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ABSTRACT 

Transport Control Protocol (TCP), the mostly used transport 

protocol, performs well over wired networks. As much as 

wireless network is deployed, TCP should be modified to work 

for both wired and wireless networks. Since TCP is designed for 

congestion control in wired networks, it cannot clearly detect 

non-congestion related packet loss from wireless networks. TCP 

Congestion control plays the key role to ensure stability of the 

Internet along with fair and efficient allocation of the bandwidth. 

So, congestion control is currently a large area of research and 

concern in the network community. Many congestion control 

mechanisms are developed and refined by researcher aiming to 

overcome congestion. During the last decade, several congestion 

control mechanisms have been proposed to improve TCP 

congestion control. Comparing these mechanisms, showing their 

differences and their improvements, and we identify, classify, 

and discuss some of these mechanisms of TCP congestion 

control such as Tahoe, Sack, Reno, NewReno, Vegas, and 

Westwood. TCP Westwood works for both wired and wireless 

network, and we propose a new algorithm called TCP 

WestwoodNew to increase the performance of TCP-Westwood. 

By enhanced the congestion avoidance of TCP Westwood by a 

new estimation to cwnd algorithm based on the network status. 

Also TCP WestwoodNew introduces a new estimation for 

Retransmission TimeOuts (RTO).  RTO has been reported to be 

a problem on network paths involving links that are prone to 

sudden delays due to various reasons.  Especially many wireless 

network technologies contain such links. Spurious RTO often 

cause unnecessary retransmission of several segments, which is 

harmful for TCP performance, and unnecessary retransmissions 

can be avoided.  We simulate the proposed algorithm TCP 

WestwoodNew using the well known network simulator ns-2, by 

comparing it to the original TCP-Westwood. Simulation results 

show that the proposed scheme achieves better throughput than 

TCP Westwood and decreases the delay. 
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1. INTRODUCTION 
Computer network have experienced an explosive growth over 

the past few years, that growth cause congestion collapse. When 

this congestion occurs performance will degrade. The transport 

layer provides congestion control mechanisms [1], i.e., 

Transmission Control Protocol (TCP). Transmission Control 

Protocol (TCP) is the most popular transport layer protocol for 

the Internet. Due to various reasons, such as multipath routing, 

route fluttering, and retransmissions, packets belonging to the 

same flow may arrive out of order at a destination. Such packet 

reordering violates the design principles of some traffic control 

mechanisms in TCP and, thus, poses performance problems. In 

[2], the authors provide a comprehensive and in-depth survey on 

recent research on packet reordering in TCP. The causes and 

problems for packet reordering are discussed. TCP is a 

connection oriented reliable protocol. TCP is end-to-end 

congestion control where all the work is done by transport layer. 

It is extensively used in the internet, TCP uses a number of 

mechanisms to achieve high performance and avoid congestion 

collapse [3]. Currently, Internet routing protocols select only a 

single path between a source and a destination. However, due to 

many policy routing decisions, single-path routing may limit the 

achievable throughput. In [4], they envision a scenario where 

multi-path routing is enabled in the Internet to take advantage of 

path diversity. Using minimal congestion feedback signals from 

the routers, they present a class of algorithms that can be 

implemented at the sources to stably and optimally split the flow 

between each source-destination pair. they then show that the 

connection-level throughput region of such multi-path 

routing/congestion control algorithms can be larger than that of a 

single-path congestion control scheme.  In [5], the author studies 

the stability issue of the average queue length of a Transmission 

Control Protocol (TCP) model when interacting with Random 

Early Detection (RED). The model used for the study has shown 

period doubling bifurcation (PDB) and border collision 

bifurcation (BCB) in the average queue size at certain values of 

parameters when original RED is deployed. They adopt a gentle 

version of RED and a newly derived RED algorithm into the 

model to study the improvement in stability of average queue 

size of the system. In [6], the authors analyze the dynamic 

behavior of a single RED controlled queue interacting with a 

large population of idealized TCP sources, i.e., sources obeying 

the rules of linear increase and multiplicative decrease. The 

aggregate traffic from this population is modeled in terms of the 

time dependent expected value of the packet arrival rate which 

reacts to the packet loss taking place in the queue. The queue is 

described in terms of the time dependent expected values of the 

instantaneous queue length and of the exponentially averaged 

queue length. TCP congestion control has been designed to 

ensure Internet stability along with fair and efficient allocation of 

the network bandwidth. Congestion control defines the methods 

for implicitly interpreting signals from the network in order for a 

sender to adjust its rate of transmission to prevent a sender from 

overrunning the capacity of the network [7]. Congestion control 

is built as distributed mechanisms that prevent congestion before 

happen or even remove the congestion if it happened [8]. The 

main objective of congestion control mechanisms is to keep the 

network running pretty close to its rated capacity, even when 

faced with extreme overload. These objectives could be 

translated into two main goals, the first is to avoid the occurrence 

of network congestion before happen and dissolve the congestion 

if the congestion occurrence cannot be avoided. The second is to 

provide a fair service to the different connections, along with 

support various Internet application domains with diverse 

Quality of Service (QoS) requirements [9]. Generally, there are 

two ways to implement congestion control: (1) Network-assisted 

congestion controls; they are approaches taken by routers [10]. 

