
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

30

Efficient Querying of Structure and Contents for Xml
Documents

Atul D. Raut

I. T. Deptt. J.D.I.E.T. Yavatmal

 M. Atique
P.G. Deptt of C. S.

S.G.B.A.U. Amravati

ABSTRACT
XML is recognized as a standard for data storage and

exchange for web applications. This is because it has certain

unique features like it is self describing, extensible and it is

stored in the form of text document. In spite of all these

unique features XML has an inherent limitation of verbosity.

Because of the strong presence of XML in database

technology and its inherent verbosity there is ever increasing

need to design compact storage for XML which can be

effectively utilized for efficient indexing and querying of

XML. The proposed technique creates a structure index

which is a compact summarization of the XML document and

data index which groups and stores the contents of all similar

paths at one place. Based on this compact storage a novel

query algorithm is proposed which can answer xpath queries

very efficiently. This approach dramatically reduces the

storage requirement for XML coupled with efficient

processing of xpath queries. The implementation of this

technique and comparison with other techniques confirms our

claim.

General Terms
Indexing, Querying, Xpath expression.

Keywords
Compact storage, Structure index, Content index.

1. INTRODUCTION
XML is widely accepted standard for storage and exchange of

data over the internet. In spite of its several advantages XML

has a very serious drawback of verbosity. XML documents

are verbose because of the repeated tags present in its

structure. This kind of verbosity of XML leads to unusually

larger size of XML document as compared to the other

standard format representation of the same information. Most

importantly the size of XML has also increased dramatically.

Indexing techniques used for relational database cannot be

used directly for XML since XML data is ordered where as

the relational data is unordered. Moreover XML contains

structure in addition to data. The presence of structure makes

the task of indexing much more difficult as compared to

relational database. The most important factor for any

efficient querying system is the time required to get result.

This response time can be significantly reduced with the

support of efficient indexing and storing technique for XML

data. XML documents can be represented with the help of an

ordered tree. W3C query languages Xquery and XPath specify

patterns of selection predicates on multiple elements that have

some specified tree structured relationship. For example the

Xquery expression book [title = „XML‟] // author [fn = „jane‟

AND ln = „doe‟] searches for the author element having child

or sub element as fn with content jane and ln with content

doe (parent-child relationship) and all author should be

descendants of book element (ancestor – descendant

relationship) having child element title with content „XML‟.

Thus it is clear that any XML query has two major

components the structure component and the keyword (data

information) component. The key to fast response of any

XML query is efficient indexing and storing of XML data.

Following are the important issues when querying an XML

document.

 Index size:

 The size of the index should be small so that the entire index

can be kept in main memory. The structure (path) and

contents are indexed separately. The structure index is used to

identify the structural relationship and based on this the

contents can be obtained from the content index. Some

numbering schemes have been proposed to quickly examine

the structural relationship.

 Intermediate Result:

 Most of the earlier XML query processing algorithm made

use of inverted list which extends the inverted list used in

information retrieval. By using some kind of join algorithm

the entries in the inverted are joined to satisfy the structural

relationship. Such join algorithm produced large intermediate

result. This greatly increased the query response time.[1][2]

Hence the query processing algorithm or indexing /storage

technique should be such that ideally it should not produce

any intermediate result.

 I/O Required

Query response time directly depends upon the I/O required to

get the data. Hence the indexing /storage technique should be

such that the query processing algorithm which utilizes these

techniques should perform minimum amount of I/O.

