
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.10, May 2012

35

Generating Weather Forecast Texts with Case based
Reasoning

Ibrahim Adeyanju

IDEAS Research Institute
The Robert Gordon University

Aberdeen, Scotland, UK

ABSTRACT

Several techniques have been used to generate weather

forecast texts. In this paper, case based reasoning (CBR) is

proposed for weather forecast text generation because similar

weather conditions occur over time and should have similar

forecast texts. CBR-METEO, a system for generating weather

forecast texts was developed using a generic framework

(jCOLIBRI) which provides modules for the standard

components of the CBR architecture. The advantage in a CBR

approach is that systems can be built in minimal time with far

less human effort after initial consultation with experts. The

approach depends heavily on the goodness of the retrieval and

revision components of the CBR process. We evaluated CBR-

METEO with NIST, an automated metric which has been

shown to correlate well with human judgements for this

domain. The system shows comparable performance with

other NLG systems that perform the same task.

General Terms

Artificial Intelligence, Information Systems, Problem-Solving

Keywords

Weather forecast, Text Reuse, Text Generation, CBR, NLG

1. INTRODUCTION
In applied Natural Language Generation (NLG), the domain

of weather forecasting is very popular and has been used to

test the effectiveness of several text generation techniques

[1,2,3,4,5,6,7]. Many techniques have been proposed and

applied to automated generation of weather forecast texts.

Such techniques include knowledge intensive approaches in

which explicit rules are elicited from domain experts and

corpus analysis [6,8] at different stages of the text generation

process. Machine learning models, especially statistical

methods, have also been used to design systems that learn

generation models introspectively from the corpus [7,9]. The

use of machine learning to build text generation models is

knowledge-light.

However, weather forecasting and generation of weather

forecast texts are natural Case Based Reasoning (CBR)

problems. This is because the basic assumptions in CBR are

that similar problems occur again and similar problems have

similar solutions. When we look at the weather conditions

for a particular day, we are immediately reminded of similar

weather conditions in the past. Therefore, it is expected that

similar weather conditions should have similar forecast texts

and it is easier to reuse previous similar forecast texts to

generate new forecast texts. In this paper, we show how CBR

as a knowledge-light approach can be used to generate

weather forecast texts from forecast data and discuss its

merits and demerits.

Background and related works appear in Section 2

followed by a description of the CBR architecture and its

application to text generation in Section 3. Section 4

discusses our experimental setup and evaluation results

while our conclusion appears in Section 5.

2. BACKGROUND
Automated generation of weather forecast texts has been

achieved using several techniques. These techniques can be

divided into two broad categories: knowledge-intensive (KI)

and knowledge-light (KL) approaches. KI approaches

require extensive consultation with domain experts during

corpus analysis and throughout the text generation process.

On the other hand, KL approaches rely more on the use of

automated methods which are mainly statistical.

One of the earliest KI systems generated forecast texts by

inserting numeric values in standard manually-created

templates [10]. Multiple templates are created for each

possible scenario and one of them is randomly selected

during text generation to provide variety. Other KI systems

such as ICWF [11], FoG [12] and SumTime [6] developed

linguistic models using manually-authored rules obtained

from domain experts and corpus analysis. Some of these

systems, e.g. FoG and SumTime, used NLG architecture [13]

where the generation process is separated into different

modules. The modules in architecture include document

planning, micro planning and realization.

The KL approach to generate forecast texts typically employs

machine learning techniques. Trainable systems are built

using models based on statistical methods such as probabilistic

context-free grammars and phrase based machine translation

[14]. The advantage is that systems are built in less time and

with less human effort as compared to the KI approach.

Forecast texts generated by KL systems were reported to have

comparable quality to KI systems when evaluated with

automated metrics [15]. However, KI systems were better

when evaluated by humans.