These approaches use the router queue size to monitor the 

congestion state of the network.  (2) End-to-End congestion 

controls; they are approaches taken by the transmission control 

protocol (TCP) and are mostly achieved in transport layer [11]. 

Active Queue Management (AQM) [12] routers have been 
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recently proposed to support the end-to-end congestion control in 

the Internet. In [13], a fuzzy modeling technique is employed to 

set up a time-delay affine Takagi-Sugeno (T-S) fuzzy model for a 

Transmission Control Protocol (TCP) network with AQM 

routers. Based on the proposed time-delay affine T-S fuzzy 

model, a fuzzy controller design approach is developed for the 

control of AQM routers. The congestion control protocol 

considered, evaluated, enhanced in this paper are based on the 

end-to-end congestion control. This approach is required not only 

to help the end-user to gain utility from the network, but also to 

prevent congestion collapse in the network. During the last 

decade, many congestion control algorithms have been proposed 

to improve the classic Tahoe/Reno TCP congestion control. In 

[14], the authors evaluate and compare three control algorithms, 

which are Westwood+, New Reno and Vegas TCP. This paper 

aims to comparing the mechanisms of end-to-end user approach, 

showing their differences and their improvements. We identify, 

classify, and discuss some of these mechanisms of TCP 

congestion control such as Tahoe, Sack, Reno, NewReno, Vegas, 

and Westwood. Also, a Modified TCP Westwood mechanism is 

proposed. This paper is organized as follows. Section 2 provides 

a brief description of the Transmission Control Protocol (TCP). 

The end-to-end congestion control is described in section 3, as 

the different algorithm and the current congestion control 

mechanisms. TCP Westwood mechanism is described in detail in 

section 4, and the new TCP Westwood mechanism depicts on 

section 5. The results of performance are shown in section 6. 

Finally, the paper is concluded in section 7. 

2. TRANSMISSION CONTROL PROTOCOL 
Transmission Control Protocol (TCP) [15, 16, 17] is a reliable, 

connection-oriented, end-to-end, error free in-order protocol. A 

TCP connection is a virtual circuit between two computers, 

conceptually very much like a telephone connection but with 

reliable data transmission between them. A sending host divides 

the data stream into segments. Each segment is labeled with an 

explicit sequence number to guarantee ordering and reliability. 

When a host receives in sequence the segments, it sends a 

cumulative acknowledgment (ACK) in return, notifying the 

sender that all of the data preceding that segment’s sequence 

number has been received. If an out-of -sequence segment is 

received, the receiver sends an acknowledgement indicating the 

sequence number of the segment that was expected. If 

outstanding data is not acknowledged for a period of time, the 

sender will timeout and retransmit the unacknowledged 

segments. 

3. END-TO-END CONGESTION CONTROL 

3.1 Congestion control Algorithms 

3.1.1 Slow Start algorithm 
When TCP finished the three-way handshake it bursts out as 

many packets allowed by the agreed window size, wnd. This was 

not a large problem in the small networking, but as the networks 

grew, and amount of connected hosts increased, these large 

bursts turned out to be a cause of problems. Congestion started to 

occur in network bottlenecks, data adding up faster than it could 

be forwarded or received. Therefore an algorithm to prevent 

immediate bursts was introduced. With the incorporation of slow 

start (SS) [10, 18] two new variables were introduced: the slow 

start threshold (ssthresh) and the congestion window (cwnd). 

When starting a transmission cwnd is set to 1 MSS and ssthresh 

is set to an arbitrary size depending on the OS used. The amount 

of data the sender is allowed to send is determined by 

min[cwnd,wnd] and since cwnd = 1 at startup only one packet is 

allowed. cwnd will then increase by 1 MSS for every ACK 

received  (every RTT ). This exponential growth will continue 

until loss detection or cwnd =ssthresh, when this happens, the 

congestion avoidance algorithm will take over. Slow Start 

algorithm is shown as follows: 

Slowstart algorithm 

Initialize: cwnd = 1 

For (each segment ACKed) 

      cwnd ++; 

Until (congestion event or cwnd >ssthresh) 

3.1.2 Congestion Avoidance algorithm  
To avoid congestion on the network the exponential increase of 

cwnd must be halted. This is usually not a problem in small 

localized LANs where the usual limitation is the window size. 

