
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.9, May 2012

43

Standard Monitor Design for SLA Parameters in SOA

Alawi Abdullah ahmed Al-sagaf
 Dayang Norhayati Abang Jawawi

Universiti Teknologi Malaysia

ABSTRACT

The current trend in modeling and designing IT systems is by

using service-oriented approach that follows a new paradigm

called Service-oriented Architecture. SOA is a new paradigm

that manages the execution of the service’s instance which is

not fully under the control of the client or service requestor

but under the third party or provider. Service-level Agreement

as means of specifying measurement parameters for

performance (QoS), became extremely an important aspect in

SOA framework due to the nature of cross-organizational

services (i.e. outsourced email service). This is can be seen

through standard SLA languages have been emerging recently

to formalize SLA in order to become a machine-readable SLA

instead of classical telecommunication’s SLA that uses

natural languages. WSLA is an XML-based language that

used to create machine-readable SLAs. However, there is still

a gap on designing monitors in standard and generally

standard way of doing instrumentation process. This paper

proposes standard vocabulary for monitor design helps

communicate the problem and encourage automation. A

strong relationship has been defined between SEI 6-element

Framework and modern SLA languages like WSLA. The

result of comparison between the two metamodels has

presented which is a contribution to monitor design.

General Terms

Standard; Monitor; SLA parameters.

Keywords

SOA; SLA; performance; SEI6; WSLA.

1. INTRODUCTION
There is no doubt that IT infrastructure is growing due to

business requirements which led to existence of complex and

dynamic IT infrastructure. This situation in modern

enterprise highlight the necessity of having a mechanism to

monitor the quality of the service which provided by that

infrastructure. For example, dashboard toolset that add values

to enterprise business process by enabling user to monitor,

detect and correct the infrastructure [1]. Therefore without

these mechanisms it became critical to achieve business goals

(performance constraint).

The function of these automatic monitoring mechanisms

became necessary by maintaining it within more complex

systems (think of Amzon business). An effective practical

engineering approach is needed to improve the quality of

monitor’s design.

The current trend in modeling and designing of service-

oriented systems follows a new paradigm called Service-

Oriented Architecture (SOA) [2] [3]. In this approach the

functionality of the system is assigned to loosely coupled

services where integration between heterogonous systems is

possible, thereby reuse increased agility to adapt to changing

business requirements. Service Level Agreement (SLA) is an

essential artefact defines the obligation between service

provider and service consumer in which services and the level

of quality are specified. SLAs have been used in IT

organizations and departments for many years. The standard

of SLAs in SOA framework are still new but recently it

became extremely important due to the high demand on

services in SOA systems that cross over the organizational

boundaries and a lot of third-party service providers [4].

Therefore, it is required to measure and ensure quality of

service from both service provider and service consumer

prospective. For example, an online storage web

service offered by Amazon Web Services, and an exchange

server provider hosting customers emails (i.e. Microsoft live

outlook). In both examples performance are critical QoS must

be verified by the end users or third parties at provisioning

time.

This due to many factors, If we look carefully at current

service-based systems, services are able to communicate

because they are independent of technology. Also service is

allowed to grow dynamically. In this case a service provider

could enhance the quality of functionality provided by their

systems. For instance they could increase the resources

available to the service. This causes a variation in the

service’s non-functional properties. For instance, optimization

could improve a non-functional (i.e. performance) property

while may lead to violation of the SLA obligations. For

instance, in the Amazon S3 SLA the availability becomes

lower than 95%.

The monitor do instrumentation by measuring performance of

service instances to be compared with the expected results

(SLA parameters) so this step requires considerable

processing and human effort before they can be related to the

SLA terms.

It is further complicated by the fact that a service provided

may be the result of a composition of services (i.e. cross

organization business process), so it’s not entirely under the

control of the provider organization.

The new trend towards SLA is to be in standard form and

machine-readable by formalizing it .This direction is new as

we can see a few standards exists with these properties in the

literature [12]. For example IBM’s WSLA framework and the

WS-Agreement specification. In contrast there was no

standard monitor process and terms have been established.

For example WSLA standard does not show any details about

the monitor process only a few elements. This means every

client (many times third party) is free to configure and select

components for this process. In addition, There is a lack of

automation which makes this task more tedious (think of like

Amazon provider with hundreds of thousands services).

