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ABSTRACT 

In this paper, we propose a new method for the systematic 

determination of the model's base of time varying delay 

system. This method based on the construction of the 

classification data related to the considered system. The 

number, the orders, the time delay and the parameters of the 

local models are generated automatically without any 

knowledge about the full operating range of the process. The 

parametric identification of the local models is realized by a 

new recursive algorithm for on line identification of systems 

with unknown time delay. The proposed algorithm allows 

simultaneous estimation of time delay and parameters of 

discrete-time systems. The effectiveness of the new method 

has been illustrated through simulation.   
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1. INTRODUCTION 
Many process include time delay phenomena in their 

dynamics (such as aircraft, chemical or process control 

systems) they arise either as a result of inherent delay in the 

system, as result due to measurement processes or as an 

introduction of it in the system for control purpose ( in the 

identification exercise when a higher order process is 

approximated by a lower order model). The neglect of its 

presence may leads to a source of complex behavior [5, 6] 

(oscillations, instability, and bad performance). That is why; a 

high number of publications are devoted to time delay 

identification [14, 22, 21].  We cite the principal one to 

identify time delay system.  One approach based on the 

approximation of the time delay by a rational transfer function 

or Pade approximation is proposed in [4] [9]. Such approach 

requires estimation of more parameters because the order of 

the approximated system model is increased and an  

unacceptable approximation error may occur when the system 

has a large delay. 

Another method that identifies the time delay and the system 

parameters is presented in [15]. This method is based on the 

minimization of the prediction error identification using the 

Levenberg-Marquadt optimization method with exact 

derivatives of the objective function with respect to the 

adjustable parameters that include the time delay. 

A linear filter method is introduced for simultaneous 

parameter and delay estimation of transfer function models. 

This method estimates the time delay along other model 

parameters in an iterative way through simple linear 

regression [11]. Several methods that require the cross  

correlation technology in the signal process to identify the 

time delay system [1] [17] [20]. The method developed in 

[18] [19] evolves the identification of time delay and the 

parameters of a system. It based on the minimization of the 

error between the process output and the process predictive 

model output, the variable delay parameter is identified. In a 

somewhat dual way, another one [3] which suggest an 

algorithm to recursively update the value of a small delay by 

inspection of the phase contribution of the real negative zero 

arising in the corresponding sampled system. The main 

drawback of this method is that iteration on time delay is 

required to estimate the parameters and this makes on line 

implementation difficult. A online algorithm for the 

estimation of both process parameters and delay where no a 

priori knowledge of the delay is required is presented in [2]. 

The algorithm is a modification of any standard recursive 

parameter estimation algorithms and can be applied easily to 

any of the well established versions of estimation algorithms 

(Least-Squares, Instrumental Variables, Maximum likelihood, 

ect..) and their extensions. It is based on two-step procedure, 

first assumes that a known time delay and estimates the other 

transfer parameters, then minimizes the least squares error 

performance index with respect to the delay value. 

Nevertheless, there are few algorithms that address the 

recursive identification of unknown time varying delay 

system [19]. 

In this work, we suggest to exploit the multimodel approach 

for the representation of time varying delay system [12]. The 

determination of models’ base is based on numerical data 

classification. This method does not require any knowledge 

about the operating range of the system, nor about the 

variation law of the time delay and the system parameters. 
Besides, we propose a new recursive algorithm for on line 

identification of systems with unknown time delay. The 

proposed algorithm allows simultaneous identification of the 

time delay and the system parameters.  

 

This paper is organized as follows. In the second section, we 

expose the method used for the multimodel representation of 

time delay systems 

2. MULTIMODEL REPRESENTATION 

OF TIME VARYING DELAY SYSTEM  

2.1 The model's base generation 
In this section, we present a new method for the systematic 

generation of the model base of time varying delay system. 

It consist in classifying a data set obtained from the 

identification measurements related to considered system and 
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in estimating the structural by the RDI and the parametric  

using a new identification algorithm. 

2.2 The model’s base generation 
This method exploits the data classification method proposed 

by Chiu [13]. It is divided into two steps, the first is to classify 

the data set obtained from identification measurements. The 

second treats the structural and parametric identification 

exploiting the data relating of each cluster obtained from the 

classification phase.  

Construction of the classification data: 

The classification procedure consists to select among a set of 

data points representing classes that will be centers of classes 

through a computation of potentials. 

The classification data s(k) is obtained by a combination of 

two terms. The first term focus the classification according to 

the time delay, whereas, the second term focus the 

classification according to the parameters of the system. 

The first term is obtained from maximizing the  

crosscorrelation function between the input and the outputs 
increments. 
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The second term is a normalization of the output: 
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The data s(k) are calculated by the formulation:  
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where α is a ponderation between 0 and 1. 