However, in large WANs there are many more hosts that are 

supposed to share the network capacity and if all hosts would run 

at full capacity then congestion is hard to avoid. Congestion 

Avoidance (CA) handles this by lowering the cwnd increase to 

only 1 packet per RTT, giving cwnd a lower and linear growth. If 

the Retransmit Time Out (RTO) occurs, CA will consider this as 

a loss of packet. CA will then set ssthresh to half the current 

cwnd and after this resets cwnd to one and initiate a SS. 

Congestion avoidance algorithm is shown as follow: 

Congestion avoidance algorithm 

/* slowstart is over   */  

/* cwnd > ssthresh */ 

  every new ACK: 

      cwnd += 1/cwnd 

Until (timeout)  /* loss event */ 

3.1.3 Fast retransmit algorithm 
Fast Retransmit (FRet) is a short simple algorithm, treating three 

received DUPACKs as a sign of loss. It is unlikely that the 

missing packet has gone so far astray from the others that three 

later packets would arrive before the lost one finds its way to the 

receiver. FRet was created to remove the need to wait for an 

RTO by quickly retransmitting the lost packet after three 

DUPACKs, preventing unnecessary long downtime in the 

transmission. After the packet has been retransmitted FRet sets 

ssthresh=1/2cwnd and enters SS. Fast Retransmit algorithm is 

shown as follows: 

Fast retransmit  algorithm 

If receiving 3DUPACK or RTO 

Retransmit the packet 

ssthresh = cwnd /2 

cwnd = 1 

perform slowstart 

3.1.4 Fast Recovery algorithm 
Fast recovery algorithm [19] immediately is after Fast 

Retransmit, after fast retransmit sends what appears to be the 

missing segment, congestion avoidance, but not slow start is 

performed. This is the fast recovery algorithm. It is an 

improvement that allows high throughput under moderate 

congestion, especially for large windows. The reason for not 

performing slow start in this case is that the receipt of the 

duplicate ACKs tells TCP more than just a packet has been lost. 

Since the receiver can only generate the duplicate ACK when 

another segment is received, that segment has left the network 

and is in the receiver's buffer. That is, there is still data flowing 

between the two ends, and TCP does not want to reduce the flow 

abruptly by going into slow start. The fast retransmit and fast 

recovery algorithms are usually implemented together as follows: 

Fast retransmit  algorithm (Reno) 

If receiving 3DUPACK or RTO 

Retransmit the packet 
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After retransmission do not enter slowstart 

Enter fast recovery 

Fast recovery algorithm (Reno) 

Set ssthresh = cwnd/2 ; 

cwnd = ssthresh + 3 ; 

/* the three extra packets to compensate for the three packets 

leaving the network causing the DUPACKs */ 

Each duplicate ACK received 

 cwnd+ + ; 

/* to compensate for the one leaving the network */ 

     transmit new packet if allowed  

If new ACK cwnd=threshold ; 

return to congestion avoidance 

Fast Recovery works according to the following steps: 

1. When the third duplicate ACK in a row is received, set ssthresh 

to one-half the current congestion window, cwnd, but no less 

than two segments. Retransmit the missing segment. Set cwnd 

to ssthresh plus 3 times the segment size. This inflates the 

congestion window by the number of segments that have left 

the network and which the other end has cached. 

2. Each time another duplicate ACK arrives, increment cwnd by 

the segment size. This inflates the congestion window for the 

additional segment that has left the network. Transmit a packet, 

if allowed by the new value of cwnd. 

3. When the next ACK arrives that acknowledges new data, set 

cwnd to ssthresh (the value set in step 1). This ACK should be 

the acknowledgment of the retransmission from step 1, one 

round-trip time after the retransmission. Additionally, this 

ACK should acknowledge all the intermediate segments sent 

between the lost packet and the receipt of the first duplicate 

ACK. This step is congestion avoidance, since TCP is down to 

one-half the rate it was at when the packet was lost. 

3.2 Congestion control Mechanisms 

3.2.1 Mechanisms 

1-TCP Tahoe [16, 17]: was the first algorithm to employ three 

Congestion control Algorithms: slow start, congestion 

avoidance, and fast retransmit. 

2-TCP Reno: is the most widely adopted Internet TCP protocol. 

It employs four Congestion control Algorithms: slow start, 

congestion  avoidance, fast retransmit, and fast recovery [20]. 

When packet loss  occurs in a congested link due to buffer 

overflow in the intermediate routers, either the sender receives 

three duplicate  acknowledgments or the sender’s 

retransmission timeout (RTO  timer expires). In case of three 

duplicate ACKs, the sender activates TCP fast retransmit and 

recovery algorithms and reduces its congestion window size to 

half. It then linearly  increases congestion window, similar to 

the case of congestion avoidance. This increase in transmission 

rate is slower than in  the case of slow start and helps relieve 

congestion. TCP Reno  fast recovery algorithm improves TCP 

performance in case of a single packet loss within a window of 

data. However  ,performance of TCP Reno suffers in case of 

multiple packet losses within a window of data. 