Synergy between CBR and NLG has previously been

exploited for automatic story plot generation [16,17]. Here, a

plot structure is obtained by reusing stories from a case base

of tales and ontology of explicitly declared relevant

knowledge. NLG techniques are then used to describe the

story plot in natural language. Although the story generated

is a complete sketch of the plot, it assists screen writers in

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.10, May 2012

36

fast prototyping of story plots which can easily be developed

into a story.

3. CBR APPROACH TO GENERATING

WEATHER FORECAST TEXTS
This section gives an insight into the case based reasoning

(CBR) paradigm and how it is used for generating weather

forecast texts. The basic concepts and terminology in CBR are

discussed using examples from the weather forecast domain.

3.1 Case Based Reasoning
The basic principles in CBR are that similar problems occur

again and similar problems have similar solutions. It is

therefore easier to modify a previous solution to a similar

problem than solving a new problem from scratch. The

technique therefore requires knowledge in the form of

problem-solving episodes where each episode is called a

case. Each case consists of a problem and its solution and a set

of cases form the casebase. The CBR problem-solving

architecture as shown in Figure 1 typically consists of four

components: Retrieve, Reuse, Revise and Retain

commonly referred to as 4Rs [18].

Figure 1: A typical CBR architecture

The most similar case/cases is/are retrieved from the casebase

when a new problem (denoted as input or query) is

encountered. The information and knowledge in the retrieved

similar case/cases is/are then reused to solve the current

problem. Typically, formulating the proposed solution might

require modification to the retrieved solution to compensate

for problem mismatches if the retrieved similar case is not an

exact match. Adaptation, which is a sub-component of case

reuse, takes into account the differences between the problems

(input and retrieved) to guide any adjustment required in the

proposed solution. The revision component ensures that a

proposed solution is evaluated for its accuracy by a human or

generic domain models/rules. The proposed solution is revised

by such human expert if it does not accurately solve the

problem at hand. Finally, a new case consisting of the input

(problem query) and output (revised solution) is reviewed and

retained while maintaining an efficient case-base by

excluding redundant or noisy cases.

3.2 CBR-METEO: A weather forecast text

generation system

Our system, which we call CBR-METEO, generates weather

forecast texts using a repository of previous forecast texts

available in a casebase. In this domain, a case consists of a

pair of weather attribute values (for parameters like humidity,

out- look, wind speeds, wind directions and forecast times)

and equivalent forecast texts generated by human experts. We

restrict our weather data to those related to wind forecasts (i.e.

wind speeds, directions, gusts and time) and associated

texts for simplicity. CBR-METEO therefore generates a wind

forecast text for a new wind input data but can be easily

extended for other weather parameters. The system is built

using jCOLIBRI [19], an existing CBR framework. jCOLIBRI

provides generic modules for each component of the typical

CBR architecture (see Figure 1) thereby making development of

systems easier and faster.

The input or query to CBR-METEO consists of a number of

weather forecast states during the period (usually a day) in

which a forecast text is required. Table 1 shows an example of

the input to our system for wind weather. An input typically

has two, three or four states and each wind state has values for

the following attributes: wind direction (Wind Dir),

minimum wind speed (Low Spd) and maximum wind speed

(High Spd) and a time stamp (Time) indicating for what time

of the day the data is valid. Also, minimum gust speed (Lw

Gst) and maximum gust speed (Hg Gst) sometimes appear in

input wind states. The speed values for wind and gust are

measured in nautical miles (Knots). A dash („-‟) is used to show

that the value of a particular weather attribute is absent.

Table 1: Sample input to CBR-METEO

State Time Wind

Dir

Low

Spd

High

Spd

Lw

Gst

Hg

Gst

1 0600 n 6 10 - -

2 2400 ne 15 20 - -

n 10 or less gradually veering ne 15-20

Figure 2: Sample output from CBR-METEO

CBR-METEO‟s output is the forecast text generated from the

input data. Figure 2 shows an example of a wind forecast text

generated by the system for the input data in Table 1. Other

components of the system are discussed below.

