
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

15

Page Relevance based on Page Accessing Frequency

Nilufar Yasmin
Student, M.Tech

Manav Rachna College of Engineering, Faridabad,
India

Komal Sachdeva
Assistant Professor

Manav Rachna College of Engineering, Faridabad,
India

ABSTRACT
With the tremendous growth of the Internet, many web pages

are available online. Search engines use web crawlers to

collect these web pages from web for the purpose of storage

and indexing. Most of the web pages are autonomous and are

updated independently of the users that access the sources .As

the web pages are updated autonomously, users are unaware

of how often the sources change. An incremental crawler

visits the web repeatedly after a specific interval for updating

its collection. Users can be benefitted by knowing the page

importance based upon the page accessing frequency. In this

paper the page relevancy is finding out by a novel mechanism

and a novel architecture is being proposed.

General Terms

Page Importance Based On Page Accessing Frequency.

Keywords
Search Engine, Web Crawler, Page access Frequency, Rank

Updater.

1. INTRODUCTION
The World Wide Web [2, 3, 12] is a system that contains

interlink hypertext documents, it uses web browser for

accessing the hypertext documents from web servers. These

hypertext documents can have text, images, also audio and

video data. Hyperlinks allow the user to connect to the

interconnected links in back and forth manner.

The web is a large repository of text documents, images,

multimedia and vast amount of other information. Because the

web contains very large number of web pages, search engine

depends upon crawlers for gathering all the required web

pages on the web.

A web crawler [13, 14] is a program that automatically

retrieves and stores web pages and it creates the local

collection of web pages. A crawler starts by getting an initial

set of URLs, called as seed URLs. The crawler firstly

retrieves the pages matched with the seed URL, then it

extracts all the links that are present on the crawled web page

and adds the new retrieved URLs to a queue for the further

scan process.

In Fig 1, the search engine starts its searching by accepting the

query from the user. The public search engine provides an

interface to the user so that user submits the queries, and it

contains the mechanism for serving these queries. This part is

an important part for the search engines, because it is the only

visible part to the end-users.

The database stores all the crawled web pages, crawled by the

web crawler. The search engine sent queries to the database so

that it answers to any user request. The database also feeds the

downloader with the URLs to be downloaded .The processor

processes the URLs taken from the downloader and updates

the database with the fresh information (URLs).

In case of search engine, a web crawler is a component that

downloads and stores the web pages for the search engine. A

crawler starts by taking initial set of URLs into the queue,

where all the retrieved URLs are kept and also prioritized.

The crawler takes URL form this queue, downloads the web

pages, extracts all the URLs present in the downloaded page,

and place the new URLs in the queue. Crawler repeats this

process until it crawls a desirable no of web pages. These

collected web pages are later used by search engine or a Web

cache.

The basic algorithm for the Web Crawler is given below:

1. Read a URL from the set of seed URLs.

Public Search

Engine

User Web Server

Web Crawling

Web Pages

Processor

Downloader

WWW

S
Q

L

Q
u

er
y

URL to

download

Download

pages
Search query

Processing results

Query

Download

pages

Data

Web

browser

Database

Fig 1: Architecture of search engine

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

16

2. Find out the IP address for the host name.

3. Download the Robot.txt file that carries

downloading permissions and also identifies the

files to be excluded by the crawler.

4. Find out the protocol of underlying host like http,

ftp, gopher etc.

5. Based on the protocol of the host, download the

document.

6. Identify the document format like doc, html, or PDF

etc.

7. Verify whether the document has previously been

downloaded or not.

8. If the document is fresh one

Then Read it and extracts the links.

9. Else

Continue.

10. Convert the URL links into their absolute IP

equivalents.

11. Add the URLs to queue of the set of seed URLs.

In this paper we discuss about estimating page importance

based on page access frequency with the help of an

incremental crawler. In section 2 we discuss about the

approaches that are already in use in the incremental crawler

for finding the relevant web pages. In section 3 we propose a

novel mechanism and novel architecture for finding relevant

web pages which is based on number of user accesses.