3-TCP NewReno [21]: is a modification of TCP Reno. It 

improves retransmission process during the fast recovery phase 

of TCP Reno. TCP NewReno can detect multiple packet losses. 

It does not exit the fast recovery phase until all 

unacknowledged segments at the time of fast recovery are 

acknowledged. Thus, as in TCP Reno, it overcomes reducing 

the congestion window size multiple times in case of multiple 

packet losses. The remaining three phases (slow start, 

congestion avoidance, and fast retransmit) are similar to TCP 

Reno. TCP NewReno exits fast recovery after receiving 

acknowledgement of all unacknowledged segments. It then sets 

congestion window size to slow start threshold and continues 

the congestion avoidance phase. It retransmits the next segment 

when it receives a partial acknowledgment. (Partial 

acknowledgments are the acknowledgments that do not 

acknowledge all outstanding packets at the onset of the fast 

recovery). A problem occurs with New Reno when there are no 

packet losses but instead, packets are reordered by more than 3 

packet sequence numbers. When this happens, New Reno 

mistakenly enters fast recovery, but when the reordered packet 

is delivered, ACK sequence-number progress occurs and from 

there until the end of fast recovery, every bit of sequence-

number progress produces a duplicate and needless 

retransmission that is immediately ACKed. New Reno 

performs as well as SACK at low packet error rates, and 

substantially outperforms Reno at high error rates. 

4-TCP SACK: SACK algorithm [22, 23] allows a TCP receiver 

to acknowledge out-of order segments selectively rather than 

cumulatively by  acknowledging the last correctly in order 

received segment. The receiver acknowledges packets received 

out of order and the  sender then retransmits only the missing 

data segments instead  of sending all unacknowledged 

segments. TCP Reno with SACK behaves similarly to TCP 

Tahoe and TCP Reno, which are robust in case of out of order 

packet arrivals. However, TCP with SACK helps improve 

performance in case of multiple packet losses. During the fast 

recovery phase, SACK maintains a variable called pipe that 

represents the estimated number of outstanding packets. The 

sender only sends new or retransmitted data when the 

estimated number of packet in a router is smaller than the 

congestion window. The pipe variable is incremented by one 

when the sender either sends a new segment or retransmits an 

old one. It is decremented by one when the sender receives the 

duplicate ACK with a SACK option [24].  

5-TCP Vegas: Until the mid 1990s, all TCPs set timeouts and 

measured round-trip delays were based upon only the last 

transmitted packet in the transmit buffer. Researchers 

introduced TCP Vegas [25], in which timeouts were set and 

round-trip delays were measured for every packet in the 

transmit buffer. TCP Vegas detects congestion at an incipient 

stage based on increasing Round-Trip Time (RTT) values of 

the packets in the connection unlike other flavors like Reno, 

NewReno etc. which detect congestion only after it has 

actually happened via packet drops [26, 27, 28]. The algorithm 

depends heavily on accurate calculation of the Base RTT 

value. If it is too small, then throughput of the connection will 

be less than the bandwidth available, while if the value is too 

large then it will over run the connection. A lot of research is 

going on regarding the fairness provided by the linear 

increase/decrease mechanism for congestion control in Vegas. 

One interesting caveat is when Vegas is inter-operated with 

other versions like Reno. In this case, performance of Vegas 

degrades because Vegas reduces its sending rate before Reno 

as it detects congestion early and hence gives greater 

bandwidth to co-existing TCP Reno flows. 
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6-TCP Westwood [29]: is yet another improvement in the TCP 

Reno family line. The Fast Recovery algorithm from TCP New 

Reno has been modified. To help gain faster recovery 

bandwidth estimation (BWE) algorithm also has been added 

[30]. This BWE function is what makes TCP Westwood 

standout. Influenced by TCP Vegas, BWE uses the RTT and 

the amount of data that has been sent during this interval to 

calculate an estimate of the currently successful transfer rate. 

The bandwidth estimate is then used when a loss is detected, 

setting cwnd and sssthresh at values near the estimation. The 

main purpose behind this is to improve the throughput in 

wireless links, where loss is more often caused by link failure 

than by congestion. There is also the general benefit that 

starting CA at higher values will lower the recovery time on 

most networks, thus lowering the transfer times. 

3.2.2 Discussion 
The Transmission Control Protocol was standardized in 1981 

with the publication of RFC 793. After only a short period it was 

evident that it had some flaws in its behavior and a new version 

named Tahoe was released.  In [31-35], the authors discuss the 

different mechanisms for TCP congestion control. Figure 1 

indicates the TCP Inherence start by TCP Tahoe which added a 

Slow Start (SS) function, which started the transmission of data 

slowly but exponentially.  An algorithm named Congestion 

Avoidance (CA) was also added, designed to slow the growth of 

the senders output lowering the possibility of causing congestion. 