 

Classification procedure: 

Having a classification data set (si, i = 1, ...,N), the 

classification procedure consists to associate to each datum si 

a potential Pi given by the following expression: 
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where ra is a positive parameter controlling the decrease ratio 

of the potential. The potential decreases exponentially as sj is 

away from si. The first cluster center that we call sc1 is the 

datum whose potential P∗ 1 is the maximum. 

To avoid selecting the first center sc1 and its neighborhood as 

other cluster centers, the procedure assigns to each potential 

Pi the following new value: 
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The parameter rb (rb > 0) must be selected larger than ra to 

favor the operation related to the selection of the other cluster 

center completely different from the last one. 

Next, we select, as second cluster center sc2 whose modified 

potential given by the relation (6). As similar, we choose the 

cth cluster center scc with the maximum potential *

cP and 

modify the potentials as follows: 

2

*
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4
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However, the selection of centers obeyed at each iteration,  

the following conditions: 

• If *

cP  > ε1 *

1P , the selection is permitted. 

• If *

cP  < ε2 *

1P , the selection is completed. 

• If ε2
*

1P  ≤ *

cP  ≤ ε1
*

1P  and if: 

*

*

1

1 , 1,..., 1                        (8)
cc ci c

a

Min s s P
i c

r P


     

where ε1 and ε2 are two positive parameters (ε1 > ε2) 

introduced by Chiu, scc is the current center and sc1,sc2,..., 

sc(c−1) are the last selected ones, the center to be retained 

corresponds, in this case, to the maximum value of the 

potentials after rejecting the current value *

cP . 

After the selection of the cluster center, we have a search the 

elements belonging to each class by a simple computation of 

distance between si and scc and classify si into the class whose 

distance is minimum. 

 

Clusters’ modeling: 

 After the collection of data for each class c (c = 1, ...,N) and 

assigning the correspond outputs, structural (order of 

polynomials -1 -1ˆ ˆ( ,  )  ( ,  )A k q and B k q ) and parametric 

identification must be carried out to elaborate the local model 

[8]. Each local model can be representing by the following 

structure: 
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Structural identification related to the estimation of the 

order μc of each model uses the instrumental determinants’ 

radio test. 

Considering the data set related to the cluster c (nc,data), 

the estimation-procedure of the order μc builds for an order μ 

(μ = 1, 2...μmax) the information matrixes Qμ and Qμ+1 and 

evaluate the ratio of the determinants RDI(μ) given by the 

relation (10) and (11). We maintain as order μc for the cluster 

c, the value of μ for which the ratio RDI(μ) increases abruptly 

in first time. Indeed, the Qμ+1 matrix become singular when μ 

is identified with exact order. 
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The parametric identification uses a new algorithm for 

simultaneous identification of time delay system and the 

system parameters. It exploits the observation vector relating 

to the same cluster c. 

2.3 Generation of the multimodel output 
The multimodel output ym(k) is obtained by the fusion of the 

elementary outputs yc(k): 
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Where yc(k) is the elementary output of the model Mc and 

vc(k) is corresponding validity carried out using the residue 

approach.  

2.4 Validities estimation based on classical 

residue approach 
The validities of models Mc(c = 1, ...,N) are computed using 

the residues approach formulated by the relations (13)-(16): 

                          ( ) ( ) ( )                               (13)c cr k y k y k   

where N is the number of local models [8]. 

This expression must be normalized to have a residue between 

0 and 1:  
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The validity which varies in the contrary sense of the residue, 

can then be expressed by: 

                              
'( ) 1 ( )                                       (15)c cv k r k   

We consider the normalized validities given by: 
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3. PARAMETRIC IDENTIFICATION OF 

LOCALMODELS 

3.1 The proposed approach 
This paragraph proposes an alternative solution for the 

purpose of online and simultaneous identification of unknown 

time delay and the system parameters. 

Equation (17) can be rewritten as: 

                    
( ) ( ,  ) ( ) c c cy k k d v k  

                        (17) 

where θc is the parameter vector and ϕc(k, dc) is the 

observation vector which are defined as: 
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On the hand, the estimated output is described by the 

following relation: 

                          
ˆ ˆˆˆ ( ) ( ,  )  c c cy k k d 

                           (19) 

where ˆθc and ˆ dc represent the estimated parameter vector 

and the estimated delay. 

Now, let consider the prediction error: 
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                     (20) 

This formulation does not admit the unknown time delay in 

the  parameter vector and consequently it is not directly 

applicable to achieve our objective which is simultaneous 

identification of the time delay and the parameters of time-

varying delay systems. 

