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ABSTRACT 

The classification of remotely sensed images knows a large 

progress taking into consideration the availability of images 

with different resolutions as well as the abundance of 

classification‟s algorithms. Support Vector Machines (SVMs) 

are a group of supervised classification algorithms that have 

been recently used in the remote sensing field, a number of 

works have shown promising results by the fusion of spatial 

and spectral information using SVM. 

For this purpose, we propose a methodology allowing to 

combine these two information. The SVM classification was 

conducted using a combination of multi-spectral features and 

Haralick texture features as data source. We have used 

homogeneity, contrast, correlation, entropy and local 

homogeneity, which were the best texture features to improve 

the classification algorithm. Two kernels have been 

considered, the RBF kernel based on Euclidean minimum 

distance (EMD) and a RBF kernel based on the Spectral 

Angle Mapper (SAM). 

The proposed approach was tested on common scenes of 

urban imagery. Results showed, especially with the use of 

Haralick texture features, that SVMs using RBF kernel based 

on EMD outperform the SVMs with RBF kernel based on 

SAM in term of the global accuracy and Kappa coefficeint. 

The experimental results indicate a mean accuracy value of 

93.406% for EMD kernel and 92.896% for SAM kernel which 

is very promising. 
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1. INTRODUCTION 
With the commercial emergence of the optical satellite images 

of sub-metric resolution (Ikonos, Quickbird) the realization as 

well as the regular update of numerical maps with large scales 

becomes accessible and increasingly frequent. The 

classification of such images follows the same principle for 

other image types, and it is a method of analysis of data that 

aims to separate the image into several classes in order to 

gather the data in homogeneous subsets, which show common 

characteristics. It aims to assign to each pixel of the image a 

label which represents a theme in the real study area (e.g. 

vegetation, water, built, etc) [1]. 

Several classification algorithms have been developed since 

the first satellite image was acquired in 1972 [2-4]. Among 

the most popular and widely used is the maximum likelihood 

classifier [5]. It is a parametric approach that assumes the 

class signature in normal distribution. Although this 

assumption is generally valid, it is invalid for classes 

consisting of several subclasses or classes having different 

spectral features [6]. To overcome this problem, some non-

parametric classification techniques such as artificial neural 

networks, decision trees and Support vector machines (SVM) 

have been recently introduced. 

SVM is a group of advanced machine learning algorithms that 

have seen increased use in land cover studies [7, 8]. One of 

the theoretical advantages of the SVM over other algorithms 

(decision trees and neural networks) is that it is designed to 

search for an optimal solution to a classification problem 

whereas decision trees and neural networks are designed to 

find a solution, which may or may not be optimal. This 

theoretical advantage has been demonstrated in a number of 

studies where SVM generally produced more accurate results 

than decision trees and neural networks [5, 9]. SVMs have 

been used recently to map urban areas at different scales with 

different remotely sensed data.  High or medium spatial 

resolution images (e.g., IKONOS, Quickbird, Landsat (TM)/ 

(ETM+), SPOT) have been widely employed on urban land 

use classification for individual cities in building extraction, 

road extraction and other man-made objects extraction [10, 

11]. 

Moreover, in hyperspectral image analysis, especially in 

application for classifying and detecting, spectral 

characterization plays a more and more crucial role. To 

determine spectral variability, similarity, discrimination, and 

divergence, many spectral measure criteria which calculate 

different distance metrics have been proposed over the past 

few decades, including spectral angle mapper (SAM) [12], 

spectral correlation mapper (SCM) [13], spectral information 

measure (SIM) [14], Euclidean minimum distance (EMD) 

[15], spectral gradient angle (SGA) [16], and band add-on 

spectral angle mapper (BAO-SAM) [17]. Appropriate 

distance metrics employed in hyperspectral data processing 

for classification and detection application can obtain the best 

result through describing spectral characteristics in 

mathematical or physical meaning properly. 