The final algorithm added in the TCP Tahoe version is called 

Fast Retransmit (FRet). Fast Retransmit resend the first 

unacknowledged packet in the send buffer after receiving three 

DUPACKs after each other instead of waiting for a RTO. TCP 

SACK is a feature of Selective Acknowledgement, telling the 

sender what packets have been successfully received at the 

receiver and not just that a packet has been lost. TCP SACK 

works exceptionally well, compared to ordinary TCP clones, on a 

network with problems with multiple packet losses. This help 

keeping the retransmission queue small and saves time waiting 

not needing to wait for the next ACK to see if something else is 

missing. TCP SACK can be used with many later versions of 

TCP. TCP Reno is an upgrade of TCP Tahoe. Adding an 

algorithm Fast Recovery (FRec), designed to help TCP recover 

faster to maximum output after suffering a packet loss. Fast 

Recovery keeps the flow going instead of performing a SS. TCP 

New Reno was an improvement of the cooperation between FRet 

and FRec. To improve the behavior, when faced with rapid 

multiple packet losses on connections that cannot use the TCP 

SACK feature. Still keeping the flow going when receiving 

DUPACKs, TCP New Reno is less careful on how to update the 

cwnd and ssthresh variables, usually ending up giving them 

higher values, than its predecessor. TCP Vegas is more of a 

spinoff TCP clone than part of the evolution of TCP Tahoe. 

Using a time based estimate of the capacity and limiting the 

output to avoid congestion, TCP Vegas is a smooth and 

intelligent TCP clone. However, it does not work well with the 

TCP Reno family, due to the more aggressive nature of those 

TCP versions. On its own or together with other TCP Vegas 

instances it is impressively fair in its sharing and smooth in its 

throughput. TCP Westwood uses an advanced bandwidth 

estimation (BWE) to try and figure out the capacity of the 

network and uses this knowledge to lower the loss in throughput 

caused by packet loss. This BWE takes the sender output as a 

measure of the bandwidth of the network and sets the ssthresh 

accordingly when suffering a loss.  

 
Fig 1: TCP Inherence. 

4. TCP WESTWOOD MECHANISM 
TCP Westwood congestion control algorithm [36] use a 

bandwidth estimation, it executed at sender side of a TCP 

connection. The congestion window dynamics during slow start 

and congestion avoidance are unchanged. The general idea is to 

use the bandwidth estimate BWE to set the congestion window 

(cwin) and the slow start threshold (ssthresh) after a congestion 

episode. In TCP Westwood the sender continuously computes 

the connection BWE which is defined as the share bottleneck 

used by the connection. Thus, BWE is equal to the rate at which 

data is delivered to the TCP receiver. The estimate is based on 

the rate at which ACKs are received and on their payload. After a 

packet loss, the sender resets the congestion window and the 

slow start. Threshold based on BWE. The packet loss is 

suspected with a reception of three duplicates ACKs or timeout 

expiration. Another important element of this procedure is the 

RTT estimation. That is because the congestion window is set 

precisely to BWE * RTT after indication of packet loss.  

4.1 End-to-End Bandwidth measurement 
A fundamental design philosophy [37] of the Internet TCP 

congestion control algorithm is that it must be performed end-to-

end. The network is considered as a “black box”. A TCP source 

cannot receive any explicit congestion feedback from the 

network. Therefore the source, to determine the rate at which it 

can transmit, must try the path by progressively increasing the 

input load until feedback signals, that the network capacity has 

been reached. The key idea of the TCP Westwood, presented 

before, is to continuously estimate, at the TCP sender, the packet 

of the connection. This is done by monitoring the ACK reception 

rate. The estimated connection rate is then used to improve the 

efficiency of slow start and congestion control algorithms. If an 

ACK is received at source at time t2, this implies that a 

corresponding amount of data d2 has been received by the TCP 

receiver. Therefore, we can measure the following sample of 

bandwidth used by that connection as: b2 = d2/(t2-t1), where t1 

is the time of the previous ACK that was received. An average of 

the samples is calculated and used to calculate the estimation of 

the available bandwidth.  This bandwidth estimation works in the 

following way: 

Bandwidth estimation (BWE) algorithm 

BWE =bk = α k bk−1 + (1 − α k) [(bk + bk−1) /2] 
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Where bk = sample bandwidth = dk  / t k −  t k−1 

        where   dk  = amount of bytes acknowledged by ACK k, 

                   t k = arrival time of ACK k, 

α k = [2τ − Δ(t k −  t k−1)] / [2τ + Δ(t k −  t k−1)] 

    where  τ : is the cut- off frequency of this Tustin filter  

4.2 Round-Trip Time Estimation 
When a host transmits a TCP packet to its peer, it must wait a 

period of time for an acknowledgment. If the reply does not 

come within the expected period, the packet is assumed to have 

been lost and the data is retransmitted. The problem is the 

protocol does not define the length of the period to wait. All 

modern TCP implementations seek to find a proper waiting time 

by monitoring the normal exchange of data packets and 

developing an estimate of how long is "too long". This process is 

called Round-Trip Time (RTT) estimation [38]. RTT estimates 

are one of the most important performance parameters in a TCP 

exchange, especially when you consider that on an indefinitely 

large transfer, all TCP variants eventually drop packets and 

retransmit them, no matter how good the quality of the link. RTT 

is a key component of TCP Westwood algorithm.  

