
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

21

Enhanced TCP Westwood Congestion Avoidance

Mechanism (TCP WestwoodNew)

Shimaa Hagag
South Delta Electricity Company, Cairo, Egypt.

Ayman El-Sayed (IEEE Senior Member)

Computer Science & Eng. Dept., Faculty Of Electronic
Eng., Menoufiya University, 32952 Menouf, Egypt.

ABSTRACT

Transport Control Protocol (TCP), the mostly used transport

protocol, performs well over wired networks. As much as

wireless network is deployed, TCP should be modified to work

for both wired and wireless networks. Since TCP is designed for

congestion control in wired networks, it cannot clearly detect

non-congestion related packet loss from wireless networks. TCP

Congestion control plays the key role to ensure stability of the

Internet along with fair and efficient allocation of the bandwidth.

So, congestion control is currently a large area of research and

concern in the network community. Many congestion control

mechanisms are developed and refined by researcher aiming to

overcome congestion. During the last decade, several congestion

control mechanisms have been proposed to improve TCP

congestion control. Comparing these mechanisms, showing their

differences and their improvements, and we identify, classify,

and discuss some of these mechanisms of TCP congestion

control such as Tahoe, Sack, Reno, NewReno, Vegas, and

Westwood. TCP Westwood works for both wired and wireless

network, and we propose a new algorithm called TCP

WestwoodNew to increase the performance of TCP-Westwood.

By enhanced the congestion avoidance of TCP Westwood by a

new estimation to cwnd algorithm based on the network status.

Also TCP WestwoodNew introduces a new estimation for

Retransmission TimeOuts (RTO). RTO has been reported to be

a problem on network paths involving links that are prone to

sudden delays due to various reasons. Especially many wireless

network technologies contain such links. Spurious RTO often

cause unnecessary retransmission of several segments, which is

harmful for TCP performance, and unnecessary retransmissions

can be avoided. We simulate the proposed algorithm TCP

WestwoodNew using the well known network simulator ns-2, by

comparing it to the original TCP-Westwood. Simulation results

show that the proposed scheme achieves better throughput than

TCP Westwood and decreases the delay.

Keywords

TCP, Congestion Control Mechanisms

1. INTRODUCTION
Computer network have experienced an explosive growth over

the past few years, that growth cause congestion collapse. When

this congestion occurs performance will degrade. The transport

layer provides congestion control mechanisms [1], i.e.,

Transmission Control Protocol (TCP). Transmission Control

Protocol (TCP) is the most popular transport layer protocol for

the Internet. Due to various reasons, such as multipath routing,

route fluttering, and retransmissions, packets belonging to the

same flow may arrive out of order at a destination. Such packet

reordering violates the design principles of some traffic control

mechanisms in TCP and, thus, poses performance problems. In

[2], the authors provide a comprehensive and in-depth survey on

recent research on packet reordering in TCP. The causes and

problems for packet reordering are discussed. TCP is a

connection oriented reliable protocol. TCP is end-to-end

congestion control where all the work is done by transport layer.

It is extensively used in the internet, TCP uses a number of

mechanisms to achieve high performance and avoid congestion

collapse [3]. Currently, Internet routing protocols select only a

single path between a source and a destination. However, due to

many policy routing decisions, single-path routing may limit the

achievable throughput. In [4], they envision a scenario where

multi-path routing is enabled in the Internet to take advantage of

path diversity. Using minimal congestion feedback signals from

the routers, they present a class of algorithms that can be

implemented at the sources to stably and optimally split the flow

between each source-destination pair. they then show that the

connection-level throughput region of such multi-path

routing/congestion control algorithms can be larger than that of a

single-path congestion control scheme. In [5], the author studies

the stability issue of the average queue length of a Transmission

Control Protocol (TCP) model when interacting with Random

Early Detection (RED). The model used for the study has shown

period doubling bifurcation (PDB) and border collision

bifurcation (BCB) in the average queue size at certain values of

parameters when original RED is deployed. They adopt a gentle

version of RED and a newly derived RED algorithm into the

model to study the improvement in stability of average queue

size of the system. In [6], the authors analyze the dynamic

behavior of a single RED controlled queue interacting with a

large population of idealized TCP sources, i.e., sources obeying

the rules of linear increase and multiplicative decrease. The

aggregate traffic from this population is modeled in terms of the

time dependent expected value of the packet arrival rate which

reacts to the packet loss taking place in the queue. The queue is

described in terms of the time dependent expected values of the

instantaneous queue length and of the exponentially averaged

queue length. TCP congestion control has been designed to

ensure Internet stability along with fair and efficient allocation of

the network bandwidth. Congestion control defines the methods

for implicitly interpreting signals from the network in order for a

sender to adjust its rate of transmission to prevent a sender from

overrunning the capacity of the network [7]. Congestion control

is built as distributed mechanisms that prevent congestion before

happen or even remove the congestion if it happened [8]. The

main objective of congestion control mechanisms is to keep the

network running pretty close to its rated capacity, even when

faced with extreme overload. These objectives could be

translated into two main goals, the first is to avoid the occurrence

of network congestion before happen and dissolve the congestion

if the congestion occurrence cannot be avoided. The second is to

provide a fair service to the different connections, along with

support various Internet application domains with diverse

Quality of Service (QoS) requirements [9]. Generally, there are

two ways to implement congestion control: (1) Network-assisted

congestion controls; they are approaches taken by routers [10].

These approaches use the router queue size to monitor the

congestion state of the network. (2) End-to-End congestion

controls; they are approaches taken by the transmission control

protocol (TCP) and are mostly achieved in transport layer [11].