 Versatility/Flexibility

 The indexing/storage technique should be such that the query

processing algorithm which utilizes the indexing/ storage

technique should be able to get quick response to any type of

XML query including the parent – child, ancestor-descendant

relationship and containing several predicates.These

considerations gives rise to development of non redundant

compact storage of XML data which will ultimately help the

development of efficient indexing and querying technique to

query large repositories of XML database. For this reason we

propose an efficient non redundant technique for storage of

XML document and a novel query algorithm to answer a

variety of xpath queries based on this storage. Most of the

techniques implemented so far for storing and querying of

XML either made use of inverted list, tree structure or

relational table representation of XML. All these techniques

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

31

require large amount of memory for storing of XML and

complex query algorithm to query XML. [3][4] Our technique

makes use of a non tree or non inverted tree based

representation and successfully reduces the storage

requirement. It not only reduces the storage requirement but

also stores the data in such a way that it can be directly

utilized by the query algorithm i.e. it does not require any

kind of decompression and also the complexity of query

algorithm is reduced. It eliminates the complex join

algorithms which were required in case of inverted list

representation [5][6]. This technique creates two types of

indices for compact and non redundant storage of XML. The

first type of index is the structure index. This structure index

is a compact summarization of all root to leaf paths in an

XML document and every such path is assigned a unique path

id. The other type of index created is the content index which

store the contents i.e. is the text data. It groups and stores at

one place all the data for all the paths having the same id i.e.

all the similar paths. The path id from the structure index acts

as a link between the structure index and the content index.

The first path in the structure index gets a index id of 0. Using

this indexid of 0 a file is created in the content index having a

name of index0. This file index0 groups and stores all the data

items present on all the paths which are similar to this path in

document order. Thus all the data items for all similar paths

can be found at one location and moreover the structure

information is not repeated. This greatly reduces the storage

requirement for XML. Using this compact representation a

novel query algorithm is implemented which answers queries

based on several different xpath axes and in particular the root

to leaf xpath query very efficiently. The main contributions of

our technique are:

 A compact queriable storage of XML which does

not require decompression at the time of

querying

 Efficient access to many xpath axes without

constructing the F&B bisimilarity graph which is

required in case of FIX[7]

 A non tree or non inverted list representation of

XML.

The rest of the paper is organized as fallows. Section2

discusses the related work. Section 3 and 4 describes our

technique. Section 5 reports the experimental results and

section 6 concludes

2. RELATED WORK

 Till date several techniques have been implemented for

querying XML documents using different indexing techniques

by different researchers. These early techniques can be

broadly classified into following types.

 By traversing the tree or its compressed

representation.

 By using IR style processing using inverted list.

 By combination of the first two. In this context

structure index plays a vital role.

 By using a Relational Database Management

System.

 Techniques which utilizes efficient data structures

like B+ tree, hash table etc

 These techniques can be further classified as queriable and

non queriable. A queriable compression technique is one

which does not require decompression at the time of querying,

while non queriable compression technique requires

decompression. Among the non queriable techniques includes

XMill[8], XMLPPM[9] etc. XMill achieves a good

compression ratio and does not require a DTD. But the main

drawback of XMill is that it requires decompression before

querying. Hence the query response time is more in case of

XMill. XMLPPM achieves higher compression than XMill

but requires longer compression time. Inverted list techniques

and techniques using relational tables to store XML data are

somewhat nearer to queriable techniques as it does not require

decompression before querying. The main drawback of

inverted list techniques and techniques using tables is that it

requires complex join operation for querying. [10][11]. When

the XML data is stored in the form of relational tables a sql

query is to be written which is then translated to xpath query.

 Xgrind, Xpress, XQuec, Tbitmap, PCIDindex, RFX, ISX

,Twig-Inlab[19],etc are some of the queriable XML

compression techniques. Xgrind has lower compression as

compared to Xmill. Both Xgrind and Xpress requires two

scans over the document and hence requires longer

compression time. Moreover both of these techniques does

not support set based queries such as the join queries.