SAM, as one of the most important and widely used spectral 

distance metrics in hyperspectral data processing for 

classification and material identification, is implemented and 

applied in many research and commerce fields, however, as a 

physically-based spectral distance metrics [18]. 
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On the other hand, the consideration of the spatial aspect in 

the spectral classification remains very important, for this 

case, Haralick described methods for measuring texture in 

gray-scale images, and statistics for quantifying those textures 

[19]. It is the hypothesis of this research that Haralick‟s 

Texture Features and statistics as defined for gray-scale 

images can be modified to incorporate spectral information, 

and that these Spectral Texture Features will provide useful 

information about the image. It is shown that texture features 

can be used to classify general classes of materials, and that 

Spectral Texture Features in particular provide a clearer 

classification of land cover types than purely spectral methods 

alone. 

In this paper, multiclass SVMs are investigated for the 

classification of multispectral high resolution satellite images. 

The proposed method consists in combining spatial and 

spectral information to obtain a better classification using 

Haralick Features [19]. 

Two kernels are compared: The first one is based on 

Euclidean Minimum Distance. It is the RBF with L2-norm 

distance. The second one is based on Spectral Angle Mapper. 

It basically computes the angle between two vectors in the 

vector space. 

This paper is organized as follows. In the second section, we 

discuss the extraction of spatial and spectral information 

especially the Grey-Level Co-occurrence Matrix (GLCM) and 

Haralick texture features used in experiments. In Section 3, 

we give outlines on the used classifier: Support Vector 

Machines (SVM). In Section 4, the two distance metrics used 

in experiments are outlined, and Data. Experimental scheme 

and experimental results are discussed in Section 5. Finally, 

conclusions and perspectives are given in Section 6. 

2. EXTRACTION OF INFORMATION 

2.1 Spectral information 
The most used classification methods for the multispectral 

data consider especially the spectral dimension. The set of 

spectral values of each pixel is treated as a vector of attributes 

which will be directly employed as an entry of the classifier. 

According to Fauvel [20] this allows a good classification 

based on the spectral signature of each area. However, this 

does not take into account the spatial information represented 

by the various structures in the image. 

2.2 Spatial information 
Information in a remote sensed image can be deduced basing 

on their textures. A human analyst is able to distinguish man-

made features from natural features in an image based on the 

„regularity‟ of the data. Straight lines and regular repetitions 

of features hint at man-made objects. This spatial information 

is useful in distinguishing the different field in the remote 

sensed image. 

Many approaches were developed for texture analysis. 

According to the processing algorithms, three major 

categories, namely, structural, spectral, and statistical methods 

are common ways for texture analysis. 

Haralick [21] suggested the use of GLCM to extract second 

order statistics from an image. GLCMs have been used very 

successfully for texture classification in evaluations [22].  

It‟s one of the most widely used methods  [23], which is a 

powerful technique for measuring texture features; it contains 

the relative frequencies of the two neighbouring pixels 

separated by a distance on the image (Fig 1).  

The size of the co-occurrence matrix equals to the number of 

the image gray levels, also the dynamics of the image is 

usually small (typically, 8 gray levels) in order not to work 

with too large matrices. 

The distribution in the matrix will depend on the angular and 

distance relationship between pixels. Varying the vector used 

allows the capturing of different texture characteristics. Once 

the GLCM has been created, various features can be 

computed from it. These have been classified into four 

groups: visual texture characteristics, statistics, information 

theory and information measures of correlation [21, 24].  
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Fig 1.  (a) Image 4 × 4 with 4 gray levels, (b) co-

occurrence matrix for a displacement of d = (1, 0) and (c) 

co-occurrence matrix for a displacement of d = (0, 2) 

Even small, a co-occurrence matrix represents a substantial 

amount of data that is not easy to handle. This is why Haralick 

uses these matrices to develop a number of spatial indices that 

are easier to interpret. 