3.3 Retrieval
The text generation process in CBR-METEO begins with

the retrieval of a case from the casebase whose weather data

is most similar to the input (query). Defining how the

similarity metric is therefore very important for the retrieval

component. The best form of similarity minimizes the work

done by the succeeding components of reuse and revise.

Our similarity computation ensures that a retrieved similar

weather data must have the same number of states as the

input. This is because the number of states usually

determines the number of phrases in the forecast text. Time

attributes are compared using the differences between time

stamps in aligned wind states. We then define similarity

between weather data (i.e. input and each case in the

casebase) mainly in terms of patterns across wind states.

The patterns for a scalar attribute (e.g. wind speed) are

increasing, decreasing or constant as we move from one state

to another while veering (clockwise), backing (anti-

clockwise) or stable patterns are applicable to vectorial

attributes (e.g. wind direction). The input and weather data

in each case in the casebase are transformed into a

representation showing the pattern transition across wind

states for each scalar and vectorial attribute.

Casebase

Retain

Revise

Reuse Retrieve

Proposed
Solution

Output/
Revised
Solution

Input/
Query

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.10, May 2012

37

Retrieval is done in a step-wise or hierarchical manner in

which all previous cases having the same number of wind

states as the input data are first retrieved. Cases within this

retrieval set whose average time stamp differences from the in-

put are within a specified threshold are then selected.

Similarly, cases with the same weather patterns (for wind

speeds, directions and gusts) as the input across states are

then selected iteratively from preceding subset of cases. If

more than one case is retrieved at the end of this iterative

process, the most similar case is chosen as the one with the

shortest average distance between its wind states and the

input‟s. The distance between wind states is computed by first

converting wind directions into their numeric angular values

(in degrees). Each pair of wind speed and angular direction is

taken as a vector quantity which represents a wind state.

Cosine rule is then used to compute the distance between

vectors and an average taken across the number of wind states

in the input. However, if no case is retrieved as the end of the

iterative process, the system gives no forecast text. The step-

wise retrieval ensures that retrieved cases are semantically

similar to the input data and therefore minimal modifications are

carried out by the reuse and revision components.

Table 2: Retrieved case similar to input data

State Time
Wind

Dir

Low

Spd

High

Spd

Lw

Gst

Hg

Gst

1 0600 nnw 8 10 - -

2 2400 nne 13 15 - -

Forecast Text

nw-nnw 8-13 gradually veering nne 10-15

Table 2 shows the best case retrieved for the input data in

Table 1. The retrieved case is most similar to the query not

only because they have the same number of states and time

stamps but the wind speed and direction patterns are also

similar. The wind direction as we move from state 1 to 2 in

both the input data (n → ne) and retrieved case (nnw → nne)

are veering (i.e. clockwise). The increasing wind speed

pattern is also common to both; an average speed of 8/9

knots in the early morning (6a.m.) to 17/14 knots by

midnight in the input/retrieved case respectively. An

example of how to compute the distance between two wind

states using cosine rule as the last step in retrieval process is

shown in Figure 3. The values shown in the example are those

from the first wind states for the input and the retrieved

similar wind data. The wind speed shown for each wind state

is an average of the minimum and maximum wind speeds.

Figure 3: Computing distance between two wind states

3.4 Reuse
The reuse component of CBR-METEO puts the forecast

text associated with the retrieved similar wind data in the

context of the input. To do this, the forecast text is parsed to

identify attribute values from the retrieved wind data that

are present in the text. These attribute values are then

substituted with their equivalent from the input. No action is

carried out by the reuse component if the retrieved wind data is

identical to the input. In other words, the forecast text

associated with retrieved wind data can be returned directly

for output if the similarity between the input and retrieved

data equals 1 at every step during the hierarchical computation

of similarity.

n 6-10 gradually veering ne 15-20

Figure 4: Sample forecast text by CBR-METEO

An example of the forecast text from the reuse phase is

shown in Figure 4 with the input and retrieved forecast text in

Tables 1 and 2 respectively. Here, the wind speeds (8-13 &

10-15) and directions (nw-nnw & nne) in the retrieved text

are replaced with those from the input.

