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ABSTRACT  
This paper proposes that several FFT algorithms such as radix-

2, radix-4 and split radix were designed using VHDL with the 

multiplication complexity reduced more than 30% by using the 

newly proposed CSD constant multipliers instead of the 

programmable multipliers and the simulations of standard 0.35 

μm. The sizes of FFT/IFFT operations are varied in different 

applications of OFDM systems. The reorganized Mixed Radix 

4-2 Butterfly FFT with bit reversal for the output sequence 

derived by index decomposition execution is our suggested 

VLSI system architecture to design the module FFT/IFFT 

processor for OFDM systems. The output shows that the 

proposed processor architecture can minimize the area cost 

while keeping a high-speed processing speed, a decrement of 

more than 70% of the power consumption/area when 

compared with complex multiplier.  
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1. INTRODUCTION  
The FFT (Fast Fourier Transform) and its inverse (IFFT) are 

the key components of the OFDM (Orthogonal Frequency 

Division Multiplexing) systems. Now days, the demand for a 

long length, high-speed and low-power FFT processor has 

increased in wideband OFDM applications. There are three 

kinds of main design architectures for implementing the FFT 

processor. One is the single-memory architecture. It has one 

processing element and one main memory. Hence, it occupies 

a small area. Another is the dual-memory architecture. It has 

two memories. The architecture has higher throughput than the 

single-memory structure because it can store butterfly outputs 

and read butterfly inputs at the same time. These two memory 

schemes occupy relatively small area. However, they perform 

at a lower throughput, and thus require higher clock frequency 

than the third architecture. The third is the pipeline 

architecture. It is used for the purpose of high throughput 

applications. It requires logr (N) processing elements; 

therefore its calculations are logr (N) times faster than the 

processor structured the single memory. However, this scheme 

has the disadvantage of consuming a large power/area. Hence, 

a power and area efficient FFT algorithm which can handle 

this problem should be provided in order to employ the 

pipeline architecture to the FFT processor of wideband OFDM 

applications. 

2. ORTHOGONAL FREQUENCY-

DIVISION MULTIPLEXING (OFDM) 
In OFDM, the sub-carrier frequencies are chosen so that the 

sub-carriers are orthogonal to each other, meaning that cross-

talk between the sub-channels is eliminated and inter-carrier 

guard bands are not required. This greatly simplifies the design 

of both the transmitter and the receiver; unlike conventional 

FDM, a separate filter for each sub-channel is not required. 

The guard bands that were necessary to allow individual 

demodulation of subcarriers in an FDM system would no 

longer be necessary. Orthogonality can also be viewed from 

the standpoint of stochastic processes. If two random processes 

are uncorrelated, then they are orthogonal. Given the random 

nature of signals in a communications system, this 

probabilistic view of orthogonality provides an intuitive 

understanding of the implications of orthogonality in OFDM. 

Later in this paper, we will discuss how OFDM is 

implemented in practice using the Fast Fourier transform 

(FFT) as shown figure 1. Recall from signals and systems 

theory that the sinusoids of the FFT form an orthogonal basis 

set, and a signal in the vector space of the FFT can be 

represented as a linear combination of the orthogonal 

sinusoids. One view of the FFT is that the transform 

essentially correlates its input signal with each of the 

sinusoidal basis functions. This transform is used at the OFDM 

transmitter to map an input signal onto a set of orthogonal 

subcarriers, i.e., the orthogonal basis functions of the DFT. 

Similarly, the transform is used again at the OFDM receiver to 

process the received subcarriers as shown figure 2. The signals 

from the subcarriers are then combined to form an estimate of 

the source signal from the transmitter. The orthogonal and 

uncorrelated nature of the subcarriers is exploited in OFDM 

with powerful results. Since the basic functions of the FFT are 

uncorrelated, the correlation performed in the FFT for a given 

subcarrier only sees energy for that corresponding subcarrier. 

The energy from other subcarriers does not contribute because 

it is uncorrelated. This separation of signal energy is the reason 

that the OFDM subcarriers’ spectrums can overlap without 

causing interference. 
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Figure 1: Block Diagram of OFDM TX & RX 

 

3. FAST FOURIER TRANSFORM (FFT)  
An FFT computes the DFT and produces exactly the same 

result as evaluating the DFT definition directly; the only 

difference is that an FFT is much faster. The Discrete Fourier 

Transfer (DFT) plays an important role in many applications 
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of digital signal processing including linear filtering, 

correlation analysis and spectrum analysis etc. 

The DFT is defined as: 
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Evaluating the Equation (1) directly requires M complex 

multiplications and (M-1) complex additions for each value of 

the DFT. To compute all M values therefore requires a total of 

M^2 complex multiplications and M (M-1) complex additions. 

Since the amount of computation, and thus the computation 

time, is approximately proportional to M2, it will cost a long 

computation time for large values of M. For this reason, it is 

very important to reduce the number of multiplications and 

additions. This algorithm is an efficient algorithm to compute 

the DFT which is called Fast Fourier Transform (FFT) 

algorithm or radix-2 FFT algorithm, and it reduce the 

computational complexity from O(M²) to O(M log2(M ). 

 

4. MIXED RADIX 4-2 
A mixed radix algorithm is a combination of different radix-r 

algorithms. That is, different stages in the FFT computation 

have different radices. For instance, a 128-point long FFT can 

be computed in two stages using one stage with radix-8 PEs, 

followed by a stage of radix-2 PEs. This adds a bit of 

complexity to the algorithm compared to radix-r, but in return 

it gives more options in choosing the transform length. The 

Mixed-Radix FFT algorithm is based on sub-transform 

modules with highly optimized small length FFT which are 

combined to create large FFT. However, this algorithm does 

not offer the simple bit reversing for ordering the output 

sequences. 