2. RELATED WORK
The incremental crawler updates the web pages of their local

collection in a discriminately and incrementally manner. It

does not periodically refresh the collection, but improves the

“newness” of the local collection and fetches new pages in the

local collection in more appropriate manner.

The architecture of Incremental Crawler is shown in Fig 2.

 The All_URLs contains the set of all URLs that are accessed

or to be accessed. The URLs in the Coll_URLs are chosen by

the Ranking Module. The pages related to URLs in the

Coll_URLs are downloaded by the Local_Collection. The

Ranking Module continuously scans the All_URLs and the

Local_collection and gives proper ranks to the web pages

accordingly. When the Ranking Module finds that the page

present in the Coll_URLs are not the updated pages, then the

page in the Coll_URLs are replaced by the updated pages.

The Update Module takes the URLs from the Coll_URls,

downloads the pages related to the URL, if the page changed,

then it will be updated in the Local_collection. The Crawler

Module has to be crawls the web page and it updates or saves

the web page into the Local_collection according to the

request of Update Module. It also extracts all the links (URLs)

on the crawled page and adds those links in All_URLs.

While designing the incremental crawler [2, 6] two issues

must be address:-

 Maintain the local collection with fresh pages: Freshness

of web pages in local collection is based on the strategy that

used for it, that why the crawler should apply the best policies

to maintain the local collection fresh.

In order to maintain the freshness of local collection, Revisit

Frequency Calculator is use to finds the appropriate revisit

frequency of the crawling so that crawler can update its local

collection with fresh documents.

 Improve quality by keeping relevant pages in the local

collection: The web crawler should be improving the quality

of the local collection by replacing less relevant pages with

more relevant pages. This should be done so that the user can

access more relevant pages while searching. It is essential

because pages are continuously created and removed, and it

may possible that some of the pages that were created may be

more relevant than existing pages in the local collection.

That’s why the crawler needs to replace less relevant existing

pages with more relevant new web pages.

Another reason is that, the relevancy of existing pages also

changes over time. Thus, when some existing pages become

less relevant than earlier ignored pages, then the web crawler

should replace less relevant existing pages with earlier

ignored new web pages.

By using hyperlink graph of the web and algorithms like Page

Rank algorithm, page importance is calculated. But now a

day’s people understand that the hyperlink graph is an

incomplete and inaccurate way for finding page importance.

In approach, [1] it proposed a way to calculate page rank in

incremental crawler .According to it, the hit counter stores the

number of times the page is visited. And there must be some

date on which that page is added on the web.

For estimating the page importance of that page it divides the

hit counter by the total number of days for that page on the

web. This will evaluate the access ratio of that page for the

web.

Another approach, [3] it solves the problem of searching fresh

information from the web in the incremental web search for

estimating ranking of web pages which is changed. For

solving this problem, it uses an integrated ranking framework

by merging three metrics. The three metrics are Popularity

Ranking, Content-based Ranking and Evolution Ranking

which produce good Ranking for the changed web Pages.

Add_URLs

Update

Module

Crawler

Module

Local_Collection

Scan a

URL

Ranking

Module
Add &

Remove

 Pop

Scan

Add URLs

Update/ Save

 Crawl

Discard

Checksum

Coll_URLs

Pushback

Fig 2: Architecture of Incremental Crawler

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

17

3. PROPOSED WORK
There are three important characteristics of the web page that

generate a scenario in which the web crawling is very

difficult:

 Large Volume of web pages.

 Rate of change on web pages.

 Finding the relevant pages of the web.

A large volume of web pages implies that the web crawler can

only download a fractional of the web pages and hence it is

very essential that the crawler should be intelligently enough

to prioritize download.

Whereas rate of change on web pages implies that web pages

on the internet changes very frequently, as a result, by the

time the crawler is downloading the last page from a site, the

web page may change or a new page has been placed/ updated

to the website.

Relevant pages of the web represents the ’value’ of an

individual page on the web, is a key factor for web search.

Various search engines components such as, the crawler,

indexer, and ranker are generally guided by this measure.