3.5 Revision
The revision component uses expert rules to ensure that

specific phrases conform to writing conventions in the

domain. Such rules are learnt during post-edit tasks where

experts are given input data and forecast texts proposed by

the reuse component. Figure 5 shows a revised form of the

forecast text in Figure 4 where one of expert rules is applied

to revise “6-10” in the reuse forecast text into “10 or less”.

n 10 or less gradually veering ne 15-20

Figure 5: An example of a revised forecast text

3.6 Retain
Retention can be carried out in CBR-METEO where new

cases consisting of the input and output (generated forecast

texts) are be added to the casebase after further review by

experts. Inputs whose forecast texts CBR-METEO was unable

to generate can also be added after generation by the experts

or using other techniques. The system thereby evolves over a

period of time and is able to generate accurate forecast texts

for most inputs (if not all) when this component is functional.

S

E

22.5o

W

8
 K

n
o

ts
, N

x By cosine rule,

x2= 82 + 92 – 2*8*9*cos (22.5o)

x= √(11.96) = 3.46

Therefore, distance between the

two wind states= 3.46 knots

9 Knots,

NNW

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.10, May 2012

38

Figure 6: Generating wind forecast texts with CBR-METEO

3.7 CBR-METEO: A guided illustration
A summary of the text generation process is illustrated in

Figure 6. The figure shows the transition between the

different components (retrieve, reuse, revise and retain) with

the same examples used in Sections 3.2 to 3.6. Here, the wind

data is the problem and the forecast text is solution as viewed in

the CBR context. The wind attributes shown are wind

direction (Dir), minimum wind speed (LSpd) and maximum

wind speed (HSpd). The attributes associated with gusts are not

shown because they are absent in the input used for illustration.

4. EXPERIMENTAL SETUP
We employed a five hold-out experimental design identical to

[14] in our experiments. We evaluate the forecast text

generated by CBR-METEO with NIST [20] which correlates

best with expert judgements in the domain of weather forecast

text generation [15] as compare to other automated evaluation

methods such as BLEU [21] and ROUGE [22]. We then

compare the results with ten existing NLG systems; Sum-

Time hybrid [15] and nine trainable systems [7].

4.1 Dataset
Our experiments were evaluated using the wind weather

corpus described in [23]. The corpus consists of wind

forecast data and texts divided into five folds where each fold

is further sub-divided into training and test sets. The training

has 2104 wind forecasts while there are 221 forecasts in the

test set across all five fold with duplicates. The test sets

were used as our queries while each corresponding training

set is the casebase in our experiments. The wind data was

parsed from the human-authored forecast text where each

phrase produces a vector of 7-tuples (i, d, smin, smax, gmin,

gmax, t) where i is the tuples ID, d is the wind direction,

smin and smax are the minimum and maximum wind

speeds, gmin and gmax are the minimum and maximum gust

speeds, and t is a time stamp (indicating for what time of the

day the data is valid). If one or more parts of the 7-tuple is

not realised in a given forecast, a „−1‟ value is shown for

a timestamp and a „-‟ value for the speed, gust or direction

attribute.

The forecast texts consist of natural language forecasts from

human forecasters, Sum-Time hybrid system [15] and nine

trainable systems [7]. The nine trainable systems include 5

probabilistic context free grammar (PCFG) systems, 2

probabilistic synchronous context free grammar (PSCFG)

systems and 2 phrase-based statistical machine translation

(PBSMT) systems. The major difference in the trainable

systems is their mode of generation; PCFG system has five

modes: greedy (PCFG-greedy), roulette (PCFG-roule), viterbi

(PCFG-viterbi), n-gram (PCFG-2gram) and random (PCFG-

rand). Likewise, the PSCFG system modes are semantic

(PSCFG-sem) and unstructured (PSCFG-unstr) while PBSMT

system has unstructured (PBSMT-unstr) and structured

(PBSMT-struc) modes.