Active Queue Management (AQM) [12] routers have been

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

22

recently proposed to support the end-to-end congestion control in

the Internet. In [13], a fuzzy modeling technique is employed to

set up a time-delay affine Takagi-Sugeno (T-S) fuzzy model for a

Transmission Control Protocol (TCP) network with AQM

routers. Based on the proposed time-delay affine T-S fuzzy

model, a fuzzy controller design approach is developed for the

control of AQM routers. The congestion control protocol

considered, evaluated, enhanced in this paper are based on the

end-to-end congestion control. This approach is required not only

to help the end-user to gain utility from the network, but also to

prevent congestion collapse in the network. During the last

decade, many congestion control algorithms have been proposed

to improve the classic Tahoe/Reno TCP congestion control. In

[14], the authors evaluate and compare three control algorithms,

which are Westwood+, New Reno and Vegas TCP. This paper

aims to comparing the mechanisms of end-to-end user approach,

showing their differences and their improvements. We identify,

classify, and discuss some of these mechanisms of TCP

congestion control such as Tahoe, Sack, Reno, NewReno, Vegas,

and Westwood. Also, a Modified TCP Westwood mechanism is

proposed. This paper is organized as follows. Section 2 provides

a brief description of the Transmission Control Protocol (TCP).

The end-to-end congestion control is described in section 3, as

the different algorithm and the current congestion control

mechanisms. TCP Westwood mechanism is described in detail in

section 4, and the new TCP Westwood mechanism depicts on

section 5. The results of performance are shown in section 6.

Finally, the paper is concluded in section 7.

2. TRANSMISSION CONTROL PROTOCOL
Transmission Control Protocol (TCP) [15, 16, 17] is a reliable,

connection-oriented, end-to-end, error free in-order protocol. A

TCP connection is a virtual circuit between two computers,

conceptually very much like a telephone connection but with

reliable data transmission between them. A sending host divides

the data stream into segments. Each segment is labeled with an

explicit sequence number to guarantee ordering and reliability.

When a host receives in sequence the segments, it sends a

cumulative acknowledgment (ACK) in return, notifying the

sender that all of the data preceding that segment’s sequence

number has been received. If an out-of -sequence segment is

received, the receiver sends an acknowledgement indicating the

sequence number of the segment that was expected. If

outstanding data is not acknowledged for a period of time, the

sender will timeout and retransmit the unacknowledged

segments.

3. END-TO-END CONGESTION CONTROL

3.1 Congestion control Algorithms

3.1.1 Slow Start algorithm
When TCP finished the three-way handshake it bursts out as

many packets allowed by the agreed window size, wnd. This was

not a large problem in the small networking, but as the networks

grew, and amount of connected hosts increased, these large

bursts turned out to be a cause of problems. Congestion started to

occur in network bottlenecks, data adding up faster than it could

be forwarded or received. Therefore an algorithm to prevent

immediate bursts was introduced. With the incorporation of slow

start (SS) [10, 18] two new variables were introduced: the slow

start threshold (ssthresh) and the congestion window (cwnd).

When starting a transmission cwnd is set to 1 MSS and ssthresh

is set to an arbitrary size depending on the OS used. The amount

of data the sender is allowed to send is determined by

min[cwnd,wnd] and since cwnd = 1 at startup only one packet is

allowed. cwnd will then increase by 1 MSS for every ACK

received (every RTT). This exponential growth will continue

until loss detection or cwnd =ssthresh, when this happens, the

congestion avoidance algorithm will take over. Slow Start

algorithm is shown as follows:

Slowstart algorithm

Initialize: cwnd = 1

For (each segment ACKed)

 cwnd ++;

Until (congestion event or cwnd >ssthresh)

3.1.2 Congestion Avoidance algorithm
To avoid congestion on the network the exponential increase of

cwnd must be halted. This is usually not a problem in small

localized LANs where the usual limitation is the window size.

However, in large WANs there are many more hosts that are

supposed to share the network capacity and if all hosts would run

at full capacity then congestion is hard to avoid. Congestion

Avoidance (CA) handles this by lowering the cwnd increase to

only 1 packet per RTT, giving cwnd a lower and linear growth. If

the Retransmit Time Out (RTO) occurs, CA will consider this as

a loss of packet. CA will then set ssthresh to half the current

cwnd and after this resets cwnd to one and initiate a SS.

Congestion avoidance algorithm is shown as follow:

Congestion avoidance algorithm

/* slowstart is over */

/* cwnd > ssthresh */

 every new ACK:

 cwnd += 1/cwnd

Until (timeout) /* loss event */

3.1.3 Fast retransmit algorithm
Fast Retransmit (FRet) is a short simple algorithm, treating three

received DUPACKs as a sign of loss. It is unlikely that the

missing packet has gone so far astray from the others that three

later packets would arrive before the lost one finds its way to the

receiver. FRet was created to remove the need to wait for an

RTO by quickly retransmitting the lost packet after three

DUPACKs, preventing unnecessary long downtime in the

transmission. After the packet has been retransmitted FRet sets

ssthresh=1/2cwnd and enters SS. Fast Retransmit algorithm is

shown as follows:

Fast retransmit algorithm

If receiving 3DUPACK or RTO

Retransmit the packet

ssthresh = cwnd /2

cwnd = 1

perform slowstart

3.1.4 Fast Recovery algorithm
Fast recovery algorithm [19] immediately is after Fast

Retransmit, after fast retransmit sends what appears to be the

missing segment, congestion avoidance, but not slow start is

performed. This is the fast recovery algorithm. It is an

improvement that allows high throughput under moderate

congestion, especially for large windows. The reason for not

performing slow start in this case is that the receipt of the

duplicate ACKs tells TCP more than just a packet has been lost.

