
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.18, May 2012

8

Detection of Malicious Code-Injection Attack Using Two

Phase Analysis Technique

D. Swathigavaishnave

M.Tech Student, Department of Computer Science
and Engineering

Pondicherry Engineering College
Puducherry, India

R. Sarala
Assistant Professor, Department of
Computer Science and Engineering

Pondicherry Engineering College
Puducherry, India

ABSTRACT
In today’s world code injection attack is a very big problem.

Code injection attacks are to exploit software vulnerabilities

and inject malicious code into target program. These

malicious codes are normally referred as malware. Systems

are vulnerable to the traditional attacks, and attackers continue

to find new ways around existing protection mechanisms in

order to execute their injected code. Malicious code detection

is an obfuscation-deobfuscation game between malicious code

writers and researchers working on malicious code detection.

Malware writers obfuscate their malicious code to subvert the

malicious code detectors, such as anti-virus software.

Signature-based detection is the most commonly used method

in commercial antivirus software. However, it fails to detect

new malware. In this paper, we propose a two phase analysis

technique. In first phase a malicious code with obfuscated

techniques is detected by means of static analysis of

instruction sequence. Phase II involves extracting opcode

sequence from the dataset to construct a classification model

and compare it to the output of phase I to identify it as

malicious or benign.

Keywords
Obfuscation techniques, static analysis, classification

algorithm

1. INTRODUCTION
Malicious codes are pieces of code that can affect the secrecy,

the integrity, the data and control flow, and the functionality

of a system. Therefore, their detection is a major concern

within the computer science community as well as within the

user community. As malicious code can affect the data and

control flow of a program, static flow analysis may naturally

be helpful as part of the detection process. Still various

approaches are evolved to detect malicious code. Various

anti-virus scanners are used to detect the malicious code. But

all these techniques are signature based approach. A signature

is a unique sequence of bytes that is always present within

malicious executables and in the files already infected.

The main issue of this approach is that malware analysts must

wait until new malware has harmed several computers to

generate a signature and provide a solution. Analyzed suspect

files are compared with this list of signatures. When the

signatures match, the file being tested is classified as

malware. Although this approach has been proven as effective

when threats are known in beforehand, these signature

methods are surpassed with large amounts of new malware.

Another most important problem in anti-virus packages is that

signature database must be updated regularly to find new

malware. A malware can be easily modified by means of

simple obfuscation techniques.

Malwares writers may use various obfuscation techniques to

hide themselves from the various anti-virus tools. Simple

obfuscation involves inserting NOP (no operation)

instructions, swapping registers, and reordering independent

instructions. Malware can be obfuscated using two

techniques: Polymorphic techniques and metamorphic

techniques.

In creating new malware, black hats generally employ one or

both of the following techniques: obfuscation and behavior

addition/modification in order to circumvent malware

detectors. Obfuscation attempts to hide the true intentions of

malicious code without extending the behaviors exhibited by

the malware. Behavior addition/modification effectively

creates new malware, although the essence of the malware

may not have changed.

2. RELATED WORKS
In this section we discuss about various techniques used for

malicious code detection.

In [1] author used data mining techniques for extracting

variable length instruction sequences that can identify Trojans

from clean programs. The analysis is facilitated by the

program control flow information contained in the instruction

sequences. Based on general statistics gathered from these

instruction sequences, support vector machine classifier is

trained.In [2] author presents CWSandbox, which executes

malware samples in a simulated environment, monitors all

system calls, and automatically generates a detailed report to

simplify and automate the malware analyst’s task. It monitors

all the executed functionality. [3] Focuses on deobfuscation of

actual obfuscated code in order to reveal true intent of that

piece of code. [4] Proposed a statistic-based metamorphic

virus detection technique and proves that detection based on

statistics is a useful approach in detecting self-mutated

malwares.

Six statistic features that include percentage of NOP

instruction at the end of subroutines, percentage of NOP

instruction in random, JMP instruction profile, short jump

instruction profile, all subroutine profile, and subroutines

without a CALL instruction were taken.

In [5], a behavior-based detection approach is proposed to

address malware detection. The behaviors of interest are

defined as static system call sequences and they are derived

by statically analyzing binary code.

Machine-learning methods, including the K-nearest neighbor,

Support Vector Machine, and decision tree methods are used

to classify executables. SigFree uses a new data-flow analysis

technique called code abstraction that is generic, fast, and

hard for exploit code to evade. SigFree is signature free, thus

it can block new and unknown buffer overflow attacks;

SigFree is also immunized from most attack-side code

obfuscation methods [6].