To overcome this problem, we suggest considering the delay 

in the vector of parameters to be estimated. Indeed, the new 

vector, called generalized vector of parameters is given by: 
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Moreover, we propose the use of the negative gradient of the 

error to obtain an appropriate observation vector which is 

given by: 
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Replacing ˆ( )T

c cd by its expression, we obtain the generalized 

vector parameters: 
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Where  Δu(k) = u(k) − u(k − 1).  

 

An estimation ˆ
cG of 

cG is denoted by the minimization of the 

following criterion [23]: 
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Then, the partial derivative of the criterion with respect to the 

generalized vector parameter is: 
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By canceling the partial derivative of the criterion, we obtain: 
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By using the matrix inversion lemma, we obtain: 

ˆ ˆ( 1) ( , ) ( , ) ( 1)
( ) ( 1)              (31)

ˆ ˆ1 ( , ) ( 1) ( , )

c c

c c

T

G G

T

G G

P k k k P k
P k P k

k P k k

   

   

 
  

 

 

 

 

The above approach can be summarized by the following step 

by step procedure:  

 

Step1: Initialization: set ˆ
cG = 

0G  = [0(1,na) 0(1,nb) 0(1,1)] and 

P=βI(na+nb+1) where β is a scalar and I(na+nb+1) is the identity 

matrix of size (na+nb+nc+1) and k = 0.  

Step2: Increment k and constructing the generalized 

observation vector ˆ( )
cG  and the observation vector ˆ( )T

c cd , 

Step3: Estimating the ˆ
cG by applying the developed 

identification method (31, 32, 33): 
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Step4: Return to step 2 until k = N where N is the number of 

input/output data. 

3.2 Lemma 
For the estimate (27) with the assumption A4, the following 

proprieties are hold: 
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Proof 

If we replace the equation (17) in (26), we have: 
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c c c c c

k k
T

G G G G G

i i

E E i i i v i       



 

  
           

 

 

Since ˆ( , )
cGi  is independent of v(i), then: 

                                                 
ˆ ˆ                                                                                 (36)

c cG GE    
 

 
Which proves (P1). 

 

The first order Taylor series expansion around the real 

parameter of ˆ
cG  is given by: 

2

2

ˆ( , ) ( , ) ( , )
ˆ( )             (37)

ˆ
c c c

c c

c cc

G G G

G G

G GG

J k J k J k  
 

 

  
  

 
 

Since
ˆ( , )

0
ˆ

c

c

G

G

J k 







, it derives from (37) 

1
2

2

1
2

2

( , ) ( , )
ˆ ˆ( )( )

( , ) ( , )

c c

c c c c

c c

c c

c c

G GT

G G G G

G G

T
T

G G

G G

J k J k

J k J k

 
   

 

 

 





  
    

   

     
    
         

 

 
The second partial derivative of the criterion with respect to 

the generalized vector parameter is given by: 
2 2

2 2
0

( , ) ( ) ( )
( ) ( , )c

c

c c c

k
G

G

iG G G

J k e i e i
e i i


 

  

   
  

    
  

So, 
2 2

2 2
0

( , ) ( )
( ) ( , ) ( , )c

c c

c c

k
G T

G G

iG G

J k e i
e i i i


   

 

  
  

   
  

When 0k  then, 

                                  
2

2
0

( )
( ) 0

c

k

i G

e i
e i







  

Hence, an approached of  

2

2

( , )
c

c

G

G

J k 






is obtained: 

 
2

2
0

( , )
( , ) ( , )                        (38)c

c c

c

k
G T

G G

iG

J k
i i


   

 





  
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Applying the mean value of   
( , ) ( , )

c c

c c

T

G G

G G

J k J k 

 

  
 

   

, we 

get: 

 
0

( , ) ( , )
( , ) ( , ) ( ( ) ( ) )c c

c c

c c

T
k

G G T T

G G

iG G

J k J k
E i i E e i e i

 
   

  

   
   
     

  

So, 

 

       2

0

( , ) ( , )
( , ) ( , )c c

c c

c c

T
k

G G T

G G

iG G

J k J k
E i i

 
    

  

   
   
     

  

Then, we have: 

¨ 1 ¨ 11

2

0

ˆ ˆ( )( )

( , ) ( , )
ˆ ˆ( , ) ( , )c c

c c

c c

T

Gc Gc Gc Gc

T

k
G GT

G G

iG G

E

J k J k
E i i

   

 
    

 

 



   
 

                          



 

Finally, we obtain: 
1

2

0

ˆ ˆ ˆ ˆ( )( ) ( , ) ( , )
c c

k
T T

Gc Gc Gc Gc G G

i

E i i        





 
      

 
  

Which proves (P2). 