Since the receiver can only generate the duplicate ACK when

another segment is received, that segment has left the network

and is in the receiver's buffer. That is, there is still data flowing

between the two ends, and TCP does not want to reduce the flow

abruptly by going into slow start. The fast retransmit and fast

recovery algorithms are usually implemented together as follows:

Fast retransmit algorithm (Reno)

If receiving 3DUPACK or RTO

Retransmit the packet

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

23

After retransmission do not enter slowstart

Enter fast recovery

Fast recovery algorithm (Reno)

Set ssthresh = cwnd/2 ;

cwnd = ssthresh + 3 ;

/* the three extra packets to compensate for the three packets

leaving the network causing the DUPACKs */

Each duplicate ACK received

 cwnd+ + ;

/* to compensate for the one leaving the network */

 transmit new packet if allowed

If new ACK cwnd=threshold ;

return to congestion avoidance

Fast Recovery works according to the following steps:

1. When the third duplicate ACK in a row is received, set ssthresh

to one-half the current congestion window, cwnd, but no less

than two segments. Retransmit the missing segment. Set cwnd

to ssthresh plus 3 times the segment size. This inflates the

congestion window by the number of segments that have left

the network and which the other end has cached.

2. Each time another duplicate ACK arrives, increment cwnd by

the segment size. This inflates the congestion window for the

additional segment that has left the network. Transmit a packet,

if allowed by the new value of cwnd.

3. When the next ACK arrives that acknowledges new data, set

cwnd to ssthresh (the value set in step 1). This ACK should be

the acknowledgment of the retransmission from step 1, one

round-trip time after the retransmission. Additionally, this

ACK should acknowledge all the intermediate segments sent

between the lost packet and the receipt of the first duplicate

ACK. This step is congestion avoidance, since TCP is down to

one-half the rate it was at when the packet was lost.

3.2 Congestion control Mechanisms

3.2.1 Mechanisms

1-TCP Tahoe [16, 17]: was the first algorithm to employ three

Congestion control Algorithms: slow start, congestion

avoidance, and fast retransmit.

2-TCP Reno: is the most widely adopted Internet TCP protocol.

It employs four Congestion control Algorithms: slow start,

congestion avoidance, fast retransmit, and fast recovery [20].

When packet loss occurs in a congested link due to buffer

overflow in the intermediate routers, either the sender receives

three duplicate acknowledgments or the sender’s

retransmission timeout (RTO timer expires). In case of three

duplicate ACKs, the sender activates TCP fast retransmit and

recovery algorithms and reduces its congestion window size to

half. It then linearly increases congestion window, similar to

the case of congestion avoidance. This increase in transmission

rate is slower than in the case of slow start and helps relieve

congestion. TCP Reno fast recovery algorithm improves TCP

performance in case of a single packet loss within a window of

data. However ,performance of TCP Reno suffers in case of

multiple packet losses within a window of data.

3-TCP NewReno [21]: is a modification of TCP Reno. It

improves retransmission process during the fast recovery phase

of TCP Reno. TCP NewReno can detect multiple packet losses.

It does not exit the fast recovery phase until all

unacknowledged segments at the time of fast recovery are

acknowledged. Thus, as in TCP Reno, it overcomes reducing

the congestion window size multiple times in case of multiple

packet losses. The remaining three phases (slow start,

congestion avoidance, and fast retransmit) are similar to TCP

Reno. TCP NewReno exits fast recovery after receiving

acknowledgement of all unacknowledged segments. It then sets

congestion window size to slow start threshold and continues

the congestion avoidance phase. It retransmits the next segment

when it receives a partial acknowledgment. (Partial

acknowledgments are the acknowledgments that do not

acknowledge all outstanding packets at the onset of the fast

recovery). A problem occurs with New Reno when there are no

packet losses but instead, packets are reordered by more than 3

packet sequence numbers. When this happens, New Reno

mistakenly enters fast recovery, but when the reordered packet

is delivered, ACK sequence-number progress occurs and from

there until the end of fast recovery, every bit of sequence-

number progress produces a duplicate and needless

retransmission that is immediately ACKed. New Reno

performs as well as SACK at low packet error rates, and

substantially outperforms Reno at high error rates.

4-TCP SACK: SACK algorithm [22, 23] allows a TCP receiver

to acknowledge out-of order segments selectively rather than

cumulatively by acknowledging the last correctly in order

received segment. The receiver acknowledges packets received

out of order and the sender then retransmits only the missing

data segments instead of sending all unacknowledged

segments. TCP Reno with SACK behaves similarly to TCP

Tahoe and TCP Reno, which are robust in case of out of order

packet arrivals. However, TCP with SACK helps improve

performance in case of multiple packet losses. During the fast

recovery phase, SACK maintains a variable called pipe that

represents the estimated number of outstanding packets. The

sender only sends new or retransmitted data when the

estimated number of packet in a router is smaller than the

congestion window. The pipe variable is incremented by one

when the sender either sends a new segment or retransmits an

old one. It is decremented by one when the sender receives the

duplicate ACK with a SACK option [24].

5-TCP Vegas: Until the mid 1990s, all TCPs set timeouts and

measured round-trip delays were based upon only the last

transmitted packet in the transmit buffer. Researchers

introduced TCP Vegas [25], in which timeouts were set and

round-trip delays were measured for every packet in the

transmit buffer. TCP Vegas detects congestion at an incipient

stage based on increasing Round-Trip Time (RTT) values of

the packets in the connection unlike other flavors like Reno,

NewReno etc. which detect congestion only after it has

actually happened via packet drops [26, 27, 28]. The algorithm

depends heavily on accurate calculation of the Base RTT

value. If it is too small, then throughput of the connection will

be less than the bandwidth available, while if the value is too

large then it will over run the connection. A lot of research is

going on regarding the fairness provided by the linear

increase/decrease mechanism for congestion control in Vegas.

One interesting caveat is when Vegas is inter-operated with

other versions like Reno. In this case, performance of Vegas

degrades because Vegas reduces its sending rate before Reno

as it detects congestion early and hence gives greater

bandwidth to co-existing TCP Reno flows.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

24

6-TCP Westwood [29]: is yet another improvement in the TCP

Reno family line. The Fast Recovery algorithm from TCP New

Reno has been modified. To help gain faster recovery

bandwidth estimation (BWE) algorithm also has been added

[30]. This BWE function is what makes TCP Westwood

standout. Influenced by TCP Vegas, BWE uses the RTT and

the amount of data that has been sent during this interval to

calculate an estimate of the currently successful transfer rate.