4.3  Setting cwnd and ssthresh in TCPW 
Let us first assume that a sender has estimated BW, and let us 

describe in this subsection how is used to properly set cwnd and 

ssthresh after a packet loss indication. First, we note that in 

TCPW, congestion window increments during slow start and 

congestion avoidance remain the same as in Reno, i.e. 

exponential and linear, respectively. A packet loss is indicated by 

the follows: (a) the receipt of 3 DUPACKs, or (b) a coarse 

timeout expiration. In case the loss indication is 3 DUPACKs, 

TCPW sets cwnd and ssthresh as follows. 

4.3.1 Algorithm after three duplicate ACK. 
The pseudo code of the TCP Westwood algorithm after three 

duplicate acknowledgements is: 

After 3 DUPACKS 

If receiving 3 DUPACKS 

Set ssthresh =(BWE*RTTmin)  /seg_size; 

and if cwnd > ssthresh then set cwnd = ssthresh ; 

enter congestion avoidance 

In the pseudo-code, seg_size indicates the length of TCP 

segments in bits. During the congestion avoidance phase the 

sender is trying for extra available bandwidth. If three duplicate 

ACKs are received, the network capacity might have been 

reached or that in case of wireless links, one or more segments 

have were dropped due to sporadic losses.  

4.3.2 Algorithm after timeout 
The pseudo code of TCP Westwood algorithm after timeout is:  

After Timeout 

If  RTO then set 

     ssthresh = (BWE*RTTmin) /seg_size;  

     if (ssthresh < 2)  ssthresh =2;  end if ; 

     cwin = 1; 

end if 

enter slow start; 

The rationale of the algorithm above is that after a timeout, cwin 

is set to equal one and ssthresh is set BWE. A speedy recovery is 

ensured by setting ssthresh to the bandwidth estimation at the 

time of timeout expiration.  

5. TCP WESTWOOD NEW MECHANISM 

5.1 Enhanced TCP Westwood congestion 

avoidance algorithm  
TCP Westwood is a rate based scheme extending the TCP 

Reno.In Transmission Control Protocol (TCP), the congestion 

window [39] is one of the factors that determine the number of 

bytes that can be outstanding at any time. Maintained on the 

sender, this is a means of stopping the link between two places 

from getting overloaded with too much traffic. The size of this 

window is calculated by estimating how much congestion there 

is between the two places. The sender maintains the congestion 

window. When a connection is set up, the congestion window is 

set to the maximum segment size (MSS) then the size doubled 

every ACK until cwnd >ssthresh then go to congestion avoidance 

state where size cwnd=cwnd+1/Cwnd until congestion occur we 

propose enhanced congestion avoidance algorithm as follow: 

TCP WestwoodNew takes the data-receiving rate as a metric to 

predict the network conditions. TCP WestwoodNew estimated 

BW as BWcurrent (the current BW after receive new ACK) then 

divide it on BWprevious (BW before receive the same new 

ACK) the result is the BW ratio if the BW ratio < 1 this indicate 

that there is an increase in the network load therefore the Cwnd 

should be constant .else if BW ratio > 1 indicates that there is an 

decrease in the network load therefore the Cwnd should be 

increased the Cwnd is adjusted based on the network conditions 

estimate. These modifications constitute the foundation for an 

efficient congestion avoidance strategy over heterogeneous 

environments with wire-line or wireless networks.  

The TCP WestwoodNew congestion avoidance algorithm: 

Congestion avoidance 

slow start is over */ 
/*cwnd > ssthresh */ 

Every Ack: 

Estimate BWE 

Set BWE = BWcurrent 

BWratio = BWcurrent/BWprevious 

If  (1.5>BWratio >= 1) 

   cwnd = cwnd + 1/cwnd 
If (BWratio >= 1.5) 

    cwnd = cwnd + 2/cwnd 

Else if (BWratio < 1) 

        cwnd = cwnd + 0 

Until (timeout or 3 DUPACKs) 

