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ABSTRACT 
Several noise removal techniques have proven their worth in 

image processing applications. After an overview of some 

image denoising approaches, we introduce a LMMSE-based 

denoising technique with wavelet multiscale model and 

wiener filter in spatial domain. This proposed denoising 

technique stands out prominent in terms of SNR, MSE and 

PSNR compared to some more denoising techniques (also 

proposed in this paper). The Overcomplete Wavelet 

Expansion (OWE) which is also employed, provides better 

result compared to Orthogonal Wavelet Transform (OWT). 

Moreover, some fine details of the image such as edges, 

curves etc. is preserved using the LMMSE rule.
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1. INTRODUCTION 
Images are often corrupted with noise during acquisition, 

transmission, and retrieval from storage media. Noise corrupts 

both images and videos [1]. The purpose of the denoising 

algorithm is to remove such noise. Image denoising is needed 

because a noisy image is not pleasant to view. In addition, 

some fine details in the image may be confused with the noise 

or vice-versa. Many image-processing algorithms such as 

pattern recognition need a clean image to work effectively. 

Random and uncorrelated noise samples are not compressible. 

Such concerns underline the importance of denoising in image 

and video processing. Images are affected by different types 

of noise. Denoising of natural images corrupted by noise 

using wavelet techniques is very effective because of its 

ability to capture the energy of a signal in few energy 

transform values. The wavelet denoising scheme thresholds 

the wavelet coefficients arising from the wavelet transform. 

The problem of image denoising can be summarized as 

follows [2]: let ( , )A i j  be the noise-free image and 

( , )B i j  be the image corrupted with noise ( , )Z i j , then 

( , ) ( , ) * ( , )B i j A i j Z i j    (1) 

where  is the noise variance. In the wavelet domain, the 

problem can be formulated as 

( , ) ( , ) ( , )Y i j X i j W i j    (2) 

where ( , )Y i j  is noisy wavelet coefficient, ( , )X i j  is true 

coefficient and ( , )W i j  is noise. For the noise deduction 

purpose, wavelet filters have two properties. Firstly, wavelet 

filter is capable of extracting the signal information from the 

noisy wavelet coefficients and secondly, interscale image 

wavelet coefficients distribution is effectively close to 

mutually Gaussian distribution [when the distribution is 

jointly Gaussian, LMMSE is equal to minimum mean square-

error estimation (MMSE)]. In this paper, different denoising 

techniques have been proposed. Out of the models proposed, 

the wiener filter plus LMMSE-based denoising technique with 

wavelet multiscale model turns out to be the best in terms of 

three parameters SNR (signal to noise ratio), MSE (mean 

square error) and PSNR (peak signal to noise ratio). 

2. THEORETICAL BACKGROUND 

2.1 Wavelet Transform 
Let us take an N by N image. In the decomposition process, 

the image is high and low-pass filtered along the rows and the 

results of each filter are down-sampled by two. Those two 

sub-signals correspond to the high and low frequency 

components along the rows and are each of size N/2. Then 

each of these sub-signals is again high and low-pass filtered, 

along the column data. The results are again down-sampled by 

two. As a result the original data is split into four sub-images 

each of size N/2 by N/2 containing information from different 

frequency components. The LL subband is the result of low-

pass filtering both the rows and columns and it contains a 

rough description of the image as such. Hence, the LL 

subband is also called the approximation subband. The HH 

subband is high-pass filtered in both directions and contains 

the high-frequency components along the diagonals as well. 

The HL and LH images are the result of low-pass filtering in 

one direction and high-pass filtering in another direction. LH 

contains mostly the vertical detail information that 

corresponds to horizontal edges. HL represents the horizontal 

detail information from the vertical edges. All three subbands 

HL, LH and HH are called the detail subbands, because they 

add the high-frequency detail to the approximation image. In 

the composition process, the information from the four sub-

images is up-sampled and then filtered with the corresponding 

inverse filters along the columns. The two results that belong 

together are added and then again up-sampled and filtered 

with the corresponding inverse filters. The result of the last 

step is added together in order to get the original image again. 