The bandwidth estimate is then used when a loss is detected,

setting cwnd and sssthresh at values near the estimation. The

main purpose behind this is to improve the throughput in

wireless links, where loss is more often caused by link failure

than by congestion. There is also the general benefit that

starting CA at higher values will lower the recovery time on

most networks, thus lowering the transfer times.

3.2.2 Discussion
The Transmission Control Protocol was standardized in 1981

with the publication of RFC 793. After only a short period it was

evident that it had some flaws in its behavior and a new version

named Tahoe was released. In [31-35], the authors discuss the

different mechanisms for TCP congestion control. Figure 1

indicates the TCP Inherence start by TCP Tahoe which added a

Slow Start (SS) function, which started the transmission of data

slowly but exponentially. An algorithm named Congestion

Avoidance (CA) was also added, designed to slow the growth of

the senders output lowering the possibility of causing congestion.

The final algorithm added in the TCP Tahoe version is called

Fast Retransmit (FRet). Fast Retransmit resend the first

unacknowledged packet in the send buffer after receiving three

DUPACKs after each other instead of waiting for a RTO. TCP

SACK is a feature of Selective Acknowledgement, telling the

sender what packets have been successfully received at the

receiver and not just that a packet has been lost. TCP SACK

works exceptionally well, compared to ordinary TCP clones, on a

network with problems with multiple packet losses. This help

keeping the retransmission queue small and saves time waiting

not needing to wait for the next ACK to see if something else is

missing. TCP SACK can be used with many later versions of

TCP. TCP Reno is an upgrade of TCP Tahoe. Adding an

algorithm Fast Recovery (FRec), designed to help TCP recover

faster to maximum output after suffering a packet loss. Fast

Recovery keeps the flow going instead of performing a SS. TCP

New Reno was an improvement of the cooperation between FRet

and FRec. To improve the behavior, when faced with rapid

multiple packet losses on connections that cannot use the TCP

SACK feature. Still keeping the flow going when receiving

DUPACKs, TCP New Reno is less careful on how to update the

cwnd and ssthresh variables, usually ending up giving them

higher values, than its predecessor. TCP Vegas is more of a

spinoff TCP clone than part of the evolution of TCP Tahoe.

Using a time based estimate of the capacity and limiting the

output to avoid congestion, TCP Vegas is a smooth and

intelligent TCP clone. However, it does not work well with the

TCP Reno family, due to the more aggressive nature of those

TCP versions. On its own or together with other TCP Vegas

instances it is impressively fair in its sharing and smooth in its

throughput. TCP Westwood uses an advanced bandwidth

estimation (BWE) to try and figure out the capacity of the

network and uses this knowledge to lower the loss in throughput

caused by packet loss. This BWE takes the sender output as a

measure of the bandwidth of the network and sets the ssthresh

accordingly when suffering a loss.

Fig 1: TCP Inherence.

4. TCP WESTWOOD MECHANISM
TCP Westwood congestion control algorithm [36] use a

bandwidth estimation, it executed at sender side of a TCP

connection. The congestion window dynamics during slow start

and congestion avoidance are unchanged. The general idea is to

use the bandwidth estimate BWE to set the congestion window

(cwin) and the slow start threshold (ssthresh) after a congestion

episode. In TCP Westwood the sender continuously computes

the connection BWE which is defined as the share bottleneck

used by the connection. Thus, BWE is equal to the rate at which

data is delivered to the TCP receiver. The estimate is based on

the rate at which ACKs are received and on their payload. After a

packet loss, the sender resets the congestion window and the

slow start. Threshold based on BWE. The packet loss is

suspected with a reception of three duplicates ACKs or timeout

expiration. Another important element of this procedure is the

RTT estimation. That is because the congestion window is set

precisely to BWE * RTT after indication of packet loss.

4.1 End-to-End Bandwidth measurement
A fundamental design philosophy [37] of the Internet TCP

congestion control algorithm is that it must be performed end-to-

end. The network is considered as a “black box”. A TCP source

cannot receive any explicit congestion feedback from the

network. Therefore the source, to determine the rate at which it

can transmit, must try the path by progressively increasing the

input load until feedback signals, that the network capacity has

been reached. The key idea of the TCP Westwood, presented

before, is to continuously estimate, at the TCP sender, the packet

of the connection. This is done by monitoring the ACK reception

rate. The estimated connection rate is then used to improve the

efficiency of slow start and congestion control algorithms. If an

ACK is received at source at time t2, this implies that a

corresponding amount of data d2 has been received by the TCP

receiver. Therefore, we can measure the following sample of

bandwidth used by that connection as: b2 = d2/(t2-t1), where t1

is the time of the previous ACK that was received. An average of

the samples is calculated and used to calculate the estimation of

the available bandwidth. This bandwidth estimation works in the

following way:

Bandwidth estimation (BWE) algorithm

BWE =bk = α k bk−1 + (1 − α k) [(bk + bk−1) /2]

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

25

Where bk = sample bandwidth = dk / t k − t k−1

 where dk = amount of bytes acknowledged by ACK k,

 t k = arrival time of ACK k,

α k = [2τ − Δ(t k − t k−1)] / [2τ + Δ(t k − t k−1)]

 where τ : is the cut- off frequency of this Tustin filter

4.2 Round-Trip Time Estimation
When a host transmits a TCP packet to its peer, it must wait a

period of time for an acknowledgment. If the reply does not

come within the expected period, the packet is assumed to have

been lost and the data is retransmitted. The problem is the

protocol does not define the length of the period to wait. All

modern TCP implementations seek to find a proper waiting time

by monitoring the normal exchange of data packets and

developing an estimate of how long is "too long". This process is

called Round-Trip Time (RTT) estimation [38]. RTT estimates

are one of the most important performance parameters in a TCP

exchange, especially when you consider that on an indefinitely

large transfer, all TCP variants eventually drop packets and

retransmit them, no matter how good the quality of the link. RTT

is a key component of TCP Westwood algorithm.