Haralick assumed that the texture information is contained in 

the co-occurrence matrix, and texture features are calculated 

from it. A large number of textural features have been 

proposed starting with the original fourteen features 

( 1f to 14f ) described by Haralick et al [25], however only 

some of these features are in wide use. Wezska [26] used four 

of Haralick features ( 1f , 2f , 5f , 8f ). Conners and Harlow 

[27] use five features ( 1f , 2f , 3f , 4f , 5f ). Conners, 

Trivedi and Harlow [28] introduced two new features which 

address a deficiency in the Conners and Harlow set 

( 1f , 2f , 4f , 5f , 6f , 7f ) 

We found that the five features used by Conners and Harlow 

are commonly used taking into account that the fourteen are 

much correlated with each other, and that the five sufficed to 

give good results in classification [29].  

In this work, we have used these five features: homogeneity 

(E), contrast (C), correlation (Cor), entropy (H) and local 

homogeneity (LH), and co-occurrence matrix are calculated 

for four directions: 0°, 45°, 90°and 135° degrees.   

Let us recall their definitions:  
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Where M(i ,  j )  is normalized co-occurrence matrix, i and 

i are the horizontal mean and the variance, and j and j  

are the vertical statistics. 
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Each texture measure can create a new band that can be 

incorporated with spectral features for SVM classification. 

3. SVM CLASSIFICATION 
In this section, we briefly describe the general mathematical 

formulation of SVMs introduced by Vapnik [30, 31]. Starting 

from the linearly separable case, optimal hyperplanes are 

introduced. Then, the classification problem is modified to 

handle non-linearly separable data and a brief description of 

multiclass strategies is given.  

3.1 Linear SVM 
For a two-class problem in a n-dimensional space Rn, we 
assume that l training samples xiRn are available with their 
corresponding labels yi = ±1, S = {(xi, yi) | i[1, l]}. The 
SVM method consists of finding the hyperplane that 
maximizes the margin, i.e., the distance to the closest training 
data points for both classes [32]. Noting wRn as the normal 
vector of the hyperplane and b R as the bias, the hyperplane 
Hp is defined as: 

pHxbxw  ,0,    (6) 

Where  xw,  is the inner product between w and x. If xHp 

then f(x) =  xw, + b is the distance of x to Hp. The sign of f 

corresponds to decision function y = sgn (f(x)).  

Finally, the optimal hyperplane has to maximize the margin: 

w2 . This is equivalent to minimize 2w  and leads to 

the following quadratic optimization problem: 
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For non-linearly separable data, the optimal parameters (w, b) 
are found by solving:  
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Where the constant C control the amount of penalty and i  

are slack variables which are introduced to deal with 

misclassified samples (Fig 2). This optimization task can be 

solved through its Lagrangian dual problem: 
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Finally: 
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The solution vector is a linear combination of some samples 

of the training set, whose i  is non-zero, called Support 

Vectors. The hyperplane decision function can thus be written 

as: 
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Where xu is an unseen sample. 
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Fig 2.  Classification of a non-linearly separable case by SVMs. 

3.2 Non-Linear SVM 
Using the Kernel Method, we can generalize SVMs to non-

linear decision functions. With this technique, the 

classification capability is improved. The idea is as follows. 

Via a non-linear mapping , data are mapped onto a higher 

dimensional space F (Fig 3): 
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The SVM algorithm can now be simply considered with the 

following training samples:  (S) = {( )(xi , yi) | i  [1, 

l]}. It leads to a new version of the hyperplane decision 

function where the scalar product is now: )(x ),(x ji  . 

Hopefully, for some kernels function k, the extra 

computational cost is reduced to: 

),()(),( jiji xxkxx    (13) 

The kernel function k should fulfill Mercers‟ conditions. 

 

Fig 3.  Mapping the Input Space into a High Dimensional Feature Space with a kernel function 

With the use of kernels, it is possible to work implicitly in F 

while all the computations are done in the input space. The 

classical kernels used in remote sensing are the polynomial 

kernel and the Gaussian radial basis function: 
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3.3 Multiclass SVMs 
SVMs are designed to solve binary problems where the class 

labels can only take two values: ±1. For a remote sensing 

application, several classes are usually of interest. Various 

approaches have been proposed to address this problem [33]. 

They usually combine a set of binary classifiers. Two main 

approaches were originally proposed for a k-classes problem. 