[12][13]XQuec‟s compression factor is slightly inferior to that

of Xgrind and comparable to that of Xpress but XQuec has

grater query capabilities than Xgrind.[14] The Tbitmap

technique represents XML data in the form of a tree and

assigns a bitmap to nodes of the tree. If the number of nodes

increases the tbitmap requires more space and processing

time.[15] PCIDindex uses dewey id for nodes. Again the

dewey id of node becomes very long if the number of nodes in

the tree increases considerably. This results in requirement of

more memory space.[16] ISX is compact XML storage

engine to store XML in a more concise structure, but it is a

schema aware storage technique.[18] Different indexing and

querying technique can be compared on the basis of various

factors such as intermediate results size, index size, response

time, I/O required, flexibility etc .

3. NON REDUNDANT COMPACT XML

STORAGE

This technique first constructs a path index. This path index is

a compact summarization of the entire XML document. To

facilitate Xpath queries it stores all unique paths in the XML

document by considering the attributes and its values on the

path and assigns it a unique id.

Following is the algorithm for constructing the path index

Algorithm PathIndex

1. xmd  Read the XML document

2. xmn  Root node of xmd

3. count  Number of nodes of xmn

4. top  0

// Store the children of root node on stack

5. For i = count -1 to 0

5.1 stack(top) = xmn.childnodes.index(i)

5.2 top  top + 1

End For

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

32

6. While count > 0

6.1 xmn  stack.pop()

 // Process first child node of root node

 6.2 temp  xmn

 6.3 count1  temp.childnodes.count

//push all the child nodes of temp on stack

6.4 For i = count -1 to 0

6.4.1 stack(top) =

temp.childnodes.index(i)

 6.4.2 top  top + 1

End For

 // traverse the current node back up to the root node

6.5 While temp.parent < > # document

 6.5.1 tstack(top1)=temp.parent

 6.5.2 temp=temp/parent

 End While

 //From root node traverse up to the current node

remembering the path

6.6. temp2 tstack.pop()

6.7 t “/”+ temp2.localName

6.8 While tstack.count() > 0

 6.8.1 temp2 tstack.pop()

 6.8.2 t t+ temp2.localName

 End While

 // From current node traverse up to the leaf node of current

node

6.9 While xmn.HasChilNodes = True

 6.9.1 xmn xmn.FirstChild

 6.9.2 t t+ “/”+ xmn.localName

 End While

 // Store the newly found path in a path array

6.10 path(u) t

6.11 nxu

 // Mark the repeated path as “R”

6.12 u u+ 1

6.13 While nx > 0

 6.13.1 If path(u-1).equals(path(nx-1))

 Path(u-1) “R”

 Exit While

 End If

 6.13.2 nx nx- 1

 End While

End While

// Steps to eliminate repeated paths

7.0 For v 0 to u-1

 7.1 If path(v1) NotEqualsTo “R”

 // copy the unrepeated path to another array

 L(loc) = path(v1)

 loc =loc + 1

 End if

 End For

 End While

End PathIndex

 The algorithm path index reads the xml document and finds

the total number of child nodes of the root node.(steps 1 to 3).

All the child nodes of root node are stored on stack of xml

nodes in reverse order so that the nodes can be processed in

document order. (step5) The first child node of root node is

poped out from the stack and all its child nodes are pushed on

to the stack in reverse order.(step6.4) In order to store the root

to leaf path of the current node , the current node is traversed

back to the root node (step 6.5), again from root node to

current node remembering the path in t(step 6.6.to 6.8) and

finally from current node to the leaf node of the current path

giving a complete root to leaf path of the current node. (step

6.9)

This path is stored in the path array ptah(). An XML

document may contain several repeated paths. The currently

obtained path is compared with the path already found and if

it is same then it is marked as repeated(“R”) .(step (6.10 to

6.13)). Finally all the path marked as “R” are removed and

only the unique paths are left in the path array l().(Step 7).

The id of the path is equal to the index location i.e. the

 first path gets an id of 0 ,the second path gets an id

of 1and so on.

Consider the following fragment of a sample XML document

which illustrates the creation of the path index.