There is no loss of information when the image is 

decomposed and then composed again at full precision [3]. 
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Three performance measures [4] [5] SNR, MSE and PSNR 

are given as:  
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where I and K are the original and noisy (denoised) images, 

respectively. MAX I  is the maximum possible pixel value of 

the image. 

 

2.2 Bayesian Thresholding 
It refers to the concept of selecting different threshold values 

for different subbands under consideration. The BayesShrink 

[6] rule uses a Bayesian mathematical framework for images 

to derive subband dependent thresholds that are nearly 

optimal for soft thresholding. The observation model is, Y = 

X +W, with X and W independent of each other, hence 

2 2 2

y x      (6) 

where 
2

y = variance of Y. Since Y is modeled as zero 

mean, 
2

y can be found empirically by 

2 2
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where n*n is the size of the subband under consideration. 

Thus,                 
2
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x

T
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

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where 2 2max( ,0)x y    . In the case 

that
2 2

y  , x  is taken to be 0. That is, ( )B xT   is ∞, 

or, in practice, ( )B xT  =max (abs ( ,i jY )) and all 

coefficients are set to 0. This happens at times when 𝜎 is 

large. Hence, we refer this method as BayesShrink which 

performs soft thresholding, with the data driven, subband 

dependent threshold [7]. 

2.3 Median Filter 
The median filter is a nonlinear digital filtering technique, 

often used to remove noise. Such noise reduction is a typical 

pre-processing step to improve the results of later processing 

(for example, edge detection on an image). Median filtering is 

very widely used in digital image processing because, under 

certain conditions, it preserves edges while removing noise. It 

is more effective method for removing salt and paper noise 

[8].  It is performed by taking the magnitude of all of the 

vectors within a mask and sorted according to the magnitudes. 

The median magnitude of the pixel is used to restore the pixel 

studied.  The median of a set is more dynamic with respect to 

the presence of noise. The median filter is expressed by 
2 2

1 1( ........... ) ( ............. )
N NMF x x median x x

(9)
 

2.4 Wiener Filter 
Wiener filter is an optimum filter whose purpose is to reduce 

the amount of noise present in a signal by comparison with an 

estimation of the desired noiseless signal. The main goal of 

Wiener filter is to minimize the mean square error [8]. It is 

capable of handling both the degradation function as well as 

noise. The Fourier domain of the Wiener filter is expressed by 

*

2

( , )
( , )

( , ) ( , ) ( , )s n

H u v
G u v

H u v P u v P u v



   (10)                    

Where, H (u, v) = Degradation function  

H*(u, v) = Complex conjugate of degradation function 

 
Pn (u, v) = Power Spectral Density of Noise  

Ps (u, v) = Power Spectral Density of non-degraded image 

 

2.5 Overcomplete Wavelet Expansion 
Orthogonal Wavelet Transform (OWT) sometimes cause 

visual artifacts in threshold-based noise removal [9 – 20] and 

it has been observed that the OWE obtain better results in 

noise repression and artifacts reduction. Instead of down 

sampling of wavelet coefficients in OWT, the restored image 

by OWE is an average of several circularly shifted noise 

removed adaptations of the same signal by OWT by which the 

additive white Gaussian noise is well suppressed  [21] [22]. 

2.6 Multiscale LMMSE Interscale Model 
Let us assume that the original image f corrupted with 

additive Gaussian white noise ε, is defined as   

                        I f  ε              (11) 

Where ε
2(0, )N  , Applying the OWE to the noisy 

signal at scale k yields 

                             k k kw x v 
           

(12)
 

Where, kw  is a coefficient at scale k  , kx and kv are the 

expansions of f and ε respectively. 