Problem:

 Time Dir LSpd HSpd

Seg1: 6 n 6 10

Seg2: 24 ne 15 20

Solution: ?

Query

Casebase

Retrieve

Retrieved Problem:

 Time Dir LSpd HSpd

Seg1: 6 nnw 8 10

Seg2: 24 nne 13 25

Retrieved Solution:

nw-nnw 08-13 gradually

veering nne 10-15

Reuse/ Replay

Replayed Solution:

n 6 - 10 gradually veering ne

15 - 20

veering nne 10-15

Retain

Problem:

 Time Dir LSpd HSpd

Seg1: 6 n 6 10

Seg2: 24 ne 15 20

Revised Solution:
n 10 or less gradually
veering ne 15 - 20

Revise

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.10, May 2012

39

Figure 7: Graph of average NIST5 scores for CBR-METEO and 10 other NLG systems

4.2 Evaluation results
Figure 7 shows a graph of average NIST5 scores from

experiments on the wind forecast corpus with the CBR and

NLG systems. The effectiveness of the CBR system is

comparable to Sum-Time as well as the trainable NLG

systems as shown on the graph. Although, four trainable

systems (PBSMT-unstructured, PSCFG-semantic, PSCFG-

unstructured and PCFG-greedy) outperform our CBR system

according to the results, its performance is very similar to the

SumTime hybrid system which was ranked as best by human

evaluators [14]. This indicates that the performance might also

be ranked high if it were evaluated by humans. The minimal

hand-coded rules used for revision of the replayed forecast

text in CBR-METEO were similar to SumTime‟s as they are

obtained from domain experts and this might account for the

comparable performance.

The results shown in Figure 7 are averages across the number

of forecast texts generated by CBR-METEO or available from

the corpus for the other ten NLG systems. CBR-METEO is

only able to generate forecast texts for 137 out of 221 inputs

(queries) in our test sets. This is because it generates no

forecast text when the casebase does not contain a case with

the same wind patterns (for speed and direction) as the input.

The system was designed this way since matching similar

wind patterns (rather than exact patterns) requires the

application of more complex revision rules after the reuse

phase. However, the revision component of CBR-METEO

uses only minimal rules to correct the forecast text from the

reuse phase. Such minimal rules enable simple revisions such

as changing the speed in the forecast text from a number

range into a phrase when it is less than 10. There is a trade-

off between the similarity definition that determines the

number of inputs for which CBR-METEO can generate text

and the complexity of revision rules. While retrieval of

similar wind patterns allows the system to generate text for

more queries, complex expert rules such as the ones used in

SumTime will be required at the revision stage rather than

minimal revision rules.

We made a number of observations during our experiments

which gave us an insight to why the NIST evaluation rank the

performance of CBR- METEO lower than some of the

trainable systems though human evaluators might think

otherwise. First is that the NIST scoring and trainable systems

are inherently based on statistical methods; therefore the

trainable systems are more likely to be ranked high. Another

issue is the stylistic variation in forecaster‟s text for time

phrases and change verbs. For example while some

forecasters use „increasing‟, others use „rising‟ in their fore-

cast text. The same reason applies for the use of „decreasing‟

versus „falling‟. Such stylistic variations will be better

captured by NIST if there are multiple human references for

each test input as opposed to just one human reference used in

our experiments. Another issue with the human reference that

might affect the evaluation results is the use of wind sub-

directions such as „nw-nnw‟ or „ne-e‟ by forecasters though

the forecast data contains „nnw‟ or „nne‟. Such change to the

original forecast data during writing of the text is not

uncommon as it makes the forecast text more reliable but it is

not used consistently among forecasters. The ellipsis of the

time phrase where forecast time phrases are implied in the

forecast text can also affect the automated evaluation measure.