4.3 Setting cwnd and ssthresh in TCPW
Let us first assume that a sender has estimated BW, and let us

describe in this subsection how is used to properly set cwnd and

ssthresh after a packet loss indication. First, we note that in

TCPW, congestion window increments during slow start and

congestion avoidance remain the same as in Reno, i.e.

exponential and linear, respectively. A packet loss is indicated by

the follows: (a) the receipt of 3 DUPACKs, or (b) a coarse

timeout expiration. In case the loss indication is 3 DUPACKs,

TCPW sets cwnd and ssthresh as follows.

4.3.1 Algorithm after three duplicate ACK.
The pseudo code of the TCP Westwood algorithm after three

duplicate acknowledgements is:

After 3 DUPACKS

If receiving 3 DUPACKS

Set ssthresh =(BWE*RTTmin) /seg_size;

and if cwnd > ssthresh then set cwnd = ssthresh ;

enter congestion avoidance

In the pseudo-code, seg_size indicates the length of TCP

segments in bits. During the congestion avoidance phase the

sender is trying for extra available bandwidth. If three duplicate

ACKs are received, the network capacity might have been

reached or that in case of wireless links, one or more segments

have were dropped due to sporadic losses.

4.3.2 Algorithm after timeout
The pseudo code of TCP Westwood algorithm after timeout is:

After Timeout

If RTO then set

 ssthresh = (BWE*RTTmin) /seg_size;

 if (ssthresh < 2) ssthresh =2; end if ;

 cwin = 1;

end if

enter slow start;

The rationale of the algorithm above is that after a timeout, cwin

is set to equal one and ssthresh is set BWE. A speedy recovery is

ensured by setting ssthresh to the bandwidth estimation at the

time of timeout expiration.

5. TCP WESTWOOD NEW MECHANISM

5.1 Enhanced TCP Westwood congestion

avoidance algorithm
TCP Westwood is a rate based scheme extending the TCP

Reno.In Transmission Control Protocol (TCP), the congestion

window [39] is one of the factors that determine the number of

bytes that can be outstanding at any time. Maintained on the

sender, this is a means of stopping the link between two places

from getting overloaded with too much traffic. The size of this

window is calculated by estimating how much congestion there

is between the two places. The sender maintains the congestion

window. When a connection is set up, the congestion window is

set to the maximum segment size (MSS) then the size doubled

every ACK until cwnd >ssthresh then go to congestion avoidance

state where size cwnd=cwnd+1/Cwnd until congestion occur we

propose enhanced congestion avoidance algorithm as follow:

TCP WestwoodNew takes the data-receiving rate as a metric to

predict the network conditions. TCP WestwoodNew estimated

BW as BWcurrent (the current BW after receive new ACK) then

divide it on BWprevious (BW before receive the same new

ACK) the result is the BW ratio if the BW ratio < 1 this indicate

that there is an increase in the network load therefore the Cwnd

should be constant .else if BW ratio > 1 indicates that there is an

decrease in the network load therefore the Cwnd should be

increased the Cwnd is adjusted based on the network conditions

estimate. These modifications constitute the foundation for an

efficient congestion avoidance strategy over heterogeneous

environments with wire-line or wireless networks.

The TCP WestwoodNew congestion avoidance algorithm:

Congestion avoidance

slow start is over */
/*cwnd > ssthresh */

Every Ack:

Estimate BWE

Set BWE = BWcurrent

BWratio = BWcurrent/BWprevious

If (1.5>BWratio >= 1)

 cwnd = cwnd + 1/cwnd
If (BWratio >= 1.5)

 cwnd = cwnd + 2/cwnd

Else if (BWratio < 1)

 cwnd = cwnd + 0

Until (timeout or 3 DUPACKs)