 

4. SIMULATION 

4.1 Deterministic case 
We consider a discrete non stationary second order system 

with time varying time delay described by the following 

equation: 

 

1 2

1 2

( )  ( ) ( 1) ( ) ( 2)

( ) ( 1 - ( ))  ( ) ( 2 ( ))

r r

r r

y k a k y k a k y k

b k u k d k b k u k d k

    

    
 

 

The variation laws of the parameters (air(k), bir(k)) and 

the time delay d(k) are presented in figure 1. 

 

Fig 1. The variation laws of the system parameters 

Identification phase: 

 The system is excited in its full operating range by a pseudo 

random binary sequence so as to generate the necessary 

classification data s(k). 

Clusters generation 

The application of the classification methods leads to two 

clusters focused on the cluster centers sc1 and sc2 which will 

be modeled to form the models’ base. The evolution of the 

potentials during the classification procedure and the 

emplacement of the cluster centers are presented in the figure 

2. 

 

Fig 2. Evolution of the potentials during the classification 

procedure and emplacement of the cluster centers 

Clusters modeling 

After obtaining the classes and the corresponding elements, 

we carry out firstly a structural identification of the obtained 

models (Mc, c=1,2) realized by the test of the Instrumental 

Determinant Ration (RDI). Figure 3 shows the order 

estimation of each cluster. 

 

Fig 3. Evolution of the RDI 

The parameters estimation which forms the second step of the 

identification procedure is realized by the new algorithm. The 

parameters of each local model are given in table 1.  
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Table 1. The parameters and the time delay of each model 

of the base (Deterministic case) 

Local models ai bi di 

M1 
−0.1 
0.2 

0.3 

0.15 
2 

M2 
−0.1565 
0.3362 

0.4425 
0.3612 

1 

 

The efficiency of the proposed method can be demonstrated 

by recourse on figure 1 and table 1.  

 

Validation phase: 

 

 A validation of the model base, using a sinusoidal input  

described by the relation (42), is realized. 
0.005 (1  sin( / 20))        200

( ) 
( 200)                         .

ke k k
u k

u k else

  
 


             (42)                                                                                                                      

Figure 4 shows the evolution of the multimodel output ym(k) 

and the real system output y(k). It can be seen that the 

multimodel output ym(k) coincides with the real system output. 

 

 
Fig 4. Real system’s output y(k) and Multimodel output 

ym(k) (Deterministic case). 

4.2 Stochastic case 
We take again the same system with the same parameters’ and 

time delay variation law and a signal of noise v(k) is add to 

the system’s output with signal noise ratio (SNR) is equal to 

5. 

 

1 2

1 2

( )  ( ) ( 1) ( ) ( 2)

( ) ( 1 - ( ))  ( ) ( 2 ( )) ( )

r r

r r

y k a k y k a k y k

b k u k d k b k u k d k v k

    

     
 

 

A set of noisy classification data is picked out on the system 

and are treated following the same steps to generate the 

models’ base of time delay system. 

In fact the classification procedure yields to two clusters 

which are modeled by two second order models (see figures 5 

and 6) having the parameters and time delay given in table 2. 

 
Fig 5. Evolution of the potentials during the classification 

procedure and emplacement of the cluster centers 

 
Fig 6. Evolution of the RDI 

 

 

Table 2. The parameters and the time delay of each model 

of the base (Stochastic case) 

Local models ai bi di 

M1 
0.0752 
0.2547 

0.0451 
0.2061 

2 

M2 
−0.1754 
0.4876 

0.3583 
0.3644 

1 

  

     The same signal of validation u(k) is considered to validate 

the models base generated from the noisy classification data. 

The figure 7 presents the evolution of the real system’s output 

y(k) and multimodel output ym(k). We can see clearly that the 

multimodel output can describe with precision the real output 

of the system. The model’s base is valid for the description of 

the system behavior relatively to one generated in the 

deterministic case. So, this confirms the robustness of the 

suggested multimodel representation. 

 

 
 

Fig 7. Real system’s output y(k) and Multimodel output 

ym(k) (Stochastic case) 

 

5. CONCLUSION 
The multimodel approach is an effective tool, particularly 

well suited to modeling systems with time varying delays. A 

method for systematic determination of a model’s base for the 

representation of time delay systems is developed in this 

paper. A demonstrative example is presented to clarify the 

different stages related to the generation of the basis of 

models. The advantage of this work is the automatic 
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generation of the number, the orders, the time delay and the 

parameters of the local models without any prior knowledge 

about the operating area of the system.  In addition, we have 

focus, in this paper, on the main issue to consider is the both 

identification of the time delay and the system parameters. So, 

we proposed an alternative solution for this aim which consist 

to consider the time delay in the vector of parameters to be 

estimated.  Moreover, the validation results recorded in this 

work demonstrate a very satisfactory precision of the 

modeling using the proposed method. 
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