosscutting concerns at the

early phases of software development. These efforts are

meaningless unless all the crosscutting concerns are properly

identified. AORE has emerged as a new way to modularize

and reason about crosscutting concerns during requirements

engineering. It improves the modular representation by focusing

on identifying, analyzing, specifying, verifying, and managing

the crosscutting concerns at the early stages of software

development. Many existing AORE approaches consider only

non-functional concerns as crosscutting but, crosscutting

concerns may be functional as well as non-functional.

In this paper, we have proposed a systematic AORE approach

to identify these crosscutting concerns at early phases of

software development. Further, we have implemented the

proposed approach on a case study and achieved some success

to identify both the functional as well as non-functional

concerns as crosscutting concerns. But, still we need more

efforts on the proposed approach to realize it as a complete

AORE approach. These efforts include exploring the activity of

identifying crosscutting concerns, managing concerns,

composing concerns, and validating it with more case studies

using aspect-oriented metrics. Our future work will focus on

improving the proposed approach by incorporating all the

aspects which are left here.

Table 5: Specifying Response Time concern

Name Response Time

Description The FieldOfficer’s is acknowledged

within 30 seconds after the submission

of form. Also, the selected response

arrives no later than 30 seconds after it

is sent by the Dispatcher.

Primary actor <None>

Stakeholders FieldOfficer, Dispatcher, System

Administrator, Developer

Decomposition <None>

Classification Non-functional

Preconditions <None>

Post conditions <None>

List of Responsibilities

Responds within time (<t) by presenting a form to

FieldOfficer when the FieldOfficer activates the “Report

Emergency” function from his/her terminal.

Responds within time (<t) by acknowledging the successful

submission of form to the FieldOfficer.

Responds within time (<t) by notifying the Dispatcher about

new emergency after receiving the form submitted by

FieldOfficer.

Responds within time (<t) by acknowledging FieldOfficer

the selected response submitted by Dispatcher.

List of Contributions

1. Availability (+)

2. Accuracy (-)

3. Concurrency (-)

List of Priorities

1. FieldOfficer: Very Important

2. Dispatcher: Very Important

3. System administrator: Very Important

4. Developer: Important

List of Required Concerns

<None>

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

31

Table 6: Matrix representing relation among concerns of FRIEND system

L
S

R
E

O
I

A
R

V
M

C
D

C
N

R
T

L
G

A
C

M
B

C
P

A
V

S
C

LS X 0 0 0 0 1 0 1 1 1 1 1 1

RE 1 X 0 0 0 1 1 1 1 1 1 0 1 1

OI 1 0 X 0 1 1 1 1 1 1 1 0 1 1

AR 1 0 0 X 1 1 1 1 1 1 1 0 1 1

VM 1 0 0 0 X 1 1 1 0 1 1 0 1 0

CD 0 0 0 0 0 X 0 0 1 0 0 0 0 0

CN 0 0 0 0 0 0 X 0 0 1 0 0 1 0

RT 0 0 0 0 0 0 1 X 0 1 0 0 1 0

LG 0 0 0 0 0 0 1 0 X 1 0 0 1 1

AC 0 0 0 0 0 0 1 0 0 X 0 0 1 1

MB 0 0 0 0 0 0 1 0 0 0 X 0 1 0

CP 0 0 0 0 0 0 0 0 0 1 1 X 1 0

AV 0 0 0 0 0 0 0 0 0 0 1 0 X 0

SC 1 0 0 0 0 0 0 0 0 0 0 0 0 X

6. REFERENCES
[1] Dijkstra, E.W., 1976, A Discipline of Programming,

Prentice Hall, Englewood Cliffs, New Jersey, USA.

[2] S. M. Sutton Jr and I. Rouvellou., 2002, Modeling of

Software Concerns in Cosmos. In Proceedings of the 1st

International Conference on Aspect-Oriented Software

Development, ACM, pages 127–133.

[3] Finkelstein, A., Sommerville, I. 1996, The Viewpoints

FAQ, Software Engineering Journal: Special Issue on

Viewpoints for Software Engineering, IEE/BCS. 11(1): 2-

4.

[4] Jacobson, I et al., 1992, Object-Oriented Software

Engineering - a Use Case Driven Approach, 978-

0201544350, Addison-Wesley.

[5] Chung, L.et al., 2000, Non-Functional Requirements in

Software Engineering, 0-7923-8666-3, Kluwer Academic

Publishers.

[6] Mark.E. et al., 2008, Do Crosscutting Concerns Cause

Defects?”, IEEE Transactions On Software Engineering,

Vol. 34, No. 4, July/August.

[7] I. Brito, A. Moreira, 2003, “Advanced Separation of

Concerns for Requirements Engineering”, VIII Jornadas de

Ingenieria del Software y Bases de Datos (JISBD’03), pp.

47-56, Alicante, Spain. November 12-14.

[8] G. Kiczales et al., 1997, Aspect-oriented programming, in:

Proceedings of the 11th European Conferenceon Object-

Oriented Programming (ECOOP’97), Springer, pp. 220–

242.