Where BWcurrent :  the current BW after receive new ACK  and  

BWprevious : BW before receive the same new ACK  

5.2 Modified RTO Calculation Algorithm 
In the recent years the variety of Internet links with different 

properties has increased dramatically. The high speed networks 

have reached Gigabit rates, whereas the increasing number of 

mobile wireless access networks has introduced a prolific 

number of mobile hosts attached to the Internet through a slow, 

wireless links. Moreover, the challenging characteristics of 

wireless links, in particular high packet loss rate or delays due to 

various reasons such as link-layer retransmissions or hand-off 

between the points of attachment to the Internet, have introduced 

a large set of problems for the Internet transport protocols.  The 

TCP protocol is the dominant Internet transport protocol and its 

congestion control algorithms are essential for the stability of the 

Internet. Because these algorithms have a strong effect on TCP 

performance, finding solutions to improve TCP performance 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.5, May 2012 

26 

over slow wireless links. The traditional problem regarding the 

use of TCP over wireless links or other challenging channels has 

concerned TCP congestion control. If a packet is lost, TCP 

interprets it as an indication of congestion and a TCP sender 

needs to reduce its transmission rate. Hence, TCP performance 

deteriorates with increasing packet loss rate. If the packet loss 

occurred due to corruption, reducing the TCP transmission rate 

is, however, the wrong action to take. TCP uses the fast 

retransmit mechanism to trigger retransmissions after receiving 

three successive duplicate acknowledgements (ACKs). If for a 

certain time period TCP sender does not receive ACKs that 

acknowledge new data, the TCP retransmission timer expires as a 

back-off mechanism.  When the retransmission timer expires, the 

TCP sender retransmits the first unacknowledged segment 

assuming it was lost in the network. Because a retransmission 

timeout (RTO) [40] can be an indication of severe congestion in 

the network, the TCP sender resets its congestion window to one 

segment and starts increasing it according to the slow start 

algorithm. However, if the RTO occurs spuriously and there still 

are segments outstanding in the network, a false slow start is 

harmful for the potentially congested network as it injects extra 

segments to the network at increasing rate. TCP should be able to 

adjust its RTO value when needed. This is realized according to 

the identified loss model within the network. First of all, let us 

note that when congestion is detected within the network, the 

RTO estimation is not changed and remains similar to the one 

used by TCP New Reno. Alternatively, in the case of wireless 

channel errors, no RTO calculation or adjustment is necessary as 

the network conditions are supposed to be unvaried. In the case 

of link failure, the RTO value has to be modified based on the 

characteristics (length, load, and link qualities) of the new route 

discovered by the routing protocol. So, after link loss recovery by 

the ad hoc routing protocol, we may observe that both the 

propagation and queuing delays change suddenly. As RTT is one 

of the most direct TCP connection characterization parameter 

that reflects network links conditions, our estimation algorithm 

will be depending on it. It is obvious that the number of hops as 

well as the load of the route between the TCP sender and receiver 

affects the RTT value over that connection. Thus, the 

characteristics of the new discovered route could be represented 

by RTT values over that route. Thus, the RTO value would be 

updated as follows: RTO new = (RTT new /RTT old) RTO old 

(1), where RTTnew is the new round trip time estimation after 

congestion recovery and RTTold the round trip time estimation 

before congestion. 

6. PERFORMANCE EVALUATION 

6.1 Evaluation criteria 
The evaluation criteria are: (1) Throughput, that refers to the 

number of packets sent by the source and correctly received by 

destination. (2) Delay, is the required time of two-way 

communication, it may range from a very few microseconds, it 

can be measured as per packet transfer times. (3) Packet losses 

(packet drop rates), can be measured as the number of dropping 

packets per unit of time, it may also defined as the packets that 

are retransmitted again from the source because the packet is 

either corrupted or lost. (4) Congestion window is flow control 

imposed by the sender, while the advertised window is flow 

control imposed by the receiver. The former is based on the 

sender’s assessment of perceived network congestion, and the 

latter is related to the amount of available buffer space at the 

receiver for this connection.  

6.2 Simulation setup 
The simulations are often used for understanding and prediction 

of the behavior of protocols and data streams in networks. All 

simulation results in this paper are obtained using NS2 [41] 

simulator. Figure 2 shows the network topology that is used for 

the simulation. The topology has five nodes connected to each 

other via four TCP connections; each link is labeled with its 

bandwidth capacity and its delay. 

 
Fig 2: Network topology 

6.3 Simulation Results 
In Figure 3, the network throughput is presented for TCP Reno, 

Newreno, Sack, Vegas, Tahoe, Westwood, and Westwoodnew. It 

is noted that TCP westwoodnew has highest throughput on the 

steady state time. This is because TCP Westwood new interested 

by the network status in now and the past, therefore it determines 

the network status by a large percentage of accuracy TCP 

Westwood. It determines the network status by estimating the 

current BW without looking to the previous BW which 

determines the previous network status, therefore the rate of the 

sending packets in TCP Westwood and base on that TCP 

Westwood sending the same rate of packets whether the network 

status is heavy or not heavy by TCP WestwoodNew determine 

the rate of  packets sending based on the network status if it not 

heavy TCP Westwood new increase the rate of the sending 

packets which is increase the throughput performance in the 

network if network status is heavy TCP WestwoodNew remain 

the rate of sending packets constant.  