Instead of using universal soft and hard thresholding, 

LMMSE method is applied. Hence the LMMSE of kx  is 

given by, since 
2(0, )
kk xx N   and 

2(0, )k kv N   

http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Signal_noise
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Noise
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The expression  
1

D

kw 
 of is expressed in the form of  

                               
1k kL  1 0 *D D

k kw S L 
   (15)

 

Where * is the convolution operator and filter 
D

kL  is 

            
' ' '

0 0 1 1* *.......* * * *D

k k k k kL H H H H G G   

                                                                                             (16) 

Similarly for horizontal and vertical direction, we have   

1 0 *H H

k kw S L    and  1 0 *v v

k kw S L 
 (17)

 

Where 

' ' '

0 0 1 1* *.......* * * *H

k k k k kL H H H H G G      And  

' ' '

0 0 1 1* *.......* * * *v

k k k k kL H H H H G G 
(18)

 

Noise standard deviation of kv  at scale k  in a direction 

(horizontal, vertical or diagonal) is 

1 1k kL  
    (19)

 

Where  1kL   is the corresponding filter. The standard 

deviation of 
kx noiseless image is kx estimated as  

      
2 2 2

k kx w k   
   (20)
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Where, M, N is the numbers of input image rows and 

columns. 

The LMMSE-based wavelet noise removal system proposed 

in [23] [24] obtained better results. These two systems 

exploited the wavelet interscale dependencies. Therefore, to 

accomplish an interscale wavelet model which is based on 

LMMSE, the wavelet adjacent scales are strongly correlated 

and these interscale dependencies can be exploited for better 

noise removal results. The wavelet based represented images 

are similar across scales and especially among the adjacent 

scales. In wavelet domain, the noise level decrease swiftly 

along scales, while signal structures are strengthened with 

scale rising. Thus coarser scale information is being used to 

recover finer scale estimation. When the input image is 

decomposed into k  scales, then scale k is strongly 

correlated with scale 1k  , but its correlations with scales 

2, 3.............k k  decreases rapidly.  

Now, we accumulate the points with the same orientation at 

scales k  and 1k  as a vector 

1( , ) [ ( , ), ( , )]T

k k kw m n w m n w m n
           (22)

   
 

k k kw x v 
        

(23)
 

Where,  

1( , ) [ ( , ), ( , )]T

k k kx m n x m n x m n  

1( , ) [ ( , ), ( , )]T

k k kv m n v m n v m n
       

(24)
 

The LMMSE of 
kx  is expressed by 

 1( )k k k kx P P R w 
                           (25)    

 

Here the covariance matrices of kx and kv are represented by 

kP  and kR  

[ ]
T

k k kP E x x
       

(26)
 

[ ]
T

k k kR E v v
              

                  (27)

  

 

The correlation coefficient value is expressed by, 
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kv  and 1kv   represent the joint Gaussian distribution 

function. So, the density is given by, 

2 2
, 1 , 1 1

2 2 2
1, 1 1
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The probable value is given by, 

1 1 1[ ]k k k k k kE v v      
  

 (30)
 

[ ] [ ] [ ]r s r s r sE x x E w w E v v 
    

(31)
 

Where, r   and s  represents k  and 1k   respectively 
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3. DESIGN AND IMPLEMENTATION 

OF THE PROPOSED DENOISING 

TECHNIQUE 
In this work, the major focus is to design a technique that 

provides better denoised output compared to the following 

noise removal techniques in terms of SNR, MSE and PSNR. 

Fig 1 shows a Wiener-Bayesian wavelet based image 

denoising technique. In this model, wiener filter is used for 

the pre-processing stage and the filtered output is fed to the 

Bayesian network for further denoising. Similarly, fig 2 shows 

a Median-Bayesian wavelet based image denoising technique. 

Fig 3 shows a Median-LMMSE based denoising technique  

with wavelet multiscale model. Fig 4 shows the proposed 

model. 