<studentdata>

 <student @university=amt>

 <college>jdiet</college>

 <deptt> it </deptt>

 <year> iii </year>

 <name>abc</name>

 </student>

<student @university=nag >

 <college>dbnce</college>

 <deptt> cse </deptt>

 <year> ii </year>

 <name>xyz</name>

 </student>

</studentdata>

The path index for the above XML document is as given

below

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

33

 Path Id

/studentdata/student@university=amt/college 0

 /0/deptt 1

 /0/year 2

 /0/name 3

 /studentdata/student@university=nag/college 4

 /4/deptt 5

 /4/year 6

 /4/name 7

The path id provided by the structure index acts as a link

between the path and all the contents on that path. All the

data belonging to a particular path for example the path

/studentdata/student@university=amt/college is stored at one

place and can be directly accessed using its id which is 0 in

this case. The size of the path index is reduced by removing

the repeated component in a path. For example for the second

path the path components till deptt is same as that of the first

path till college component. Hence the repeated component

from the second path is removed and only a 0 is placed to get

the required component during query processing. Such

grouping of data based on the path gives rise to content index.

Following is the algorithm for constructing the content index.

 Algorithm ContentIndex

1. xmd  Read the XML document

2. xmn  Root node of xmd

3. count  Number of nodes of xmn

4. top  0

// Store the children of root node on stack

5. For i = count -1 to 0

a. stack(top) = xmn.childnodes.index(i)

b. top  top + 1

End For

6. While count > 0

6.1 xmn  stack.pop()

 // Process first child node of root node

 6.2 temp  xmn

 6.3 count1  temp.childnodes.count

//push all the child nodes of temp on stack

6.4 For i = count -1 to 0

6.4.1 stack (top) = temp.childnodes.index(i)

 6.4.2 top  top + 1

End For

 // traverse the current node back up to the root node

6.5 While temp.parent < > # document

 6.5.1 tstack(top1)=temp.parent

 6.5.2 temp=temp/parent

 End While

 //From root node traverse up to the current node

remembering the path

6.6. temp2 tstack.pop()

6.7 t “/”+ temp2.localName

6.8 While tstack.count() > 0

 6.8.1 temp2 tstack.pop()

 6.8.2 t t+ temp2.localName

 End While

 // From current node traverse up to the leaf node of current

node

6.9 While xmn.HasChilNodes = True

 6.9.1 xmn xmn.FirstChild

 6.9.2 t t+ “/”+ xmn.localName

 End While

 // load the path index in an array of strings path() from the

path index file

 // created by the above algorithm

6.10 path()load path index from path index file

// For the newly found path compare it with the paths in path

index

 //if match is found get the index id and store the data of leaf

node in document whose name has index as the prefix and

index id as the suffix

6.11 nxpath.length

6.12 For q 0 to nx-1

6.13 If path(q) = t

 6.13.1 indexid q

 // write the contents to content index file

 6.13.2 write (“index”+indexid , t.innertext)

 6.13.3 Exit For

 End If

 End For

End While

End ContentIndex

 The algorithm Contentindex reads the xml document and

finds the total number of child nodes of the root node.(steps 1

to 3). All the child nodes of root node are stored on stack of

xml nodes in reverse order so that the nodes can be processed

in document order. (step5) The first child node of root node is

poped out from the stack and all its child nodes are pushed on

to the stack in reverse order.(step6.4) In order to get the root

to leaf path of the current node , the current node is traversed

back to the root node (step 6.5), again from root node to

current node remembering the path in t(step 6.6.to 6.8) and

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

34

finally from current node to the leaf node of the current path

giving a complete root to leaf path of the current node. (step

6.9)

After getting the first path this path is compared with the

paths in pathindex and when a match is found, it remembers

the index id. It then writes the text data on this path to a text

file whose name has a prefix which is index and suffix which

is equal to the indexid of that path(step 6.13). For example

the name of the first file in the content index will be index1,

the name of the second file will be index2 and so on.

 The content index for the above fragment of XML

document is as shown below.