Unfortunately low level processing is need and the benefit of

machine-readable SLA is still not utilized. The work in this

paper is a step toward this direction.

2. SERVICE LEVEL AGREEMENT

Service level agreement (SLA) is a prediction agreement

between two parts consumer and provider [11], which lead to

a description of the relationship between them that should

involve the level of service(s) provided by the provider [12].

This information usually is statistical information which can

tell about different Nonfunctional requirements depending on

http://en.wikipedia.org/wiki/Online_storage
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Amazon_Web_Services

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.9, May 2012

44

Fig 1: Overview of main WSLA concepts [9]

 the application used. For example performance, reliability,

security, etc. This document accurately describes the details of

services and levels that serve as a legally binding between the

service provider and consumer of the service.

There are different scales for SLA in IT can be categorized as

in following Edward [11]:

a) Basic: is intended to justify technical support operation. It

is in form of a single level of service agreement. Often

requires manual data collection for Metrics establishment.

This would facilitate management and reporting.

b) Medium: it is intended to reduce the cost while increasing

service levels in a long term. There is sometimes

introduction of multi-level quality based on the cost of the

service. A comprehensive reporting to IT stakeholders

needs automatic data collection .

c) Advanced: in this case resources allocation with an

extension facility due to business evolving is dynamically

managed.

SLA can make it easier to know the real demands from

provider prospective as well as keeping provider reputation.

There are number of benefits measuring against SLA such as

summarized by Edward [11]:

a) To be able to do continuous quality improvement process

by measuring against key performance.

b) A means by which you can specify conditions and

penalties in case of not meeting expectations which

improve trust.

c) An SLA provides a definition artifact for KPIs which

supports tools selection, process definitions and skills

(people, process and technology) for an organization.

The purpose of the service description is the clarification

of four issues: What are the SLA parameters? To which

service do they relate? How is SLA parameters measured

or computed? How are the Metrics of a managed resource

accessed? [7].

2.1 SLA Languages Elements
SLA has number of languages that can describe the main

elements of the common components required in an SLA:

a) Parties describe Service consumers, providers, etc.

b) Validity period describe When SLA is active or expires.

c) Metrics describe Latency, response time.

d) Scope/exclusions describe Conditions under which to

evaluate SLA.

e) Purpose describes high level statement.

Because there are two ends in this high-level contract we need

to identify parties involved in the SLA contract such as

service consumer and providers or third party.
The time frame during which the SLA is to be honored is

defined by validity period. The necessary conditions under

which SLA should be applied are specified as scope and

exclusions (e.g. service applied during weekends).

There is a composite metric which is derived from atomic or

other composite metrics. It includes the time of the request for

service to the end of service (response time). For example

Atomic metrics is a number of process invocations which are

directly measured. While there are other possibility of

representation for functional measurements such as average

values and maximum, this is form composite metric. By using

SLO the service provider must ensure that for example the

system is working by 70% during a given time. A final

component in an SLA is the penalty of violating the SLOs

[13]. The new direction in specifying SLA is by formalizing it

like web service level agreement (WSLA).

2.2 Web Service level Agreement (WSLA)
WSLA is standard machine readable language for SLA has

been adopted by IBM in 2001 [7] as shown in simple abstract

syntax (metamodel) in Figure 1 [9] .The concept of

metamodel is important here because we need to study

features and properties of the language. Hence the main

concepts of language and their relationship will appear in a

form of classes with relationships because we are using UML

class model. This is although of the fact that the basic

structure is xml-based.

 XML is basically used to formally express the concepts of

SLA. There are number of the main components on WSLA

which are described in Figure 1 as the following three basic

elements of SLA: service definition, obligation, and party.

The parties and interfaces are for those should sign this

agreement: A party is an organization, not a computational

element. For example, a party that has the role of evaluating

performance measures collected from services under the scope

of the SLA may need to notify the other parties in case of

measures are not matching certain thresholds. A definition of

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.9, May 2012

45

the services and their operations is needed. This section sets

out the definition of service and level of the relevant service.

There is a contact Person as determined by the party for each

measurement and the type of measurement need to be done in

the following example we illustrate the process and the

service and the type of measurement required. The snippet

below shows a service named DemoService with an operation

called GetQuote.