Because the web is extremely large, and the web change

dynamically, accurately calculating the importance of web

pages becomes difficult, and it also creates a great challenge

to web search engines.

Above difficulties can try to be solved with the proposed

architecture.

The architecture is composed of the following Modules/Data

Structure as shown in Fig 3.

 URL

 URLs Crawled updated

 Pages Read URLs

 Web Pages

 Add threshold value

 Dispatched URL

 Read URL Updation

 Send Signal Updation Reads URLs

 Freq

 Extract URL Store URL

2.1 Crawler Module
It crawl the web, download the web pages and stores the

downloaded pages into the Page repository that maintains the

documents crawled/updated by the “Crawler” along with their

URLs.

 Crawler ()

 {

 Read a URL from Repository

 Download new page from the web and extracts new

URLs found in the page

 If URL exists in Repository

 Then

 If page changed, updates it in Repository

 Else

Add URL, page to Repository

Add/replace new URLs to Repository

}

2.2 Update Module
Administrator is able to do the updation to the web pages

with the help of Update Module. The Update Module read the

URLs to check whether the web pages are changed or not, and

if changed then it should be store the changed URLs to the

URL Buffer for crawling the changed web pages. When this

buffer will become full, the Update Module will send a signal

called Fetch URL signal to Dispatcher. After getting the Fetch

URL signal from Update Module, the Dispatcher will start

fetching the URLs one by one and forward it to the crawler to

download the web page again, so that the freshness of Page

repository can maintain.

 Update ()

Fig 3: Architecture of proposed Incremental Crawler

WWW

Crawler

Dispatcher

URL Buffer

No. of User Accesses Search Engine User

Rank Updater

Refresh Time Calculator
Update Module

Repository

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

18

 {

 Wait (Repository empty)

 Fetch URLs and their link information from

Repository

 if URL is updated

 Then add URL in URL Buffer

 Else

 Continue

 If full (URL Buffer) then

 Signal (fetch URL)

 }

 }

2.3 Dispatcher Module
It waits for the fetch URL signal from Update module and

upon receiving this signal, it fetches an URL from the URL

Buffer so that crawler can download the corresponding web

pages. The algorithm for Dispatcher is as follows:

 Dispatcher ()

 {

 Wait (fetch URL)

 While (not (empty URL Buffer))

 {

 Fetch URL from Buffer;

 Forward the URL to the crawler to download all the

web pages related to that URL.

2.4 URL Buffer Module
It stores all the updated URLs which are need to be recrawled

by the crawler. The URL Buffer is feeding by the Update

Module.

2.5 Rank Updater Module
Rank Updater checks the repository after a particular interval

of time. It calculates the difference between the no. of user

accesses of before updation which is denoted by a1 and after

updation, denoted by a2 of the URLs. And if the difference

between a1 and a2 is equal to the constant value that is

decided by the administrator then it will be add the threshold

value to the no. of user accesses of after updation of those

URLs. Then rank updater updates the relevancy of the web

pages according to it. The algorithm for the Rank Updater is

as follows.

 Rank Updater ()

 {

 While (URLs) // accept URLs from Repository

 {

 Find the no_of _accesses a1 // before updation

 Find the no_of _accesses a2 // after updation

 Diff = a1 - a2

 If Diff > τ // τ equals to constant value

 Then

 Add threshold value to the no_of_accesses of after

updation of the URL.

2.6 Search Engine Module
It is used to the proposed architecture for calculating the no.

of user accesses. The no_of_accesses is calculated as follows:

 Init () /* initialize variables */

 N = 0 /* total number of accesses */

 After first search

 N = N + 1

2.7 Repository:
The Repository stores all the web pages and related URLs that

crawled by the crawler.

4. CONCLUSION & FUTURE WORK
The proposed architecture helps in maintaining the freshness

of the repository and provides relevant web pages to the users.

The calculation of the no. of user accesses helps in finding the

importance of the web pages by efficiently managing the

Rank Updater so that the relevant pages are provided to the

users. Moreover, the architecture is suitable for the

applications where relevant search have been required.