[9] Laddad Ramnivas, 2002, I want my AOP! Part 1: Separate

software concerns with aspect-oriented programming. Java

World Fueling Innovations. URL:

http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-

aspect.html.

[10] Rashid, A., Moreira, A., Araújo, J., 2003, Modularization

and Composition of Aspectual Requirements, In 2nd

Aspect-Oriented Software Development Conference

(AOSD'03), Boston, USA, ACM Press. 11-20.

[11] Baniassad et al., 2006, Discovering Early Aspects, IEEE

Software Special Issue on Aspect-Oriented Programming.

23(1): pp. 61-70.

[12] AspectJ Project (2007). http://www.eclipse.org/aspectj/.

[13] AspectC Project (2007).

http://www.cs.ubc.ca/labs/spl/projects/aspectc.html.

[14] Spinczyk, O., Lohmann, D., Urban, M. (2005).

"AspectC++: an AOP Extension for C++." Software

Developer's Journal 1: 68-76.

[15] JBoss Project (2007). http://labs.jboss.com/jbossaop/.

[16] JAsCo Project (2007). http://ssel.vub.ac.be/jasco/.

[17] HyperJ (2007).

http://www.alphaworks.ibm.com/tech/hyperj.

[18] Clarke S. and Walker R. J., 2001, Composition Patterns:

An Approach to Designing Reusable Aspects, ICSE.

[19] Suzuki J. and Yamamoto Y., 1999, Extending UML with

Aspects: Aspect Support in the Design Phase, ECOOP

Workshop on AOP.

[20] Y. Yu et al. 2004, From Goals to Aspects: Discovering

Aspects from Requirements Goal Models, Proc. RE 2004,

IEEE CS, pp. 38-47.

[21] E. Baniassad, S. Clarke, 2004, Theme: An Approach for

Aspect-Oriented Analysis and Design, ICSE 2004, IEEE

CS, pp.158-167.

[22] A. Moreira et al., 2005, Multi-Dimensional Separation of

Concerns in Requirements Engineering" RE 2005, pp. 285-

296.

[23] Moreira, A., Araújo, J., Brito, I, 2002, Crosscutting

Quality Attributes for Requirements Engineering. In 14th

Software Engineering and Knowledge Engineering

Conference (SEKE'02), Ischia, Italy, ACM Press. 167 -

174.

[24] Rashid, A., Moreira A., 2006, Domain Models are NOT

Aspect Free. In 9th Model Driven Engineering Languages

and Systems Conference (MoDELS/UML'06). Genova,

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

32

Italy, Lecture Notes in Computer Science 4199. Springer.

155-169.

 [25] J. Grundy, 1999, Aspect-Oriented Requirements

Engineering for Component-based Software Systems,

IEEE International Symposium on Requirements

Engineering, IEEE CS, pp. 84-91.

[26] Rashid, A. et al., 2002, Early Aspects: a Model for Aspect-

Oriented Requirements Engineering, Proc. of Int.

Conference on Requirements Engineering (RE'02).

[27] E. Baniassad, S. Clarke, 2004, Theme: An Approach for

Aspect-Oriented Analysis and Design, In Proceedings of

the 26th Int. Conf. on Software Engineering (ICSE04).

[28] Jacobson, I., 2004, Aspect-Oriented Software

Development with Use Cases, 978-0-321-26888-4,

Addison-Wesley.

[29] Zhang Jingjun et al., 2007, Aspect-Oriented Requirements

Modeling, Proceeding of the 31
st

IEEE Software

Engineering Workshop SEW-31 (SEW’07), Baltimore,

MD, USA.

[30] S. Hamza and D. Darwish, 2009, On the Discovery of

Candidate Aspects in Software Requirements, Proc. Of

Sixth International Conference on Information

Technology: New Generations.

[31] Xiaojuan et al., 2010, Use case And Non-functional

Scenario Template-Based Approach to Identify Aspects,

Second International Conference on Computer

Engineering and Applications.

[32] I. Brito, 2004, Aspect-Oriented Requirements Engineering,

UML'04 DocSym, Doctoral Symposium 7th International

Conference on the Unified Modeling Language, Lisbon,

Portugal.

[33] A. Amirat et al., 2006, An Aspect-Oriented Approach in

Early Requirements Engineering, IEEE, pp. 1055-1058.

[34] Bernd Bruegge et al., 1994, Design Considerations for an

Accident Management System, In Proceedings of the

Second International Conference on Cooperative

Information Systems, Toronto Press, May 1994.

[35] M. Bookser and B. Bruegge. 1993, Information,

Technology and Police Management: The FRIEND

system,” Proceedings of the 1993 Society of Police

Futurists International Symposium, Baltimore, Maryland,

May 1993.

[36] B. Bruegge and A.Dutoit, 2007, Object-Oriented Software

Engineering Using UML, Patterns, and JavaTM, 2nd

Edition, Pearson Education.