 Path id Contents file name

 0 jdiet index0

 1 it index1

 2 iiii index2

 3 abc index3

 4 dbnce index4

 5 cse index5

 6 ii index6

 7 xyz index7

 Thus from the above content index it is clear that the

structure or path information is not repeated several times but

the path information is stored only once. Moreover all the

data items on particular path are stored together. An important

feature of the content index is that it retains the ordering of the

original XML document. For example the path

/studentdata/student@university=amt/college, this path

appears once in the sample XML document and may appear

several times in the actual XML document. This path is stored

only once and using its id (id=0) the contents are stored and

can be accessed directly. The contents on this path are jdiet,

and most importantly these contents are stored in document

order at one place without repeating the path information.

4. QUERYING OF XML DOCUMENTS
 In this section we present the algorithm Evalpath which

effectively utilizes the structure and content index for finding

quick response to XML queries.

Algorithm Evalpath

1. Load the structure index file

2. query = Read the xpath expression to evaluate

3. qtokens = tokens of the input query which are

separated by /or //

4. sep = all separators of the query / or //

5. nt = No. of tokens in query excluding / or //

6. indexid=-1

7. Repeat for i= 0 to n-1 paths in the structure

index

 7.1 j=0, lt=0

 7.2 If indexid != -1then /* indexid already found

 7.2a Exit for

 7.3 strindex = read the ith path

 7.4 sitokens = tokens of the ith path

 7.5 While lt < nt

 7.5.1If sep(j)=„/‟&& qtokens(j)= sitokens(j)

then

a. j = j + 1

b. lt = lt + 1

 End if

 7.5.2 If sep(j) = „//‟

a. indexed = obtain index

of qtokens(j) in

strindex

b. j = j + 1, lt = lt + 1

 End if

 7.5.3 If indexid != -1 then

 indexid= i

 Else

 Exit while

 End if

 End While

 Next i

8. If indexid > 0 then

 Load the data file with name equal to indexid.

Else

 Print : No such path in document

9. Exit

The algorithm Evalpath separates the input xpath expression

into tokens qtokens considering / and // as the delimeters

(step3). Step 4 stores the separators i.e. / and // in the array

sep. Step 5 counts the number of tokens in the input xpath

query excluding the separators / and //. Step 7 repeatedly

scans every path from the structure index and compares every

token of the path in structure index with the respective tokens

of the input xpath query. If all the tokens of the current path in

the structure index matches with the respective tokens of the

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

35

input xpath query then indexid is assigned the value of I and

the inner while loop (step 7.5) and also the outer for loop (step

7.2) terminates. If any token of the current path in the

structure index does not match with the token of input xpath

expression (step 7.5.3 else part) then the inner while loop

terminates and the same process is applied to the next path in

the structure index. If all the paths in the structure index do

not match with the xpath expression then the outer for loop

completes execution (step 7) and index id retains the value of

-1. Once the indexid is obtained all the data for this path can

be obtained in minimum number of I/O since the data is

present in a single file. Thus the compact storage of XML not

only reduces the storage size but also provides efficient

querying of XML documents.

5. EXPERIMENTAL RESULTS

5.1 NRCX Compression Performance

We have implemented our technique on Intel Pentium IV dual

core 3.0 GH processor with 2 GB of DDR Ram with

VB.NET running on Windows XP platform. Some benchmark

XML databases were considered for comparison with other

techniques for compact storage of XML. We now briefly

introduce each dataset .

1)Shakespeare : It contains records of plays written by

Shakespeare. It is document centric XML dataset having a

irregular structure, no attributes and contains a lot of textual

data.

2)Orders : It is data centric XML data set with a regular

structure

3)Lineitem : It also is data centric XML data set with a

regular structure

4)Treebank : It is highly skewed data set with varying depth

for different element. It is available from university of

Washington XML repository.