A parameter named Availability_UpTimeRatio is defined

using a metric called UpTimeRatio, which in turn uses

another metric StatusTimeSeries.

3. SEI 6-ELEMENT FRAMEWORK
The current trend in software engineering highlights the

importance of architecture. The treatment of NFR in general

is not just confined to the architectural design. It is a holistic

approach contains all stages of the application software .It

concerns with implementation and its details the same way as

with the architecture. This is a contribution developed by SEI

[14]. It is stemmed from two points as in the following.

Since the achievement of quality on architecture is critical,

there should be a way to discriminate architectural elements

from the point that it can be evaluated at the architecture level.

There are many definitions and classifications for different

NFR have been identified in the literature for decades, but the

following are the limitations observed:

3.1 Non-operational definition
The definitions comes not concrete for example when we say

the system is modifiable, it is with respect to one set of

changes but not modifiable with respect to another.

3.2 Overlapping
 If we take for example a system failure, it is an aspect of

availability, but also an aspect of security, and so does

usability. This means all three attribute communities would

claim ownership of a system failure.

3.3 Multiply vocabulary
 It means the same aspect described by different terms. For

instance, the performance community has "events" arriving at

a system, the security community has "attacks" arriving at a

system, the availability community has "failures" of a system,

and the usability community has "user input." All of these

may actually refer to the same occurrence, but are described

using different terms.

 The solution presented for the first and the second is a quality

attributes scenarios, a mechanism to characterize one quality

from another. The solution provided to the third problem was

analysis to extract common concepts and elements represent

the specific quality characteristic. So it is like ontology for the

quality attribute.

3.4 Quality Attributes Scenarios
The concept of scenario is borrowed to resolve the problem of

overlapping between NFRs and to give operational

framework. It consists of six elements that represent

requirements for a given quality attribute. They are as

following:

a) Source of stimulus: is an entity (a human, computer, or

other actuator) who generates the stimulus.

b) Stimulus: the condition when arrives to the system will be

considered.

c) Artifact: the part of the system that stimulated and may be

the whole system.

d) Environment: The system can be in various operational

modes, such as normal, or overload.

e) Response: The kind of activity the system should do after

arrival of the stimulus.

3.5 Response measure
The response should be measurable in some fashion so that

requirement should be tested.

The response measures are the time it takes to process the

arriving events latency or a deadline by which the event must

be processed or a characterization of the events that cannot be

processed.

 Performance is about timing. Events are interrupts, messages,

requests from users, or the passage of time .Any event located

in the system should have a response by the system. The

complexity in performance comes from having multiple and

different sources of events and patterns of access. The events

can come from a user, system, or another system.

In the system Web-base financial system response means the

number of completed transactions per seconds. While for the

engine control system the responsiveness means variances in

firing time. In each case the pattern of events corresponds to a

pattern of responses would formulate a distinction. This

distinction is the language that is built by the scenario of

overall performance. Performance scenario begins by request

for service arriving to the system. In order to meet that

demand resources are consumed. System might be busy

during the receiving of this event servicing anther request.

There are three types of patterns of events. Periodically such

as every 10 seconds, and Stochastic arrival means that events

arrive according to some probabilistic distribution. If

however, does fall between the Periodic and Stochastic is

called Sporadic. Note that it does not matter whether one user

submits 20 requests in a period of time or whether two users

each submit 10, but what is the point is the arrival pattern.

System response to stimulus can be distinguished by latency

(time between the receipt of the request and response),

deadlines, or number of transactions done per time

(Throughput), or events that are not handled because the

system is busy, and the data that was lost because the system

was too busy.

Notice that this analytical model does not depend on whether

the system is network or stand alone, nor does depend on a

given system configuration or situation on the consumption of

resources. From these considerations we can see an example

for portions of the performance general scenario: “Users

initiate 5,000 transactions per minute stochastically under

normal operations, and these transactions are processed with

an average latency of five seconds."

a) Source of stimulus The source of the stimulus is a

collection of users. The stimuli arrive either from external

or internal sources.

b) Stimulus The arrival pattern can be characterized as

periodic, stochastic, or sporadic. The stimulus is the

stochastic initiation of 5,000 transactions per minute.

c) Artifact The artifact is always the system's services, as it

is in our example.

d) Environment In our example, the system is in normal

mode.

e) Response The system must process the arriving events.