Stati

c

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.18, May 2012

9

Basic common Techniques used for detecting malware can be

categorized as shown in the fig.1

Fig.1 Techniques used for detecting malware

3. METHODS FOR OBFUSCATION
General code obfuscation techniques aim to confuse the

understanding of the way in which a program functions. These

can range from simple Layout transformations to complicated

changes in control and data flow.

Programmers obfuscate their code to defeat manual analysis

and signature based detection. Obfuscations are used to hide

malicious behavior.
Given a code C and a transformation function T generates

code C’ such that the following properties holds true:

• C’ is difficult to reverse engineer.

• C’ holds the functionality of C.

• C’ performs comparable to C.

 T(C)

 C C’

 Fig.2 obfuscation

Obfuscation technique modifying the signature of the code is

given below.

 Original Code

 Hex Opcodes Assembly code

51 push ecx

50 push eax

5B pop ebx

8D 4B 38 lea ecx,[ebx+38h]

50 push eax

E8 00000000 call 0h

5B pop ebx

83 C3 1C add ebx,1Ch

.

.

Signature

5150 5B8D 4B38 50E8 0000 0000 5B83 C31C

Now the original code is obfuscated by inserting a bunch of

junk instruction like nop’s. Then the obfuscated code and the

new signature are as follows:

 Modified Code

 Hex Opcodes Assembly

 51 push ecx

 90 nop
 50 push eax

 5B pop ebx

 8D 4B 38 lea ecx,[ebx+38h]

 50 push eax

 90 nop

 E8 00000000 call 0h

 5B pop ebx

 83 C3 1C add ebx, 1Ch

 .

 .

 .

Signature

5190 505B 8D4B 3850 90E8 0000 0000 5B83 C31C

Thus the change in signature is not detected by Malware

scanner and the false negative rate will increase enormously.

Common obfuscation techniques fall into following main

categories:

a) Dead-code insertion

Dynamic

Hybrid
Static

Dynamic

Hybrid

Specification based

Static Dynamic Hybrid

Malware detection

Signature based Anomaly based

Static

Obfuscation

Transformation

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.18, May 2012

10

b) Code transportation

c) Register Renaming

d) Instruction Substitution

3.1 Garbage Insertion/ Dead-code insertion
Garbage insertion adds sequences of instruction which does

not modify the functionality and behavior of the program.

This insertion can be done anywhere in the program. Main

purpose of junk code insertion is to change its byte value used

as signature. There are various methodology used for garbage

code insertion such as a sequence of NOPs (no operation

instructions).another type of dead code insertion is

push ax

pop ax
Without any change, value is returned to the register from the

stack.

inc bx inc cx

dec bx (or) sub cx, 1
In this the value of a register remains unchanged.

3.2 Code Reordering
The code reordering obfuscation changes the order of program

instructions. The physical order is changed while maintaining

the original execution order through the use of control-flow

instructions (branches and jumps). Branches are inserted with

conditionals defined and computed such that the branch is

always taken. The conditional expression can be based on a

complex computation. The execution order of instructions can

be changed only if the program behavior is not affected.

Independent consecutive instructions (without any

dependencies between them) can thus be interchanged.

Sample code transportation obfuscation of assembly source

program is given below,
jz label

jnz label

label: malicious code
Although the instruction jz and jnz are conditional jumps, but

the condition that decide the execution of these two

instructions are complementary with each other. And the

target addresses of the two conditional jump instructions are

identical. Hence the function of these two conditional jumps is

actually equal to one unconditional jump instruction. In this

way, the conditional jumps obfuscation achieves the goal of

hiding malicious codes.
3.3 Register Renaming

Register reassignment involves changing the usage

of one register with another such as eax with ebx to evade

detection.
Although all of these approaches change the code

pattern in order to evade detection, the behavior of the

malware still remains the same.

3.4 Instruction substitution

This obfuscation technique, involves substituting new

instruction for existing one with their equivalent instruction.

By substituting an equivalent instruction its signature gets

changed but its functionality remains the same. Example for

this obfuscation is, to assign a value 0 to a register may take

following forms,

mov eax, 0

 xor eax, eax

 and eax, 0

 sub eax, eax

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.18, May 2012

11

 disassemble

 Static analysis

 build

 no testing

 yes

Fig.3 Overview of Proposed System

4. PROPOSED METHODOLOGY
Binary executable codes are stored as a sequence of bytes.

Analyzing the byte sequence may detect malicious file but

cannot detect obfuscated file. Both malicious and obfuscated

file can be detected by analyzing an assembly code. Assembly

code is obtained by disassembling an executable file. Various

Disassembler tools are used for the conversion of byte

sequence to assembly language.