 One versus the Rest: k binary classifiers are applied on 
each class against the others. Each sample is assigned to 
the class with the maximum output. 

 Pairwise Classification: 2)1( kk binary classifiers are 

applied on each pair of classes. Each sample is assigned 
to the class getting the highest number of votes. A vote 
for a given class is defined as a classifier assigning the 
pattern to that class. 

4. DISTANCE METRICS 
In essence, a distance metric is a mathematical operator that 

conveys how similar two members of a set are with a single 

scalar value, based on a notion of similarity [17, 34].  

Different metrics employ alternative notions of similarity; 

consequently, each metric uniquely translates the 

phenomenology observed by a sensor into a scalar. The notion 

of similarity shared by the spectra can be measured 

differently, depending on the metric that is used to compare 

them. 

In this section, we discuss the two most prominent distance 

metrics in hyperspectral processing: the Euclidean Minimum 

Distance and the Spectral Angle Mapper. Each metric 

provides a unique measure of distance from two 

complementary viewpoints of geometry (Fig 4). 

4.1 Euclidean minimum distance 
The Fig.4 (a) shows that EMD measures the shortest distance 

between two vectors x and y, and is defined as: 

yxyx  ),(
  (16) 

From the definition of EMD in (16), EMD possesses 

properties that make it distinct from SAM, which are: 

Invariance to Unitary Coordinate Transformation, Additivity, 

and Monotonicity. 

So the contrast between two signals measured by EMD 

increases with the number of bands. Furthermore, the 

additivity of EMD confirms that the amount of contrast 

between two signals increases with additional bands 

independently to other bands value. In short, the greatest 

contrast between two spectra is necessarily achieved with 

EMD by using every available band. 

 

Fig 4.  (a) and (b) represent respectively the Distance and 

the Spectral angle between two spectra, y = target 

spectrum, x = reference spectrum, using three bands 1, 

2, 3. 

4.2 Spectral angle mapper 
For each selected pixel in a hyperspectral image, namely 

unknown spectrum x, and a reference spectrum y chosen from 

spectral libraries, SAM algorithm qualifies the spectral angle 

θ to determine the similarity between them by applying the 

following equation: 
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Where .,. is the dot product operator, and .  is the 2-norm. 

A pair of three-dimensional spectra and the corresponding 

spectral angle calculated by SAM algorithm are shown in 

Fig.4 (b) In the SAM algorithm, smaller spectral angle 

indicates more similar to the reference spectrum. 

From its mathematical definition in (17), SAM possesses 

unique properties that distinguish it from EMD. These are 

Invariance to Multiplicative Scaling, Nonadditivity and 

Nonmonotonicity. 

So the addition of more spectral bands does not always 

guarantee an increase in angle. 

5. EXPERIMENTAL RESULTS 

5.1 Experiments  
The idea for a good spectral classification of the pixels is to 

directly consider the value of pixels image as input data of the 

x

y

1

2

3



1

2

3



x

y

)(a

)(b



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.11, May 2012 

33 

classifier, and each texture measure will create a new band 

that will be incorporated with this spectral information to use 

jointly spatial and spectral information. 

The proposed workflow has two main tasks, we start with the 

extraction of spectral and spatial information, so we compute 

Grey Level Co-occurrence Matrix (GLCM) to extract 

Haralick texture features that we add to spectral information,  

and then the result will be used as an input to SVM classifier 

(Fig 5). 

 

Fig 5.  A representative illustration of the workflow 

The performance of SVM varies depending on the choice of 

the kernel function and its parameters. For RBF kernel, two 

parameters, which are regularization parameter (C) and kernel 

width ( ), need to be defined. It is not clear which pairs of 

parameter produce the best classification result for a given 

data set. Therefore, optimum parameter search must be 

performed [35].  

In this work, the parameters of RBF kernel were determined 

by a grid search method using cross validation approach. The 

main idea behind the grid search method is that different pairs 

of parameters are tested and the one with the highest cross 

validation accuracy is selected. The method is conducted in 

two steps. In the first step, a coarser grid is applied with an 

exponentially growing sequence of (C, ). In the second step, 

after identifying the optimal region on the grid, the finer grid 

search is executed. The results are used to perform the final 

training process [35, 36]. 