 

4. EXPERIMENTAL RESULTS AND 

COMPARISONS 
 

Table 1. Comparison of different denoising schemes 

(Random Noise Variance 𝛔 =25) 

Denoising 

Schemes 

Input 

SNR 

(dB) 

Output 

SNR 

(dB) 

MSE PSNR 

(O/N) 

dB 

PSNR 

(O/D) 

dB 

WB 14.5896 16.5759 395.58 20.174 22.158 

MB 14.5896 16.72 382.68 20.141 22.302 

MLMMSE 14.5896 18.4511 256.87 20.176 24.0335 

Proposed 14.5896 20.159 173.35 20.164 25.7414 

 

Table 2. Comparison of different denoising schemes 

(Random Noise Variance 𝛔 =30) 

Denoising 

Schemes 

Input 

SNR 

(dB) 

Output 

SNR 

(dB) 

MSE PSNR 

(O/N) 

dB 

PSNR 

(O/D) 

dB 

WB 13.006 16.413 410.63 18.547 21.99 

MB 13.006 16.540 398.84 18.574 22.12 

MLMMSE 13.006 17.977 286.48 18.607 23.56 

Proposed 13.006 19.446 204.27 18.618 25.03 

 

Table 3. Comparison of different denoising schemes 

(Random Noise Variance 𝛔 =35) 

Denoising 

Schemes 

Input 

SNR 

(dB) 

Output 

SNR 

(dB) 

MSE PSNR 

(O/N) 

dB 

PSNR 

(O/D) 

dB 

WB 11.667 16.265 424.94 17.227 21.84 

MB 11.667 16.396 412.27 17.261 21.98 

MLMMSE 11.667 17.865 293.98 17.286 23.44 

Proposed 11.667 18.949 229.04 17.251 24.53 

 

Fig 1: Wiener-Bayesian (WB) Model
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Fig 2: Median-Bayesian (MB) Model

  

Fig 3: Median-LMMSE (MLMMSE) Model 

 

 

Fig 4: Wiener-LMMSE Model (Proposed) 

 

 

Table 4. Performance Improvement of the proposed model 

compared to the other three models (Random Noise 

Variance 𝛔 =25) in % 

Models  SNR MSE PSNR 

WB 21.61 56.67 16.17 

MB 20.56 54.69 15.42 

MLMMSE 9.26 32.51 7.12 

Table 5. Performance Improvement of the proposed model 

compared to the other three models (Random Noise 

Variance 𝛔 =30) in % 

Models  SNR MSE PSNR 

WB 18.48 50.25 13.8 

MB 17.57 48.78 13.13 

MLMMSE 8.17 28.69 6.23 
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Table 6. Performance Improvement of the proposed model 

compared to the other three models (Random Noise 

Variance 𝛔 =35) in % 

Models  SNR MSE PSNR 

WB 16.5 46.1 12.28 

MB 15.56 44.4 11.6 

MLMMSE 6.06 22.08 4.61 

 

Fig 5: Denoised Images using various Denoising Models 

( =25) 

Fig 6: Denoised Images using various Denoising Models 

( =30) 

Fig 7: Denoised Images using various Denoising Models 

( =35) 

 

Fig 8: PSNR vs. MSE Graph ( =30) 

MSE, SNR and PSNR values are calculated for different 

combinations separately. Fig 5 shows a set of denoised images 

using different denoising models for noise variance of 25. (a.) 

is the original image; (b.) is the noise corrupted with random 

noise; (c.) is the result of WB Model; (d.) is the result of MB 

Model; (e.) is the result of MLMMSE Model; and (f.) is the 

denoised output of the proposed model. Similarly, fig 6 and 

fig 7 shows a set of denoised images for noise variance 30 and 

35. Fig 8 shows a graph for PSNR vs. MSE. Table I, II and III 

shows a set of results obtained from denoising operations 

carried out using different models. Table IV, V and VI shows 

the performance improvement of the proposed model 

compared to the other three models. 
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5. CONCLUSION 
From experimental results, it can be concluded that the 

proposed denoising technique leads to fairly satisfactory 

results as far as denoising of image corrupted with random 

noise is concerned. This work can be further enhanced to 

denoise the other type of images, as well, like RGB, Indexed 

and Binary images. Use of AI techniques will lead to the 

optimal solution directly, with more efficiency and less 

tedious work. 
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