 

5. MIXED-RADIX FFT ALGORITHMS  
The mixed-radix 4/2 butterfly unit is shown in Figure 2. It uses 

both the radix-2^2 and the radix-2 algorithms can perform fast 

FFT computations and can process FFTs that are not power of 

four. The mixed-radix 4/2, which calculates four butterfly 

outputs based on X(0)~X(3). The proposed butterfly unit has 

three complex multipliers and eight complex adders. Four 

multiplexers represented by the solid box are used to select 

either the radix-4 calculation or the radix-2 calculation. 
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Figure 2: The Basic Butterfly for Mixed-Radix 4/2 DIF 

FFT Algorithm 

In order to verify the proposed scheme, 64-points FFT based 

on the proposed Mixed-Radix 4-2 butterfly with simple bit 

reversing for ordering the output sequences is exampled. As 

shown in the Figure 2, the block diagram for 64-points FFT is 

composed of total six-teen Mixed-Radix 4-2 Butterflies. In the 

first stage, the 64 point input sequences are divided by the 8 

groups which correspond to n3=0, n3=1, n3=2, n3=3, n3=4, 

n3=5, n3=6, n3=7 respectively. Each group is input sequence 

for each Mixed-Radix 4-2 Butterfly. After the input sequences 

pass the first Mixed-Radix 4-2 Butterfly stage, the order of 

output value is expressed with small number below each 

butterfly output line in the figure 3. The proposed Mixed-

Radix 4-2 is composed of two radix-4 butterflies and four 

radix-2 butterflies. In the first stage, the input data of two 

radix-4 butterflies which are expressed with the equation B4 

(o, n3, kj) B4 (i, n3, k1), are grouped with the x(n3), 

x(N/4±n3), x(N/2±n3), x(3N/4±n3) and x(N/ 8±n3), 

x(3N/8±n3), x(5N/8±n3), x(7N/8±n3) respectively. After the 

each input group data passes the first radix-4 butterflies, the 

outputted data is multiplied by the special twiddle factors. 

Then, these outputted sequences are inputted into the second 

stage which is composed of the radix-2 butterflies. After 

passing the second radix-2 butterflies, the outputted data are 

multiplied by the twiddle factors. These twiddle factors WQ 

(1+k) is the unique multiplier unit in the proposed Mixed-

Radix 4-2 Butterfly with simple bit reversing the output 

sequences. Finally, we can also show order of the output 

sequences Fig above. The order of the output sequence is 

0,4,2,6,1,5,3 and 7 which are exactly same at the simple binary 

bit reversing of the pure radix butterfly structure. 

Consequently, proposed mixed radix 4-2 butterfly with simple 

bit reversing output sequence include two radix 4 butterflies, 

four radix 2 butterflies, one multiplier unit and additional shift 

unit for special twiddle factors. 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.9, May 2012 

37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Proposed Mixed-Radix 4-2 Butterfly for 128 

point FFT 

 

6. RESULTS & FUTURE WORK 
Employing the parametric nature of this core, the OFDM block 

is synthesized on one of Xilinx’s Virtex-II Pro FPGAs with 

different configurations. The results of logic synthesis for 64 

point FFT based orthogonal frequency division multiplexing 

(OFDM) using Radix-2, Radix-4, split Radix and mixed radix 

4-2 are presented in Table 1. We analysis the 64-point FFT 

based ofdm is chosen to compare the number of CLB slices 

and Flip Flop for different FFT architectures. 

 

Table: 1: Different of FFT Algorithm based on CLB Slices, 

DFF, Function Generators 

 

OFDM 

with 128 

pt FFT 

CLB 

Slices 

UTILIZATION DFF Function 

Generator 

Radix-2 2793 7.21% 5786 3285 

Radix-4 2536 6.01% 3482 5672 

Split 

Radix 

 

2477 

 

6.10% 

 

5764 

 

4178 

Mixed 

Radix 4-

2 

 

2172 

 

4.87% 
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Fig 5 :Effect of slices 

 

Table: 2 Synthesis Simulation Results 

Type(12*12) Area (cell) Power (mW) Latency(nS) 

Fixed with 

MB 

multiplier 

 

2771(100%) 

 

364.6(100%) 

 

8.4(100%) 

Proposed 

Multiplier  

 

1249(45%) 

 

141.9(39%) 

 

9.91(118%) 
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Fig 6: Effect of synthesis 

7. CONCLUSION 
The newly proposed modified radix-2/4 algorithm and its 

pipeline architecture R24SDF, which is regular and extensible 

for any 2n-point FFT. The R24SDF architecture allows one 

half of the programmable multipliers used in the R22SDF 

architecture being replaced by the newly proposed CSD 

constant multipliers. In this paper, we design an OFDM for 

different algorithms implemented in OFDM modem are 

identified. It was found during the algorithm design that many 

blocks need complex multipliers and adders and therefore 

special attention needs to be given to optimize these circuits 

and maximize reusability. In particular, the models have been 

applied to analyze the performance of mixed-radix FFT 

architectures used in OFDM. Actual hardware resource 

requirements were also presented and simulation results were 

given for the synthesized design. We proposed complex 

multipliers were able to provide a reduction of more than 30% 

in both power consumption and area in terms of multiplication 

complexity. The 128-point Mixed Radix FFT based OFDM 

architecture was found to have a good balance between its 

performance and its hardware requirements and is therefore 

suitable for use in OFDM systems. 
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