 
Fig 3: Throughput versus time for Reno, Newreno, Sack, 

Vegas, Tahoe, Westwood, and Westwoodnew. 
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Fig 4: Throughput versus time for Westwood and 

Westwoodnew. 

When comparing the Westwood with westwoodnew, it noted 

from the zoom of figure 3, in Figure 4 that depicts the throughput 

Westwoodnew is improved because of taking the network status 

in now and the past to adapting the congestion window. 

 
Fig 5: Delay versus the time for Reno, Newreno, Sack, Vegas, 

Tahoe, Westwood, and Westwoodnew. 

 
Fig 6: Delay versus the time for Westwood and 

Westwoodnew. 

Figure 5 shows delay changes versus the time for TCP Reno, 

Newreno, Sack, Vegas, Tahoe, Westwood, and Westwoodnew, 

The delay measured here as a flow based in terms of per packet 

transfer time. As shown from the figure, WestwoodNew reduces 

the delay, unlike Westwood which have higher delay than it. 

That is because cwnd of WestwoodNew determined by more 

accurate than cwnd of Westwood this determination based on the 

degree the network get congested so WestwoodNew could send 

more new packets depending on the network status that reduces 

the delay time. Also WestwoodNew determine RTO based on 

new RTT and old RTT this make it avoid to send the packets 

once again without necessary to that and avoid a false slow start.. 

When comparing the westwood with westwoodnew, it noted 

from the zoom of figure 5, in Figure 6 that depicts the delay of 

westwood new is improved as the minimum delay. 

 
Fig 7: Packet Losses versus the time for Reno, Newreno, 

Sack, Vegas, Tahoe, Westwood, and Westwoodnew. 

 
Fig 8: Packet Losses versus the time for Westwood and 

Westwoodnew. 

Figure 7 describes the packet losses versus the time for TCP 

Reno, Newreno, Sack, Vegas, Tahoe, Westwood, and 

WestwoodNew. The figure shows that the dropped packets by 

TCP Westwood have the highest dropping rate over the 

simulation time cause in fast recovery Westwood send more no. 

of packets than other mechanisms which reduce the no. of 

sending packets in fast recovery, WestwoodNew improved 

Westwood by more adapting to the no. of sent packets in fast 

recovery depending on the past and current network status. When 

comparing the westwood with westwoodnew, it noted from the 

zoom of figure 7, in Figure 8 that depicts the packet losses of 

westwoodnew is improved more than westwood as less packet 

losses with highest throughput and minimum delay. 

Figure 9 shows the change of the congestion window in packets 

with the time. With TCP Westwood and TCP WestwoodNew, we 

find that when congestion detected TCP Westwood and TCP 
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Westwood New determines the cwnd based on the bandwidth 

estimation in fast recovery then go to congestion avoidance state 

with new cwnd in TCP Westwood congestion avoidance we find 

that when new ACK is received cwnd is increased by 1/cwnd in 

TCP WestwoodNew congestion avoidance if new ACK is 

received, the rate of cwnd increasing determine based on network 

status if heavy cwnd remain constant , else if network status not 

heavy cwnd increasing by 1/cwnd or 2/cwnd, so we find that the 

rate of TCP WestwoodNew Cwnd larger than the rate of TCP 

Westwood cwnd. 

 
Fig 9: Behavior of the Congestion Window for Reno, 

Newreno, Sack, Vegas, Tahoe, Westwood, and 

Westwoodnew. 

Figure 10 depicts the Behavior of the Congestion Window for 

Westwood and WestwoodNew. We note that the cwnd of 

WestwoodNew is growing than cwnd of Westwood, because 

WestwoodNew exploits the available bandwidth by more 

precious to enlarge its congestion window and sending rate. 

 
Fig 10: Behavior of the Congestion Window for Westwood 

and Westwoodnew. 

7. CONCLUSION 
In this paper we have proposed a new version of the TCP 

Westwood protocol called TCP WestwoodNew, aimed to 

improving performance of Westwood under random or sporadic 

losses. The new version has been tested through NS2 simulation, 

TCP WestwoodNew introduced a new Congestion Avoidance 

congestion control algorithm, also introduced a new estimation to 

RTO based on RTT, TCP WestwoodNew is an enhanced to TCP 

Westwood congestion control protocol designed to effectively 

transmit with a rate that utilizes a fair link capacity sharing, and 

improves the throughput performance in the network. The 

Congestion Avoidance algorithm was developed by applying 

dynamic congestion window adaptation mechanism. The 

proposed mechanism improves the TCP throughput over that of 

TCP Westwood. TCP WestwoodNew provides good 

performance in terms of reducing the delay. 
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