For classification, we have used SVMlight  wich is an 

implementation of Support Vector Machines (SVMs) in C 

language [37]. We have modified the source code so as to 

adapt it with the used kernels. 

RBF can be written as follows [38]: K(x, y) = f(d(x, y)) where 

d is a metric on Rn and f is a function on R+
0 . For the 

Gaussian RBF, f(t) = exp(− t2), tR+
0, and d(x, y)=||x-y||, 

i.e., the Euclidean minimum distance. As mentioned in [17], 

Euclidean distance is not scale invariant, however due to 

atmospheric attenuation or variation in illumination, spectral 

energy can be different for two samples even if they belong to 

the same class. To handle such a problematic case, scale 

invariant metrics can be considered. Spectral Angle Mapper 

(SAM) is a well known scale invariant metric, it has been 

widely used in many remote sensing problems and it has been 

shown to be robust to variations in spectral energy [17]. This 

metric θ focuses on the angle between two vectors (17). 

In this paper, we compare RBF kernels with the Euclidean 

Distance (15) and kernel based on Spectral Angle Mapper 

(18). 

   ),(exp),( 2yxyxKSAM   (18) 

Both kernels fulfill Mercer conditions and optimal 

hyperplanes can therefore be found. 

5.2 Data  
The first image used in classification is a sample of high 

resolution Quickbird satellite image. Its size is 240x360 

pixels. It represents scene urban areas. We dispose of four 

spectral bands: blue, green, red and near infrared. We can see 

in Fig.6 (a) a representation of this image. 

The second test image is another sample of Quickbird satellite 

image with exactly the same properties except the size, 

500x280 pixels. The scene does contain also urban areas. The 

original image is represented in Fig.7 (a). 

In order to complete this collection the last image is a sample 

of high resolution Ikonos satellite image. It has also four 

spectral bands: red, blue, green and near infrared, its size is 

600x800 pixels. This image is represented in Fig.8 (a). 

Table 1.  Different classes 

Class 

N° 

Class 

name 

Train samples 

Image 1 Image 2 Image 3 

1 Asphalt 1 592 753 1 386 

2 
Green 

area 
2 252 1 680 480 

3 Tree 880 519 196 

4 Soil 176 1 387 813 

5 Building 4 217 1 282 920 

6 Shadow 1 280 808 336 

Total 10 397 6 429 4 131 

Features 

Extraction 

Classification 
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Classified 

Image (b) 

 

Multispectral 
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SVM 

RBF kernel 

With EMD 
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RBF kernel 
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Spatial Information 
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Spectral Information 

Set of spectral values 

of each Pixel 
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We will have two files for each image, “TrainFile.dat” and 

“TestFile.dat” respectively for learning and for classification, 

divided on six classes as described in Table 1. 

5.3 The results 
To the file that contains spectral and spatial information 

obtained from the original image ((a) in Fig 6, 7 and 8), we 

apply an SVM classification with RBF kernel based on EMD 

(15) then we apply, on the same file, an SVM classification 

with RBF kernel based on SAM (18). 

Thematic maps provided by SVMs classification using 

spectral information and Haralick features with the EMD and 

SAM kernel are shown in Fig.6, 7 and 8, (b) and (c), 

respectively. 

The fusion of spectral information and Haralick features with 

SAM metric gives us the classification maps (c) respectively 

in Fig 6, 7 and 8.  

The results have progressed with the combined use of spectral 

and spatial information. In addition, a visual analysis of the 

classification maps shows those areas more homogeneous for 

the map obtained with the proposed SVM using spectral and 

Haralick features with both SAM and EMD metrics. 

In conclusion both of those methods matches well with an 

urban land cover map in terms of smoothness of the classes; 

and it also represents more connected classes mainly when 

using SVM classification with SAM, it gives us 

approximately the same result when using SVM classification 

with EMD in terms of global accuracy. 