This may cause a change in the system environment (e.g.

from normal to overload mode). In our example, the

transactions are processed.

f) Response measure The response measures are the time it

takes to process the arriving events (latency or a deadline

by which the event must be processed), the variation in

this time (jitter), the number of events that can be

processed within a particular time interval (throughput), or

a characterization of the events that cannot be processed

(miss rate, data loss). In our example, the transactions

should be processed with an average latency of two

seconds.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.9, May 2012

46

4. THE PROPOSED APPROACH
The need of mointors in SOA environments is becoming a

first class concern for both service providers and consumers.

Service provider need to know the resources alloacted to

service(s) are sufficient or not while clients need to assure the

agreed level of service that has invested on. Monitor is a kind

of software arachitecture helps to know about that. Monitors

are generally managed through framework. Several SLA

frameworks have been proposed [17], but most of them

involve lot of human intervention and technical expertise.

Generally there is no standard way of developing this

framework so they are proprietary solutions so far. The

innovaiton in this paper is about standarizing and raising

abstraction level of monitor design by utilizing design

concepts emerging from SEI-6 Element framework. In this

view the SLA has been grasped as high level abstraction so

monitor abstraction level is need that could implement SLA.

This abstraction level establishes ontology of monitoring

process. Model-based engineering is a trend and best practice

toward complex systems engineering has been around for a

decade. In this case models are used to derive the

development process for example expressed by using BPMN

or UML. This paper uses UML to show the model of new

standard monitor which is not only afforded easy

communication but help automate. Before that the basic

elements of the SEI-Framewerok will be related to SLA in

order show how SLA can fit monitor abstraction level.

5. THE RELATIONSHIP BETWEEN

 TWO METAMODELS
It turns out like in history of computing that a common

practice for a language designer to choose one representation

for publication of the language specification, but with the fact

that an implementation might have a very different

representation [10]. The formal structure is called abstract

syntax (metamodel) and the representations concrete syntaxes.

For instance BNF specification of C could be used to generate

a compiler (implementation) accept only C source code. If the

programming language (metamodel) is expressed in a

standard metametamodel, much of the effort needed to

develop the software environment can be reused (i.e. YACC)

[10].

Due to that fact a metamodel for monitor design will be

established in the next step after making comparisons between

SEI-framework and machine readable language like

WSLA.For best of our knowledge there was no effort in this

space.The concept of stimulus could be seen as the event of

collecting metrics. It is one of the essential step monitor

should do. Events are the reason for stimulus but they are

different kinds of events as classified by SEI-framework for

example periodic, and stochastic. In SLA practice it is used to

tell about one kind only (periodic) in general without this

classification so it is an enhancement to WSLA specification.

For instance in Figure 2 there is one metric

(UtilizationTimeSeries) collected every 5 minutes as appear in

Schedule tag.

Fig 2: Example of a periodic function for a metric

Fig 3: Example of metrics with its source for a service

In Figure 3 we have two metrics: overloadPercentageMetric

and transactions. It shows the monitor is the source of

stimulus (tag source) will collect these metrics (stimulus)

from the system under monitoring. The name of this source is

ACMEProvider.

It is obvious this generated relationship will add a

classification value that helps monitor engine fixes the

decision about the kind of metric. Different clients might be

interested on different kinds at different time (different

requirements). On other hand stimulus is a classifier for

events.

An artifact concept is the part of functionality from the system

that is stimulated (in this case the ACEMProvider). As

presumed in this paper the SOA environment, functionalities

are expressed in service-based concept. Therefore an artifact

could be a direct representation like service interface or

indirect like some representative (i.e. testcases). It is clear that

SOA has a systematic way for representing the functionality

(service concept) so it will help model it as artifact

abstraction. This will enhances the SEI-framework itself

although it’s out of the paper scope.

The environment element in SEI-framework has a

corresponding meaning in SLA which is load (frequency of

service usage) is specified with some condition shows

different provider behavior for example under normal case

and abnormal cases (sudden congestion , etc).

Fig 4: load specification in WSLA

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.9, May 2012

47

Figure 4 shows us under normal situation overloadPecentage

(in 70% of time) greater than 1000 transactions should be

guaranteed while in abnormal case not less than 30%. In the

following section the metamodel of monitor will be discussed.