Table I shows the results of implementation of our technique

for non redundant compact storage of XML and comparison

with the results of other previously implemented and tested

techniques for compression. The results of other techniques

have been reported from the reference cited by [17].

As seen from table I NRCX requires less amount of memory

i.e. the compression ratio is better in case of NRCX. Since the

size of structure and content index is small for small to

medium size XML documents (1 to 100MB) the entire

contents of both the index can be processed in main memory.

This will significantly reduce the query response time for an

xpath expression. The way the structure index is organized

and stored greatly helps in finding quick response to different

types of xpath queries. The fully specified i.e. root to leaf

xpath expression can be directly answered by using the

structure index. The xpath queries beginning with // can be

answered by just storing the paths in reverse order and

performing the prefix matching which can be performed by

single index look up of the structure index to get the index id.

Once the id is obtained all the contents present on the path can

be obtained in a single I/O operation.

5.2 NRCX Query Performance
 For evaluating the query performance the Treebank and

Mondial XML data set were used. Treebank is highly skewed

data set with maximum depth of 36 nodes, where as Mondial

is a very flat data set. Query performance is evaluated for

following root to leaf xpath queries

 Q1/mondial/country/name

Q2/FILE/EMPTY/S/VP/NP/NN

Table I. Storage Size Required of RFX, ISX, XMill, Xgrind, NRCX

Bench Mark

Database

Source

Data

(MB)

RFX

(MB)

ISX

(MB)

XMILL

 (MB)

XGRIND

 (MB)

NRCX

(MB)

Orders 5.1 3 3 0.5 1.3 1.821

Shakespeare 7.5 5.1 5.3 0.9 2.1 3.7

Lineitem 30.8 15.8 21 3.7 8.6 7.021

Treebank 84 NA NA NA NA 45

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

36

 Table II. Performance Result for Q2 in seconds on TwigStack, TwigInlab and NRCX

Table III Performance result for Q1 in seconds on

ISX,NOK,RFX,NRCX

The results of other techniques for query Q1 is taken from the

reference cited by [17], and the results of other techniques for

query Q2 is taken from the reference cited by [19].

As seen from table II and table III our technique NRCX

gives extremely good results for root to leaf xpath query. For

other of types of queries NRCX has a good scope of

improvement.

6 . CONCLUSION
In this paper we proposed a non redundant compact XML

(NRCX) storage for storing XML document. The

experimental result shows that our technique achieves a better

compression ratio. In addition to this it provides several other

desirable features. The stored data is queriable i.e. it does not

require decompression. It maintains the document order and

the size of structure index is small even for very large XML

documents. This technique is suitable for document centric

XML document and requires further work for data centric

XML documents having a large number of attributes

7 REFERENCES
[1]Dayanand P, Dr.Rajashree Shettar. “Survey on

Information Retrieval in Semi Structured Data,”

International Journal of Computer Applications, vol 32

,no 8, pp 1-5, Oct 2011.

[2] S. Al. Khalifa, H. V. Jagdish, N Koudas, J. M. Patel, D

Srivastava and Y Wu. “Structural Joins: A Primitive for

Efficient XML Query Pattern Matching”, Proc. of the

18th International Conference on Data Engineering

(ICDE), San Jose, CA, pp. 141-152, February 26-March

1, 2002.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig

Joins: Optimal XML Pattern Matching, Proc. of 21st

ACM SIGMOD Int‟l Conference on Management of

Data (SIGMOD‟02), pp. 310–321, 2002.

[4]Ibrahim Dweib, Ayman Awadi and Joan Lu. “MAXDOR:

Mapping XML Document into Relational Database,” The

Open Information System Journal, vol. 3, pp. 108-122,

June 2009

[5]Peter Bunaman , Martin Grohe, Christioph Koch. Path

Queries on Compressed XML, Proc. of the 29 thVLDB

conference, Berlin Germany ,2003.

[6]Raghav Kaushik, Rajasekar Krishnamurthy, Jeffery F.