Here we use IDA pro disassembler tool [7] to get assembly

code.Static analysis is performed on the obtained assembly

code. Static analysis can examine an executable to determine

if it is malicious without running the code. In contrast,

Dynamic analysis monitors the execution of an executable to

detect malicious behavior. As compared with Dynamic

analysis, Static analysis can exhaustively analyze an

executable by evaluating every possible execution path.

In our proposed methodology to reduce false negative two

phase analysis is used to detect malicious file.

Overview of our proposed architecture is shown in fig-2.

Algorithm for the detection of obfuscated file

Input: Executable file (F)

Output: malicious (containing obfuscated code) or benign

Step 1: disassemble a file into ASM file

Step 2: generate control flow graph (CFG), G= (V, E) where

V is a set of vertices and E is a set of edges.

Step 3: for each node v €V of CFG

Checking for obfuscated code like

If v has NOP instruction then /*because legitimate

file doesn’t contain NOP*/

F is a malicious file because of obfuscation code.

Else

F is benign

End for

In the first phase, if any obfuscation is present in ASM file

then there is malicious intent. But sometimes this may lead to

false positives. Our proposed algorithm can detect only a file

which uses obfuscation techniques. Normal malicious files

without obfuscation are not detected. So for further analysis of

a particular file, we extract the opcode sequence of a file and

give it to the classification model to conclude whether it is

benign or malicious [8].

 In phase II, to train the classifier a dataset consisting of

malicious files (worms, Trojans, virus) and benign files from

the Vx-Heavens website [9] is created. A decision tree is

constructed based on opcode sequence extracted from the

dataset containing malicious and benign executable.

Executable file to be

tested

Dataset containing

malicious and

benign files

Assembly program

Obfuscation

code(garbage

insetion, code

reordering)

Malicious file

Extract opcode

Disassembler

Extract opcode

Classification

model

Benign file

Malicious

file

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.18, May 2012

12

Algorithm for extraction of opcode sequence

Input: dataset containing malicious files (V) and benign files

(B)

Output: set of opcode sequence (O)

Step 1: disassemble each file to get ASM file

Step 2: for each file vi of V do

Extract the opcode and ignore operands

Parse the extracted opcode based on jump

instruction (conditional or unconditional)

Record all opcode sequence

If particular opcode sequence already exist

 Increment the count of particular opcode sequence.

End for

Select most frequent top L opcode sequence to train the

classifier

There are numerous Intel x86 instructions, so instead of

considering all these instructions, it is logical to examine only

the most frequently occurred instructions and eliminate the

less frequently used instructions. Based on the research done

by Bilar in [10], only 14 instructions in total set of Intel

instructions are most frequently occurred. They are MOV,

PUSH, CALL, POP, CMP, JZ, LEA, TEST, JMP, ADD, JNZ,

RETN, XOR, and AND.

Let’s consider a virus example. The process involved in our

methodology is given below.

pop edx

mov edi,0004h

mov esi,ebp

nop

mov eax,000ch

add edx,0088h

mov ebx,[edx]

nop

mov [esi+eax*4+0001118],ebx

 Win95.regswap virus

Our methodology can easily detect this virus. It generates

CFG for the disassembled code and analysis each block i.e.

node. Our algorithm detects the presence of nop (no

operation) instruction and identifies it as malicious. This virus

code is actually obfuscated so in the first phase itself it is

identified as malicious.

push ebp

mov ebp,esp

mov esi,dword ptr[ebp+08]

test esi,esi

je 401045

mov esi, dword ptr [edp+0c]

or edi,edi.

je 401045

xor edx,edx

Portion of the output of disassembled w95.bistro virusThis

virus code is not obfuscated. Our first phase analysis cannot

detect this code. So it is taken for further analysis in the phase

II which proceeds as given below.

The first step involves extracting opcode and eliminating

operands.

push

mov

mov

test

je

mov

or

je

xor

 Opcode sequence

In second step, the obtained opcode is parsed until a jump

instruction is encountered.

push mov mov test je

mov or je

xor

 This step returns the parsed opcode sequence.

The Parsed opcode sequence is given to the decision tree and

it identifies the code as malicious or benign.

Decision tree model is used to obtain a set of rules that can

classify each sample into either malicious or benign class. The

Decision Tree (J48) classifier has an excellent feature

selection capability, and requires much less training and

testing time than other classifiers.

5. EXPERIMENTAL RESULTS
Our proposed methodology can detect the malware along with

obfuscation when compared with existing antivirus tools.

Because of two phase analysis method, our technique can

detect all type of malicious code and can reduce the FP and

FN rate.