The response corresponds to the result of executing functions

of metrics. This is which monitor needs to keep in order

giving its judgment later. SLA does not involve these details

because it’s a monitor concern which is already found in SEI-

element. This point shows rational behind SEI-Framework

can fit into monitor design. Because there are different kind of

responses to stimulus the response measurement is needed

(latency, response time,etc). SLAs do have specification

corresponding to it like in Figure 5.

<Metric name="ResponseTime" type="long" unit="milliseconds">

 <Source>ACMEProvider</Source>

 <Function xsi:type="Minus" resultType="double">

 <Operand>

 <Function xsi:type="TSSelect" resultType="long">
 <Operand>

<Metric>SumResponseTimeTimeSeries</Metric>

Figure 5: Example of response time as Response

measurement

The metamodel in Figure 6 represents the proposed design for

monitor of SLA elements. It consists of the SEI 6-elements as

shown stimulus model element has four attributes

SLAparameter, kind, unit, and type (see Figure 6). An

instance of stimulus associates with instance of source (for

each stimulus there is a source – see Figure 6). An instance of

stimulus is also associate with an instance of artifact. Artifact

is identified by ID and has content. Because the events that

represent metrics need to be computed are in two kinds in the

way they are collected we modeled them as publish-subscribe

pattern which represents two scenarios pull and push (see

Figure 6). Usually in SLA there are only these two kinds.

Service Provider (or third party) may push or pull metric

collections. An instance of response measurement is existed

each time stimulus is generated that is why there is an

association between them. A function is basic element in

measurement which is one of two kinds: composite (i.e.

average resonponse time) or atomic (i.e. response time).

Functioncontext superclass has two subclasses: composite and

primitive, is used to model this fact a function with its two

kinds. An environment instance is associated with every

instance of stimulus. Here the load specification will

represent.

Fig.6 The monitor metamodel for SLA parameters

6. RELATED WORK
There is two directions can divide the literature in this space.

The first direction is working to setup a language or

descriptions of the elements of SLA. The trend is to

formalizing SLA as already discussed in section 2.2. The

common standard languages which our work based on one of

them are WSLA and WS Agreement [9][5]. But these

languages do not consider implementations details of the

instrumentation process which the proposed framework is

about. The other direction at this point only has a proprietary

language for SLA such as [15]. However, the adoption of high

level models became a famous phenomena and best practice

as seen [15] in augmenting BPMN metamodel with that of the

SLA life cycle. While Ajaya has highlighted mimizing

manual efforts and technical expertise in so far SLAs

engineering [16] by the proposed high level models. This

paper is in line with those contributions because it bases on

metamodel concept (UML is used).

The second basic direction in this area was description of

monitor like in [8] the user working with specific and low

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.9, May 2012

48

level implementation details. This work is focus on

configuring components at each time new problem defined,

but without benefits re-using these components with even

variant values of SLA. Also in this research [8], there is no

standard instrumentation process and design for monitor.

The proposed approach is different by recognizing a common

vocabulary of design for monitor like those of SEI-

framework. Although there is a freedom in design left for

clients such as Simon [8] and Ajaya [16], and [9] still more

effort effort is needed. The point is in addition to reduce

engineering efforts our approach has value added in

encouraging automation and re-use of the same architecture

with different SLA setups and environments.

7. CONCLUSION AND FUTURE WORK
Monitoring the level of service in SOA-based systems became

a significant engineering activity because of increased number

of outsourced services. SLA is a means whereby a monitor

can be designed by establishing instrumentation process. So

far attempts were in the space of standard SLA languages

without focus on the monitor design itself. Many proprietary

solutions were founded but there is no standard design

vocabulary for monitors. SEI has established a strong

framework for quality measures from architecture

prospective.

This paper proposes a standard vocabulary for monitor design

stemmed from that framework by highlighting a strong

relationship between SEI framework and SLA languages. Due

to this an implementation metamodel suitable for monitors

design has been developed. This step is expected to encourage

automation using recent model-based engineering technology

like MDA as well as getting the value of raising the

abstraction level (i.e. less engineering effort, re-using ,etc).

This paper has shown a logical conclusion to the progress of

formalizing SLA in SOA such as WSLA in order to measure

like performance QoS. A standard architecture for monitor is

founded. However, this paper contributed to the possibility of

automating the measurement of SLA performance which

reduces the engineering effort. More importantly the monitor

has standard design vocabulary for measuring performance

parameters helps easy communicating ad different problems

under SLA engineering.