Naughton, Raghu Ramkrishnan. On the Integration of

structure Index and Inverted List, Proc. of the 204 ACM

SIGMOD international conference on Management of

data, Paris, France, pp.779-790, June 13-18 2004.

[7] Ning Zhang , M. Tamer. et.al. “FIX: Feature-based

Indexing Technique for XML Documents” in Pro. 32 nd

VLDB conference, Seoul, Korea,2006.

[8] H. Liefke and D. Suciu, “XMill: an efficient compressor

for XMLdata,” in ACM SIGMOD international

conference on management of data pages, 2000, pp. 153-

24.

[9] J. Cheney, “Compressing XML with multiplexed

hierarchical PPM models,” in Proceedings of the IEEE

Data Compression Conference, 2000, pp. 163-172

[10]Zhuyan Chan, Johannes Gehrke, Flip Korn, Nick Koudas,

Jayavel Shanmugasundram, Divesh Srivastava, “ Index

Structures for Matching XML Twigs using Relational

Query Processor,”in Proceeding of 21 st International

Conference on Data Engineering Workshop ICDEW

,Tokyo-Japan, pp 1273-1283,5-8 April 2005.

[11]Igor Totarinov, Stratis D Vigals, Kevin Beyer, Jayavel

Shanmugasundram, Eugene Shekita, Chun Zhang, “

Storing and Querying Ordered XML using a Relational

Database System,” in Proceeding of ACM SIGMOD Int’l

Conference on anagement of Data, Madison Wisconsin

USA, pp. 204-215, June 3-6 2002.

[12] P. Tolani and J. Haritsa, “XGRIND: A query-friendly

XML compressor,”in 18th International Conference on

Data Engineering (ICDE) IEEE Computer Society,

2002, pp. 225-234.

[13] J. Min, M. Park and C. Chung, “XPRESS: A queriable

compressionfor XML data,” in Proceedings of the ACM

SIGMOD International Conference on Management of

Data, San Diego, California,2003.

Bench Mark

Database

Source

Data

(MB)

TwigStack

(seconds)

TwigInlab

(seconds)

NRCX

(seconds)

Treebank 84 80 63 03

 1MB 16MB 64MB 128MB

ISX 0.001 0.021 0.13 0.85

NOK 0.005 0.015 0.76 1.25

RFX 0.001 0.013 0.087 0.21

NRCX 0.001 0.013 0.081 0.29

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

37

[14] A. Arion, A. Bonifati, G. Costa, S. D'Aguanno, I.

Manolescu, and A. Pugliese, “XQueC: Pushing queries

to compressed XML data,” in Proceedings of the 29th

International Conference on Very LargeData Bases

(VLDB’03), 2003.

[15]Yin Fu Huang and Shin-Hang Wang, “ An efficient XML

Processing based on combining T bitmap and Index

Techniques,” in Proceeding of IEEE Symposium on

Computers and Communication ISCC 2008, Marrakech,

Morocco, pp 858-863, July 6-9 2008.

[16]Li Ying, MaJun Sun Yun, “Applying Dewey Encoding to

Construct XML Index for Path and Keyword Query,” in

Proceeding of First International Workshop on Database

Technology and Application 09, Wuhan, Hubie,China,

pp553-556, 25-26 April 2009.

[17]Radha Senthilkumar, Priyaa Varshinee and A. Kannan.

“Designing and Querying a Compact Redundancy Free

XML Storage,” The Open Information System Journal,

vol. 3, pp. 98-107, June 2009.

[18] R. Wong, F. Lam and W. Shui, “Querying and

maintaining a compact XML storage,” in

16thinternational conference on World Wide Web, Banff,

Alberta, Canada, 2007.

[19]Su-Cheng Haw and Chien-Sing Lee, “Structural Query

Optimization in Native XML Databases : A Hybrid

Approach,” Journal of Applied Sciences, vol20, pp 2934-

2946,2007