Where BWcurrent : the current BW after receive new ACK and

BWprevious : BW before receive the same new ACK

5.2 Modified RTO Calculation Algorithm
In the recent years the variety of Internet links with different

properties has increased dramatically. The high speed networks

have reached Gigabit rates, whereas the increasing number of

mobile wireless access networks has introduced a prolific

number of mobile hosts attached to the Internet through a slow,

wireless links. Moreover, the challenging characteristics of

wireless links, in particular high packet loss rate or delays due to

various reasons such as link-layer retransmissions or hand-off

between the points of attachment to the Internet, have introduced

a large set of problems for the Internet transport protocols. The

TCP protocol is the dominant Internet transport protocol and its

congestion control algorithms are essential for the stability of the

Internet. Because these algorithms have a strong effect on TCP

performance, finding solutions to improve TCP performance

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

26

over slow wireless links. The traditional problem regarding the

use of TCP over wireless links or other challenging channels has

concerned TCP congestion control. If a packet is lost, TCP

interprets it as an indication of congestion and a TCP sender

needs to reduce its transmission rate. Hence, TCP performance

deteriorates with increasing packet loss rate. If the packet loss

occurred due to corruption, reducing the TCP transmission rate

is, however, the wrong action to take. TCP uses the fast

retransmit mechanism to trigger retransmissions after receiving

three successive duplicate acknowledgements (ACKs). If for a

certain time period TCP sender does not receive ACKs that

acknowledge new data, the TCP retransmission timer expires as a

back-off mechanism. When the retransmission timer expires, the

TCP sender retransmits the first unacknowledged segment

assuming it was lost in the network. Because a retransmission

timeout (RTO) [40] can be an indication of severe congestion in

the network, the TCP sender resets its congestion window to one

segment and starts increasing it according to the slow start

algorithm. However, if the RTO occurs spuriously and there still

are segments outstanding in the network, a false slow start is

harmful for the potentially congested network as it injects extra

segments to the network at increasing rate. TCP should be able to

adjust its RTO value when needed. This is realized according to

the identified loss model within the network. First of all, let us

note that when congestion is detected within the network, the

RTO estimation is not changed and remains similar to the one

used by TCP New Reno. Alternatively, in the case of wireless

channel errors, no RTO calculation or adjustment is necessary as

the network conditions are supposed to be unvaried. In the case

of link failure, the RTO value has to be modified based on the

characteristics (length, load, and link qualities) of the new route

discovered by the routing protocol. So, after link loss recovery by

the ad hoc routing protocol, we may observe that both the

propagation and queuing delays change suddenly. As RTT is one

of the most direct TCP connection characterization parameter

that reflects network links conditions, our estimation algorithm

will be depending on it. It is obvious that the number of hops as

well as the load of the route between the TCP sender and receiver

affects the RTT value over that connection. Thus, the

characteristics of the new discovered route could be represented

by RTT values over that route. Thus, the RTO value would be

updated as follows: RTO new = (RTT new /RTT old) RTO old

(1), where RTTnew is the new round trip time estimation after

congestion recovery and RTTold the round trip time estimation

before congestion.

6. PERFORMANCE EVALUATION

6.1 Evaluation criteria
The evaluation criteria are: (1) Throughput, that refers to the

number of packets sent by the source and correctly received by

destination. (2) Delay, is the required time of two-way

communication, it may range from a very few microseconds, it

can be measured as per packet transfer times. (3) Packet losses

(packet drop rates), can be measured as the number of dropping

packets per unit of time, it may also defined as the packets that

are retransmitted again from the source because the packet is

either corrupted or lost. (4) Congestion window is flow control

imposed by the sender, while the advertised window is flow

control imposed by the receiver. The former is based on the

sender’s assessment of perceived network congestion, and the

latter is related to the amount of available buffer space at the

receiver for this connection.

6.2 Simulation setup
The simulations are often used for understanding and prediction

of the behavior of protocols and data streams in networks. All

simulation results in this paper are obtained using NS2 [41]

simulator. Figure 2 shows the network topology that is used for

the simulation. The topology has five nodes connected to each

other via four TCP connections; each link is labeled with its

bandwidth capacity and its delay.

Fig 2: Network topology

6.3 Simulation Results
In Figure 3, the network throughput is presented for TCP Reno,

Newreno, Sack, Vegas, Tahoe, Westwood, and Westwoodnew. It

is noted that TCP westwoodnew has highest throughput on the

steady state time. This is because TCP Westwood new interested

by the network status in now and the past, therefore it determines

the network status by a large percentage of accuracy TCP

Westwood. It determines the network status by estimating the

current BW without looking to the previous BW which

determines the previous network status, therefore the rate of the

sending packets in TCP Westwood and base on that TCP

Westwood sending the same rate of packets whether the network

status is heavy or not heavy by TCP WestwoodNew determine

the rate of packets sending based on the network status if it not

heavy TCP Westwood new increase the rate of the sending

packets which is increase the throughput performance in the

network if network status is heavy TCP WestwoodNew remain

the rate of sending packets constant.

Fig 3: Throughput versus time for Reno, Newreno, Sack,

Vegas, Tahoe, Westwood, and Westwoodnew.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

27

Fig 4: Throughput versus time for Westwood and

Westwoodnew.

When comparing the Westwood with westwoodnew, it noted

from the zoom of figure 3, in Figure 4 that depicts the throughput

Westwoodnew is improved because of taking the network status

in now and the past to adapting the congestion window.

Fig 5: Delay versus the time for Reno, Newreno, Sack, Vegas,

Tahoe, Westwood, and Westwoodnew.

Fig 6: Delay versus the time for Westwood and

Westwoodnew.

Figure 5 shows delay changes versus the time for TCP Reno,

Newreno, Sack, Vegas, Tahoe, Westwood, and Westwoodnew,

The delay measured here as a flow based in terms of per packet

transfer time. As shown from the figure, WestwoodNew reduces

the delay, unlike Westwood which have higher delay than it.

That is because cwnd of WestwoodNew determined by more

accurate than cwnd of Westwood this determination based on the

degree the network get congested so WestwoodNew could send

more new packets depending on the network status that reduces

the delay time. Also WestwoodNew determine RTO based on

new RTT and old RTT this make it avoid to send the packets

once again without necessary to that and avoid a false slow start..

When comparing the westwood with westwoodnew, it noted

from the zoom of figure 5, in Figure 6 that depicts the delay of

westwood new is improved as the minimum delay.

Fig 7: Packet Losses versus the time for Reno, Newreno,

Sack, Vegas, Tahoe, Westwood, and Westwoodnew.

Fig 8: Packet Losses versus the time for Westwood and

Westwoodnew.

Figure 7 describes the packet losses versus the time for TCP

Reno, Newreno, Sack, Vegas, Tahoe, Westwood, and

WestwoodNew. The figure shows that the dropped packets by

TCP Westwood have the highest dropping rate over the

simulation time cause in fast recovery Westwood send more no.

of packets than other mechanisms which reduce the no. of

sending packets in fast recovery, WestwoodNew improved

Westwood by more adapting to the no. of sent packets in fast

recovery depending on the past and current network status. When

comparing the westwood with westwoodnew, it noted from the

zoom of figure 7, in Figure 8 that depicts the packet losses of

westwoodnew is improved more than westwood as less packet

losses with highest throughput and minimum delay.

Figure 9 shows the change of the congestion window in packets

with the time. With TCP Westwood and TCP WestwoodNew, we

find that when congestion detected TCP Westwood and TCP

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

28

Westwood New determines the cwnd based on the bandwidth

estimation in fast recovery then go to congestion avoidance state

with new cwnd in TCP Westwood congestion avoidance we find

that when new ACK is received cwnd is increased by 1/cwnd in

TCP WestwoodNew congestion avoidance if new ACK is

received, the rate of cwnd increasing determine based on network

status if heavy cwnd remain constant , else if network status not

heavy cwnd increasing by 1/cwnd or 2/cwnd, so we find that the

rate of TCP WestwoodNew Cwnd larger than the rate of TCP

Westwood cwnd.