As the future work, the limitation of the current work that the

crawler crawl the web pages even after the administrator stops

the crawling process is taken into account. Future work

includes applying a technique to overcome this problem.

5. REFERENCES
[1] Sakshi Goel, Anjana, Akhil Kaushik, Kirtika Goel, “A

Novel Approach for Page Rank in Incremental Crawler”,

IJCST Vol. 3, Issue 1, Jan. - March 2012.

[2] Niraj Singhal, Ashutosh Dixit, Dr. A. K. Sharma,

“Design of a Priority Based Frequency Regulated

Incremental Crawler”, 2010 International Journal of

Computer Applications (0975 – 8887) Volume 1 – No. 1.

[3] Arvind Kumar, Km. Pooja, “An effective method for

ranking of changed web pages in incremental crawler”,

International Journal of Computer Applications (0975 –
8887) Volume 8– No.7, October 2010.

[4] Rosy Madaan, Ashutosh Dixit, A.K. Sharma, Komal

Kumar Bhatia, “A Framework for Incremental Hidden

Web Crawler”, International Journal of Computer

Science and Engineering (IJCSNE), Vol. 02, No. 03,

2010.

[5] Ravita Chahar, Komal Hooda, Annu Dhankhar,

“Management Of Volatile Information In Incremental

Web Crawler”, IJCSI International Journal of Computer

Science Issues, Vol. 4, No. 1, 2009(ISSN (Online): 1694-

0784, ISSN (Print): 1694-0814).

[6] Ashutosh Dixit, Harish Kumar and A.K Sharma, “Self

Adjusting Refresh Time Based Architecture For

Incremental Web Crawler”, International Journal of

Computer Science and Network Security (IJCSNS), Vol

8, No12, Dec 2008.

[7] M.P.S.Bhatia, Divya Gupta, “Discussion on Web

Crawlers of Search Engine”. Proceedings of 2nd National

Conference on Challenges & Opportunities in Information
Technology (COIT-2008) RIMT-IET, Mandi Gobindgarh.

March 29, 2008.

[8] Cho, J. and Roy, “Impact of search engines on page

popularity”. In Proc.13th International World Wide Web

Conference, 2004.

[9] Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, S.

Raghavan, “Searching the Web”, ACM Transactions on

Internet Technology, Vol. 1, Num. 1, August 2001,

pp.2-43.

[10] Mark Najork, Allan Heydon, “High- Performance Web

Crawling”, September 2001.

[11] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa.

Effective personalization based on association rule

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

19

discovery from web usage data. In Proceedings of the 3rd

ACM Workhop on Web Information and Data

Management, pages 9–15, November 2001. Atlanta,

USA.

[12] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina,

Andreas Paepcke, and Sriram Raghavan, “Searching the

Web”, ACM Transactions on Internet Technology

(TOIT), 1(1):2–43, August 2001.

[13] Junghoo Cho and Hector Garcia-Molina, “Estimating

frequency of change”, 2000, Submitted to VLDB 2000,

Research track.

[14] Junghoo Cho and Hector Garcia-Molina. 2000a. “The

evolution of the web and implications for an incremental

crawler”., In Proceedings of the 26th International

Conference on Very Large Databases.

[15] Brian E. Brewington and George Cybenko. “How

dynamic is the web.” In Proceedings of the Ninth

International World-Wide Web Conference, Amsterdam,

Netherlands, May 2000.

[16] Henzinger M. R. Link analysis in web information

retrieval. IEEE Data Engineering Bulletin, 23(3):3-8,

September 2000.

[17] Jenny Edwards, Kevin McCurley, John Tomlin, “An

Adaptive Model for Optimizing Performance of an

Incremental Web Crawler”.

[18] Brin, Sergey and Page Lawrence, “The anatomy of a

large-scale hypertextual Web search engine”. Computer

Networks and ISDN Systems, April 1998.

[19] Mike, Burner, “Crawling towards Eternity : Building an

archive of the World Wide Web”, Web Techniques

Magazine, 2(5), May 1997.