We collected 500 virus files from vx-heavens and corpus

dataset and benign files from windows.

Input: calc.exe (windows system32 file)

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.18, May 2012

13

Fig.4 Disassembled ASM File

Generated asm file is analyzed for the presence of

obfuscation. There is no obfuscation, the opcode is extracted

from the file and compared to the classification model to

classify it as benign or malicious.

Fig.5 Extracted Opcode Sequence and the Output

Output: The given file does not contain obfuscated code.

Hence it is classified as benign.

To reduce false positives and false negatives the opcode

sequence is extracted and given to the classifier. It classifies

the file as benign.

Input: ngvck025.exe

Output: The given file contains obfuscated code. Hence it is

classified as malicious.

6. PERFORMANCE EVALUATION

The following metrics are used to evaluate our method with

an existing system

True positive (TP): benign programs are correctly identified

True negative (TN): malicious programs are correctly

identified.

False positive (FP): benign programs are wrongly identified

as malicious.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.18, May 2012

14

False negative (FN): malicious programs are incorrectly

classified as benign.

The performance of our methodology was evaluated using the

true positive rate, false positive rate which are defined as

follows,

True positive rate (TPR): percentage of benign programs

correctly identified.

TPR= (TP/TP+FN)

False Positive Rate (FPR): percentage of malicious programs

wrongly identified.

 FPR= (FP/TN+FP)

 500 virus file and 300 benign file are given as input. From

which the accuracy of true positive rate (TPR) of our

proposed methodology is higher than existing system and

false positive rate (FPR) of our proposed methodology is

lower than existing system.

Table.1: performance evaluation of proposed work

methods TPR FPR

Signature based

detection

0.950 0.700

Proposed

methodology

0.992 0.530

Table.2 Comparison of proposed and existing work

7. CONCLUSION
In this paper, we have proposed a two phase analysis

technique to detect malicious code injection attack by using

static analysis and classification model constructed by

frequency of occurrence of opcode extracted from a dataset.

Experimental results indicate that the proposed methodology

can detect both obfuscated malicious files and malicious files

without obfuscation. Since we are using the two phase

analysis technique, files with obfuscated code is detected in

first phase by static analysis and there is no need of the second

phase. Files without obfuscated code are detected in second

phase by classification model which classifies them as

malicious or benign.

Our methodology cannot detect register renaming obfuscation

technique. We plan to detect this obfuscation technique in our

future work.

7. REFERENCES

[1] D.M.A. Hussain et al. (Eds.): “Detecting Trojans Using

Data Mining Techniques”, CCIS 20, pp. 400–411,

2008.Springer-Verlag Berlin Heidelberg 2008.

[2] Carsten Willems, Thorsten Holz, Felix Freiling: “Toward

Automated Dynamic Malware Analysis Using

CWSandbox”, IEEE Security and Privacy, vol. 5, no. 2,

pp. 32-39, Mar/Apr, 2007.

[3] A. Lakhotia, E. U. Kumar, M. Vennable, “A Method for

Detecting Obfuscated Calls in Malicious Binaries”, IEEE

transactions on Software Engineering, Vol 31, No 11,

November (2006).

[4] Govindaraju. A, Faculty, Department of Computer

Science, Master Thesis, “Exhaustive Statistical Analysis

for Detection of Metamorphic Malware”. San Jose State

University, San Jose, CA (2010).

 [5] Ding Yuxin*, Yuan Xuebing, Zhou Di, Dong Li, An

Zhancha,” Feature representation and selection in

malicious code detection methods based on static system

calls”Computers & Security (2011) ,article in

press,science direct journal.

[6] Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu

“SigFree: A Signature-Free Buffer Overflow Attack

Blocker” ieee transactions on dependable and secure

computing, vol. 7, no. 1, january-march 2010.

[7] IDA Pro Disassembler and Debugger, http://www.hex-

rays.com.

 [8] Raviraj Choudhary and Ravi Saharan malware Detection

Using Data Mining Techniques” international Journal of

InformationTechnology and Knowledge Management

January-June 2012, Volume 5, No. 1, Pp. 85-88

[9] VXheavens http://vx.netlux.org

[10] Bilar. D,” Statistical Structures: Fingerprinting malicious

code through statistical opcode analysis”, 3rd

International Conference on Global E-Security, ICGeS

2007 (2007).

malware Signature based

detection

Proposed method

Obfuscated

virus files

Cannot detect Can detect

Malicious files

without

obfuscation

 Can detect

 Can detect

http://www.hex-rays.com/
http://www.hex-rays.com/