Fig 9: Behavior of the Congestion Window for Reno,

Newreno, Sack, Vegas, Tahoe, Westwood, and

Westwoodnew.

Figure 10 depicts the Behavior of the Congestion Window for

Westwood and WestwoodNew. We note that the cwnd of

WestwoodNew is growing than cwnd of Westwood, because

WestwoodNew exploits the available bandwidth by more

precious to enlarge its congestion window and sending rate.

Fig 10: Behavior of the Congestion Window for Westwood

and Westwoodnew.

7. CONCLUSION
In this paper we have proposed a new version of the TCP

Westwood protocol called TCP WestwoodNew, aimed to

improving performance of Westwood under random or sporadic

losses. The new version has been tested through NS2 simulation,

TCP WestwoodNew introduced a new Congestion Avoidance

congestion control algorithm, also introduced a new estimation to

RTO based on RTT, TCP WestwoodNew is an enhanced to TCP

Westwood congestion control protocol designed to effectively

transmit with a rate that utilizes a fair link capacity sharing, and

improves the throughput performance in the network. The

Congestion Avoidance algorithm was developed by applying

dynamic congestion window adaptation mechanism. The

proposed mechanism improves the TCP throughput over that of

TCP Westwood. TCP WestwoodNew provides good

performance in terms of reducing the delay.

8. REFERENCES
[1] M. Kalpana1 and T. Purusothaman, “Performance

Evaluation of Exponential TCP/IP Congestion Control

Algorithm”, International Journal of Computer Science and

Network Security (IJCSNS), VOL.9 No.3, March 2009.

[2] Ka-Cheong Leung, Victor O.K. Li, Daiqin Yang, "An

Overview of Packet Reordering in Transmission Control

Protocol (TCP): Problems, Solutions, and Challenges,"

IEEE Transactions on Parallel and Distributed Systems, pp.

522-535, April, 2007

[3] Seifeddine Kadry, Issa Kamar, Ali Kalakech, Mohamad

Smaili Robust, "TCP: An Improvement on TCP Protocol",

Journal of Theoretical and Applied Information Technology

2005.

[4] Huaizhong Han, Srinivas Shakkottai, C. V. Hollot, R.

Srikant, and Don Towsley, " Multi-path TCP: a joint

congestion control and routing scheme to exploit path

diversity in the internet", IEEE/ACM Transactions on

Networking (TON), Vol. 14, Issue 6, December, 2006, PP.

1260-1271. DOI=10.1109/TNET.2006.886738

http://dx.doi.org/10.1109/TNET.2006.886738

[5] Nga J.H.C., Iu H.H.C., Ling S.H., Lam H.K. "Comparative

study of stability in different TCP/RED models", Chaos,

Solitons and Fractals, the interdisciplinary journal of

Nonlinear Science, and Nonequilibrium and Complex

Phenomena, Vol. 37, Issue 4, August 2008, pp. 977-987.

[6] P. Kuusela, P. Lassila, J. Virtamo and P. Key, "Modeling

RED with Idealized TCP Sources", 9th IFIP Conference on

Performance Modeling and evaluation of ATM & IP

networks, 2001.

[7] S. H. Low, F. Paganini, and J. C. Doyle, ”Internet

Congestion Control”, IEEE Control Systems Magazine,

FEB 2002, pp:28-43.

[8] L. Yao-Nan, and H. Ho-Cheng, ”A New TCP Congestion

Control Mechanism over Wireless Ad Hoc Networks by

Router-Assisted Approach”, International Conference on

Distributed Computing Systems, JUN 2007, pp:84-84.

[9] S. Ryu, C. Rump, and C. Qiao, ”Advances In Internet

Congestion Control”, IEEE Communications Surveys &

Tutorials, Third Quarter, vol.5(1), 2003, pp:28-39.

[10] C. Wanxiang, S. Peixin, and L. Zhenming, ”Network-

assisted congestion control”, Info-tech&Info-net

International Conferences, vol.2, JUN 2001, pp:28-32.

[11] K Fang-Chun., and X. Fu, ”Probe-Aided MulTCP: an

aggregate congestion control mechanism”, ACM

SIGCOMM Computer Communication Review, Vol.38 (1),

JAN 2008, PP: 17-28.

[12] Andrzej Chydzinski, Agnieszka Brachman, "Performance of

AQM Routers in the Presence of New TCP Variants,"

Advances in Future Internet, International Conference on,

pp. 88-93, 2010 Second International Conference on

Advances in Future Internet, 2010.

[13] Hsiuyuan Chu, Kuohui Tsai, and Wenjer Chang, " Fuzzy

control of active queue management routers for

transmission control protocol networks via time-delay affine

Takagi-Sugeno fuzzy models", International Journal of

http://www.ijicic.org/07-015-1.pdf
http://www.ijicic.org/07-015-1.pdf
http://www.ijicic.org/07-015-1.pdf
http://www.ijicic.org/07-015-1.pdf
http://www.ijicic.org/07-015-1.pdf
http://www.ijicic.org/07-015-1.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.5, May 2012

29

Innovative Computing, Information and Control, Volume 4,

Number 2, February, 2008.

[14] Luigi A. Grieco and Saverio Mascolo, "Performance

evaluation and comparison of Westwood+, New Reno, and

Vegas TCP congestion control", SIGCOMM Computer

Communication Review, Vol. 34, Issue 2, April, 2004. PP.

25-38. DOI=10.1145/997150.997155

http://doi.acm.org/10.1145/997150.997155

[15] W. Boulevard, and A. Way,” Transmission Control

Protocol”, RFC 793, September 1981.

[16] V. Jacobson and M. J. Karels, "Congestion avoidance and

control", In ACM Computer Communication Review;

Proceedings of the Sigcomm’88 Symposium, volume 18,

pages 314–329, Stanford, CA, USA, August 1988.