Table 2 summarizes the results obtained using the EMD and 

the SAM RBF kernels. These values were extracted from the 

confusion matrix, table 3 and table 4 present examples of the 

confusion matrix for the first used image respectively for 

EMD and SAM distance Metrics. The overall accuracy is the 

percentage of correctly classified pixels. Kappa coefficient is 

another criterion classically used in remote sensing 

classification to measure the degree of agreement and takes 

into account the correct classification that may have been 

obtained ”by chance” by weighting the measured accuracies. 

The use of the SAM kernel gives slightly degraded 

classification results for the overall accuracy and the Kappa 

coefficient. However, with all of the accuracies over 90%, this 

kernel seems also promising for the classification of remotely 

sensed images.  

Table 2.  Classification Accuracies for the EMD and the 

SAM RBF kernel. 

Test 

images 

Overall accuracy Kappa Coefficient 

EMD SAM EMD SAM 

Image 1 

Fig.6 (a) 
94.13% 93. 58% 0.93 0.92 

Image 2 

Fig.7 (a) 
93.96% 93.29% 0.92 0.90 

Image 3 

Fig.8 (a) 
92.13% 91.82% 0.91 0.89 

 

6. CONCLUSION 
Addressing the classification of high resolution satellite 

images from urban areas, we have presented two RBF kernels 

taking simultaneously the spectral and the spatial information 

into account the spectral values (Haralick features). 

Two kernels have been compared, the well known EMD RBF 

kernel and a kernel based on the spectral angle mapper. From 

our experiments, both gave excellent results in terms of 

classification accuracy, the EMD kernel slightly outperforms 

the SAM kernel; however it remains to improve even more 

these results.  

As a perspective of this work, we will be concentrating on the 

study of the kernel choice in order to determine the 

appropriate one, for this type of image classification. Another 

aspect of the proposed method which should be improved is 

the set of features used for the classification. We think that it 

is not possible, from a spectral and spatial SVM classification 

point of view, to eliminate a significant number of features 

among those used in our method; some feature selection 

methods should be tested. 

 

 

 

 

Table 3.  Confusion matrix results (%) for SVM classification with EMD (image 1 Fig.6 (a)) 

Global accuracy = 94.13% 

Class name Asphalt  Green area Tree  Soil  Building  Shadow  

Asphalt  96.02 0.34 1.92 0 0.62 1.09 

Green area 1.13 96.97 0 0 1.53 0.36 

Tree  0.18 1.22 89.57 1.98 2.53 4.51 

Soil  0 0.08 0.03 96.37 3.51 0 

Building  2.04 1.16 4.91 0.08 91.8 0 

Shadow  0.62 0.22 3.57 1.56 0 94.03 
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Table 4.  Confusion matrix results (%) for SVM classification with SAM (image 1 Fig.6 (a)) 

Global accuracy = 93.58% 

Class name Asphalt  Green area Tree  Soil  Building  Shadow  

Asphalt  95,02 1,41 1,92 0 1,63 0,02 

Green area 0,73 95,39 0 1,08 1,54 1,26 

Tree  0,28 1,07 88,82 2,5 3,42 3,91 

Soil  1,34 0,95 0 95,87 1,34 0,5 

Building  2,01 0,76 4,69 0,47 92,07 0 

Shadow  0,62 0,42 4,57 0,08 0 94,31 

 

 
 (a) (b) (c) 

Fig 6.   (a) Original image 1, (b) Classification Map obtained using spectral information and haralick features with EMD , (c) 

Classification Map obtained using spectral information and haralick features with SAM 

 
 (b) (c) 

Fig 7.   (a) Original image 2, (b) Classification Map obtained using spectral information and haralick features with EMD , (c) 

Classification Map obtained using spectral information and haralick features with SAM 

(a) 
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 (a) (b) (c) 

Fig 8.  (a) Original image 3, (b) Classification Map obtained using spectral information and haralick features with EMD , (c) 

Classification Map obtained using spectral information and haralick features with SAM 

Legend of fig 6, 7 and 8 

      

Asphalt Green area Tree Soil Building Shadow 
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