For example, some forecasters add „by late evening‟ to the

forecast phrase for time stamp „2100‟ while others don‟t

especially if it is the last wind state to be written in the

forecast text. The observations (i.e. stylistic variation,

inconsistent usage of wind sub-directions and time phrase

ellipsis) adversely affect the automated evaluation of CBR-

METEO since CBR-METEO does not take into account the

profile of different human forecasters during retrieval. The

errors associated with these observations might be minimized

by incorporating knowledge about authors‟ of human forecast

texts; however, this was not available in the dataset.

In order to improve the performance of our system further, we

need to allow more ambitious revisions than the current

system. This means our retrieval component needs to be

less strict while matching cases. For example, a query with

two time stamps 0600 and 1800 can be matched to a retrieved

case with 0600 and 2100 but the revision stage will have to

change phrase “late evening” to “evening“ to account for the

fuzzy match. The fuzzy similarity is also applicable when

matching wind speeds and directions. However, the fuzzier

the matching at the retrieval stage, the more revision rules that

will be required to get the final solution text. This is obvious

since the revision component is dependent on retrieval and

reuse. When fuzzy matching is allowed, the case similarity

value needs to be propagated to the revision component and

used to determine the amount of modification required to

obtain an accurate output. We are currently working on

improving our revision component. One specific direction

we are working on is to use another casebase usually called

0

0.5

1

1.5

2

2.5

3

3.5
N

IS
T5

 s
co

re

Weather forecast text generation system

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.10, May 2012

40

adaptation casebase [24] to store cases of text revisions made

by domain experts. The adaptation casebase will be similar to

the post-edit corpus currently available in the domain [25].

5. CONCLUSION
In this paper, we presented an approach to generating

weather forecast texts using CBR technology. This involves

the retrieval of previous similar weather data in response to

an input data whose text is required. The forecast text

associated with the retrieved similar weather data is then

reused in the context of the new data followed by minimal

revision. The approach is knowledge-light therefore ensuring

that systems can be built in little time and with less human

effort. CBR also allows for a gradual evolution of the

system since new forecast texts can retained for future use.

Our system, CBR- METEO, was evaluated against other

NLG systems performing the same task and showed com-

parable results.

The limitation of our current system is that it cannot

generate forecast texts for all queries if a previous similar

weather data is not found in the casebase. We intend to

improve on this by relaxing our similarity constraints to

retrieve less similar cases. However, this will require the

use of more complex rules during revision. We also intend

to carry out a qualitative evaluation for our system and apply

the CBR approach to other NLG tasks. Our long term goal is

to study synergies between NLG and CBR techniques and

apply them to develop better and more effective AI systems.

6. ACKNOWLEDGMENTS
The author will like to thank Nirmalie Wiratunga of The

Robert Gordon University, UK and Somayajulu Sripada of

University of Aberdeen, UK for their useful feedback.

7. REFERENCES
[1] Kittredge, R., Polguére, A. and Goldberg, E. 1986.

Synthesizing weather reports from formatted data. In

Proceedings of the 11th. International Conference on

Computational Linguistics, 563–565.

[2] Bourbeau, L., Carcagno, D., Goldberg, E., Kittredge, R.,

and Polgure, A. 1990. Bilingual generation of weather

forecasts in an operations environment. In Proceedings

of COLING’90, 318–320.

[3] Sigurd, B., Willners, C., Eeg-Olofsson, M., and

Johansson, C. 1992. Deep comprehension, generation

and translation of weather forecasts (weathra). In

COLING-92, 749–755.

[4] Coch, J. 1998. Interactive generation and knowledge

administration in multimeteo. In Proceedings of the 9th

International Workshop on NLG, 300–303.

[5] Rubinoff, R. 2000. Integrating text planning and

linguistic choice without abandoning modularity: the

IGEN generator. Computational Linguistics, 26(2):107–

138.