[17] Hanaa A. Torkey, Gamal M. Attiya and I. Z. Morsi,

"Performance Evaluation of End-to-End Congestion Control

Protocols", Menoufia journal of Electronic Engineering

Research (MJEER), Vol. 18, no. 2, pp. 99-118, July 2008.

[18] Dirceu Cavendish, Kazumi Kumazoe, Masato Tsuru, Yuji

Oie, and Mario Gerla, "CapStart: An Adaptive TCP Slow

Start for High Speed Networks", In Proceedings of the 2009

First International Conference on Evolving Internet

(INTERNET '09). IEEE Computer Society, Washington,

DC, USA, 15-20. DOI=10.1109/INTERNET.2009.10

http://dx.doi.org/10.1109/INTERNET.2009.10

[19] N. Parvez, A. Mahanti, and C. Williamson, "TCP

NewReno: Slowbut- Steady or Impatient?", IEEE

International Communications Conference, ICC ’06, vol. 2,

June 2006, pp: 716-722.

[20] M. Allman, V. Paxson, and W. Stevens. RFC 2581 - TCP

Congestion Control. The Internet Society, 1999.

[21] Hanaa A. Torkey, Gamal M. Attiya and I. Z. Morsi,

"Enhanced Fast Recovery Mechanism for improving TCP

NewReno", Proceedings of the 18th International

Conference on Computer Theory and Applications

(ICCTA08), pp. 52-58, Alexandria, Egypt, 11-13 October

2008.

[22] V. Jacobson and R. Braden. RFC 1072 - TCP Extensions

for Long Delay Paths. October 1988.

[23] Beomjoon Kim, Dongmin Kim, and Jaiyong Lee, "Lost

Retransmission Detection for TCP SACK", IEEE

COMMUNICATIONS LETTERS, VOL. 8, NO. 9,

September 2004.

[24] V. Jacobson, "Modified TCP congestion avoidance

algorithm",url: ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[25] L. S. Brakmo and L. L. Peterson, "TCP vegas: End to end

congestion avoidance on a global internet", IEEE Journal on

Selected Areas in Communications, 13(8):1465–1480, 1995.

[26] K.N. Srijith, Lillykutty Jacob1, and A.L. Ananda, "TCP

Vegas-A: Improving the Performance of TCP Vegas"

Computer communications 28 (2005), pp. 429-440.

[27] S. H. Low, L. L. Peterson, and L. Wang, "Understanding

TCP Vegas: A Duality Model", Journal of the ACM, Vol.49

(2) , March 2002, pp:207-235.

[28] L. S. Brakmo, and L. L. Peterson, "TCP Vegas: End to End

Congestion Avoidance on a Global Internet", IEEE Journal

on Selected Areas in Communications, vol.13 no.8, October

1995, pp: 1465-1480.

[29] M. Gerla, M.Y. Sanadidi, RenWang, A. Zanella, C. Casetti,

and S. Mascolo, "TCP westwood: congestion window

control using bandwidth estimation", In IEEE Global

Telecommunications Conference, GLOBECOM ’01,

volume 3, pages 1698 – 1702, November 2001.

[30] Gerla, B.K.F. Ng, M.Y. Sanadidi, M. Valla, R. Wang,

"TCP Westwood with adaptive bandwidth estimation to

improve efficiency/friendliness tradeoffs", Computer

Communications 27 (2003) pp. 41-58.

[31] Ayman EL-SAYED, Nawal EL-FESHAWY and Shimaa

HAGAG "A Survey of Mechanisms for TCP Congestion

Control", International Journal of Research and Reviews in

Computer Science (IJRRCS), Vol. 2, No. 3, June 2011.

[32] Laxmi Subedi, Mohamadreza Najiminaini, and Ljiljana

Trajkovi "Performance Evaluation of TCP Tahoe, Reno,

Reno with SACK, and NewReno Using OPNET Modeler"

Communication Networks Laboratory

http://www.ensc.sfu.ca/research/cnl OPNET technologies,

2008

[33] Maxim Podlesny and Carey Williamson "Providing

Fairness Between TCP NewReno and TCP Vegas with RD

Network Services" Department of Computer Science,

University of Calgary, 2010.

[34] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and

Mark Handley, "Design, implementation and evaluation of

congestion control for multipath TCP", In Proceedings of

the 8th USENIX conference on Networked systems design

and implementation (NSDI'11), USENIX Association,

Berkeley, CA, USA, PP.8-8, 2011.

[35] Nadim Parvez, Anirban Mahanti, and Carey Williamson,

“An Analytic Throughput Model for TCP NewReno”,

IEEE/ACM TRANSACTIONS ON NETWORKING, Vol.

18, No. 2, April 2010.

[36] Saverio Mascolo and Francesco Vacircay, "The effect of

reverse traffic on the performance of new TCP congestion

control algorithms " University of Rome ”La Sapienza”

2006.

[37] Prof.K.Srinivas, Dr.A.A.Chari and N.Kasiviswanath

"Updated Congestion Control Algorithm for TCP

Throughput improvement in Wired and Wireless Network",

Vol. 9 Issue 5 (Ver. 2.0), January 2010.

[38] Salem Belhaj, and Moncef Tagina, "VFAST TCP: A delay-

based enhanced version of FAST TCP" International

Journal of Computer and Information Science and

Engineering 2;2 2008.

[39] Nandita Dukkipati, Tiziana Refice and Yuchung Cheng

"An Argument for Increasing TCP’s Initial Congestion

Window" Google Inc. 2010

[40] Bhavika Gambhava, N. J. Kothari and Dr. K. S. Dasgupta,

"Analysis of RTO Caused by Retransmission Loss to

Combat Channel Noise", International Journal of Computer

Applications (0975 – 8887) Vol. 1– No. 8, 2010.

[41] Ns-2 network simulator (ver. 2). LBL, URL:

http://wwwmash.cs.berkeley.edu/ns.

http://www.ensc.sfu.ca/research/cnl
http://wwwmash.cs.berkeley.edu/ns