8. REFERENCES
[1] SWEBOK2004(downloaded from www.swebok.or).

[2] E. Thomas, “SOA Principles of Service Design”, Book

Soa: principles of service design First,Prentice Hall

Press Upper Saddle River, NJ, USA ©2007, ISBN:

9780132344821.

[3] M. Nicolai, Josuttis., “SOA in Practice” 2007.

[4] B.Philip, A .Lewis, “Service Level Agreements in

Service-Oriented Architecture Environments” 2008.

[5] B.Antonia, Guglielmo A. De, F. Lars, P. Andrea,

“Model-Based Generation of Testbeds for Web Services,

Institute for Computing and Information Sciences”,

(ICIS),Radboud University Nijmegen – The

Netherlandslf@cs.ru.nl, Department of Mathematics and

Computer Science University of Camerino – Italy,

andrea.polini@unicam.it. 2008

[6] M. Ed, William, A., Sriram, B., David, Carney., John,

Morley., Patrick, P., Soumya, Simanta., Testing in

Service-Oriented Environments, Software Engineering

Institute, http://www.sei.cmu.edu, 2010.

[7] A. Keller, H. Ludwig, (2003), The WSLA Framework:

Specifying and Monitoring Service Level Agreements

for Web Services, IBM Research Division, T.J. Watson

Research Center, P.O. Box 704, Yorktown Heights, New

York 10598. E-Mail: falex,hludwigg@us.ibm.com.

[8] E. Simon,M. Graham,Toward reusable SLA monitoring

capabilities, School of Computing Science, Newcastle

University, U.K. 2011.

[9] IBM, Heiko Ludwig, IBM T.J. Watson Research Center

Alexander Keller, Asit Dan, Richard P. King, Richard

Franck, IBM Software Group, Version: 1.0, 2003.

[10] Colomb, R.M., Raymond, K., Hart, L., Emery, P., Welty,

C., Xie, G.T., Kendall, E.The Object Management Group

Ontology Definition Metamodel In: Calero, C., Ruiz, F.,

Piattini, M. (eds.). Ontologies for Software Engineering

and Software Technology. Berlin Heidelberg: Springer.

217-247. 2006.

[11] Edward, W., (2002), Sun Professional Services Sun

BluePrints™ OnLine – April 2002 Service Level

Agreement in the Data Center, www.sun.com/blueprints.

[12] Di Modica, G., Orazio, T., Lorenzo, V., (2009) Dynamic

SLAs management in service oriented environments.

[13] Vinod, M., Hans, J., Tony, C., Allen, C., Phil, C.,(2009),

SLA-Driven Business Process Management in SOA,

Paper appears in CASCON 2009, Richmond Hill,

Ontario, Canada.

[14] Bass, L., Clements, P., Kazman, R., (2003), Software

architecture in practice, Addison Wesley.

[15] Vasco, A., Anacleto, C., Fernando, B., (2011),

SLALOM: a Language for SLA Specification and

Monitoring, 1 CITI/FCT/UNL, 2829-516 Caparica,

Portugal 2 IPS/EST, 2910-761 Setúbal, Portugal 3 DCTI,

ISCTE-IUL, 1649-026 Lisboa, Portugal.

[16] Ajaya, K., Manas, R.,(2011), Modeling and Monitoring

SLA for Service Based Systems, ISWSA’11 April 18-20,

2011, Amman, Jordan, Copyright c 2011 ACM 978-1-

4503-0474-0/04/2011 ...$10.00.

[17] Domenico, B., Walter, B., Mauro, D., (2009), Automated

Performance Assessment for Service-Oriented

Middleware, USI-INF Technical Report, on site at

NASA Ames Research Center.

mailto:Netherlandslf@cs.ru.nl
mailto:andrea.polini@unicam.it
http://www.sei.cmu.edu/
http://www.sun.com/blueprints
http://portal.acm.org/author_page.cfm?id=81100662234&coll=GUIDE&dl=GUIDE&trk=0&CFID=78226295&CFTOKEN=47126095
http://portal.acm.org/author_page.cfm?id=81100105915&coll=GUIDE&dl=GUIDE&trk=0&CFID=78226295&CFTOKEN=47126095