[6] Sripada, S., Reiter, E. and Davy, I. 2003. SumTime-

Mousam: Configurable marine weather forecast

generator. Expert Update, 6(3):4–1.

[7] Belz, A. 2007. Automatic generation of weather

forecast texts using comprehensive probabilistic

generation-space models. Natural Language

Engineering, 14:431–455.

[8] Reiter, E., Sripada, S. and Robertson, R. 2003.

Acquiring correct knowledge for natural language

generation. Journal of Artificial Intelligence Research,

18:491–516.

[9] Dimitromanolaki, A. and Androutsopoulos, I. 2003.

Learning to order facts for discourse planning in natural

language generation. In Proc. of EACL Workshop on

NLG.

[10] Glahn, H. 1970. Computer-produced worded forecasts.

American Meteorological Society Bulletin, 51(12):1126–

1131.

[11] Ruth, D.P. and Peroutka, M.R. 1993. The interactive

computer worded forecast. In 9th International

Conference on Interactive Information and Processing

Systems for Meteorology, Oceanography and Hydrology,

321–326. American Meteorological Society.

[12] Goldberg, E., Driedger, N. and Kittredge, R. 1994. Using

natural-language processing to produce weather reports.

IEEE Expert, 9:45–53.

[13] Reiter, E. and Robert Dale. 1995. Building applied

natural language generation systems. Natural Language

Engineering, 1:1–32.

[14] Belz, A. and Kow, E. 2009. System building cost vs.

output quality in data-to-text generation. In Proceedings

of 12th European Workshop on NLG.

[15] Belz, A. and Reiter, E. 2006. Comparing automatic

and human evaluation of NLG systems. In Proceedings

of EACL’06, 313–320.

[16] Gervás, P. 2001. Automatic Generation of Poetry using

a CBR Approach. In Proceedings of the Conference of

the Spanish Association for Artificial Intelligence

(CAEPIA).

[17] Gervás, P., Dı́az-Agudo, B., Peinado, F. and Hervás, R.

2004. Story plot generation based on CBR. In 12th

Conference on Applications and Innovations in Intelligent

Systems.

[18] Aamodt, A. and Plaza, E. 1994. Case-based reasoning:

Foundational issues, methodological variations and

system approaches. Artificial Intelligence

Communications (AICom), 7(1):39–59.

[19] Dıaz-Agudo, B., Gonzalez-Calero, P.A., Recio-Garcıa,

J.A. and Sanchez, A. 2007. Building CBR systems with

jCOLIBRI. Special Issue on Experimental Software and

Toolkits of the Journal Science of Computer

Programming, 69(1-3):68–75.

[20] Doddington, G. 2002. Automatic evaluation of

machine translation quality using n-gram co-occurrence

statistics. In Proceedings of ARPA Work- shop on

Human Language Technology.

[21] Papineni, K., Roukos, S., Ward, T. and Zhu, W-J. 2002.

BLEU: A method for automatic evaluation of machine

translation. In Proceedings of the 40th Annual Meeting

of the Association for Computational Linguistics, 311–

318.

[22] Lin, C-Y. and Hovy, E. 2003. Automatic evaluation of

summaries using n-gram co-occurrence statistics. In

Proceedings of the Human Technology Conference

(HLT-NAACL 03), 71–78.

[23] Belz, A. 2009. Prodigy-METEO: Pre-Alpha Release

Notes. University of Brighton, UK, first edition.

[24] Craw, S., Wiratunga, N. and Rowe, R.C. 2006. Learning

adaptation knowledge to improve case-based reasoning.

Artificial Intelligence, 170:1175–1192.

[25] Sripada, S., Reiter, E., Hunter, J. and Yu, J. 2002.

SUMTIME-METEO: Parallel corpus of naturally

occurring forecast texts and weather data. Technical

report, Department of Computer Science, University of

Aberdeen.

