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ABSTRACT 

Estimation of the fractal dimension by using correlation 

dimension of precipitation time series play a fundamental role 

in the development of dynamic models of meteorological 

phenomena. As we know that the fractal dimension provides 

bounds for the number of independent variables necessary to 

model the system. We computed the correlation dimensions 

by Takens algorithm, Grassberger and Procaccia algorithm 

and by R/S method which gives the lower bound. In this 

paper, the fractal dimension by the method of correlation 

dimension of 20-years monsoon daily rainfall time series from 

June to September of Lahore region is estimated. The 

simulation of our time series is also considered which is based 

on wavelet fractional Brownian motion (wfBm) as a model 

that exhibits the self-similarity. 
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Keywords 
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1. INTRODUCTION 
We analyzed twenty years monsoon daily rainfall time series 

from June to September of Lahore region, taken by Pakistan 

Metrological department from 1986 to 2005. The time series 

plot is given in figure 1. There is a small negative trend in the 

time series as shown in the figure; hence for analyzing the 

time series, we removed the trend by using first difference 

method.   

Fig. 1: Time series plot of Lahore precipitation data 

(1986 – 2005) 

 

Generally, the nonlinear time series is analyzed by its phase 

space portrait. The phase portrait of a dynamical system can 

be reconstructed from the observation of a single variable by 

the method of delays as proposed by [1]. According to 

Takens, almost all d-dimensional sub-manifolds could be 

embedded in a (m=2d+1) dimensional space while preserving 

geometrical invariants. The observational time series 

X(1),X(2),….X(N) is represented by the set of vectors  X (t) = 

[X (t), X (t+),  X (t+ (m l))]  ( where t=1,2...N-[m-1] τ ) 

in the reconstructed phase space. 

The time delay τ is usually chosen by autocorrelation function 

or average mutual information (AMI). Time delay is 

estimated where the value of the autocorrelation function is 

close to zero, thus minimizing the statistical dependence 

among the coordinates of the vectors while the AMI is the 

standard way to calculate time delay τ. In practice, one does 

not know a priori the dimension of the dynamical system, and 

the embedding dimension, which is necessary for the phase 

space reconstruction. So, the dimensional estimate is 

computed for increasing embedding dimensions until the 

dimensional estimate stabilizes.  

2. MATERIAL AND METHODS 

2.1 Phase Space Reconstruction  
One approach of investigating nonlinear behavior is by 

embedding a time series. A point in such a space is then 

associated with a single state of the system, which is fully 

defined by a set of m dynamical variables. When an 

experimental dynamical system is investigated, these m 

physical quantities should be all measured, at least in 

principle, to have a complete description of the state of the 

system under study. The next step is therefore to reconstruct a 

phase space from this scalar time series. The reconstructed 

trajectory can have the same features as the original trajectory 

in the phase space. 

 

A pioneering paper by [2], points out two ways of 

reconstructing a phase space, namely, by using time delay or 

time derivative coordinates. Another kind of coordinates, 

namely principal components, may also be used. [3] 

demonstrated that the relationships between delays, 

derivatives and principal components consist of rotation and 

rescaling. Consequently, from [3]‘s point of view, statements 

about the nature of the equivalence between the original and 

the reconstructed phase portraits would not depend on the 

coordinate system. 

It is sometimes wanted to obtain a model able to reproduce 

the trajectory in the reconstructed phase space. Phase space is 

an abstract mathematical space spanned by the dynamical 

variables of the system. A point in this phase space can 

represent the state of the dynamical system at a given instant 

in time. If there are n dynamical variables then the state at a 

given time can be represented by a point in the Euclidean 

space n. As the dynamical variables change their values in 

time, the representative point traces out a path in the phase 

space—a continuous curve in the case of a continuous 
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dynamical system and a sequence of points in the case of a 

discrete dynamical system. 

Those dynamical systems, which are dissipative and 

exhibiting chaotic behavior generally, display strange 

attractors in the phase space [4, 5]. Any time series generated 

by a nonlinear process can be considered as the projection on 

the real axis of a higher-dimensional geometrical object that 

describes the behavior of the system under study [6]. The 

most common method used for phase space reconstruction of 

this object relies on the so-called Delay Embedding Theorem 

[1, 7]. This theorem states that a series of scalar measurements 

X(t) can be used in order to define the orbits describing the 

evolution of the states of the system in an m-dimensional 

Euclidean space. The orbits will then consist of points X (t) 

with coordinates  

)])1((),....(),([)(   mtXtXtXtX
 

                                         (1) 

Where  is the delay time and the dimension m of the vector is 

known as the embedding dimension. A new time series of the 

state space vectors X (1), X (2)… …… X (n) is generated 

from Eq. (1). Each vector X (i) describes a point in an m 

dimensional phase space. Thus, the sequence of these vectors 

defines a trajectory in time as shown in Fig. 2. 

 

Fig. 2: The diagram of evolution in m-dimensional phase 

space. 

 

Geometrically, the entire set of these points forms a pattern, 

termed an attractor, in the phase space. According to [1], if d 

is the dimension of the original attractor, it is sufficient that 

the embedding phase space dimension m must be greater than 

or equal to 2d+1. However, in reconstructing an attractor from 

a time series of unknown dynamics, the dimensionality of the 

attractor is unknown. 

2.2 Average mutual information (AMI) 
We apply Average Mutual Information method for 

determining the delay time. This method defines how the 

measurements X (t) at time t are connected in an information 

theoretic fashion to measurements X(t+τ) at time (t+) [8]. 

The average mutual information is given mathematically as:  
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Where i is the total number of samples. P(X(i)) and P(X (i+τ)) 

are individual probabilities for the measurements of X(i) and 

X(i+τ). P(X (i), X (i+τ)) is the joint probability density for 

measurements P (X(i)) and P (X(i+τ)). The appropriate time 

delay  is defined as the first minimum of the average mutual 

information I(). Then the values of X(i) and X(i+) are 

independent enough of each other to be useful as coordinates 

in a time delay vector but no so independent as to have no 

connection with each other at all.   

Now we apply AMI technique to our climate data for the 

calculation of time delay using TISEAN software [9]. We plot 

AMI of the daily summer rainfall of Lahore after removing 

trend as in fig. 3. As the first minima occurs at τ = 4, we 

inferred that delay time for our climate data is 4 days. 

 

Fig. 3: Average mutual information plot of trend 

removed time series. 

2.3 Embedding dimension  
To estimate a best possible value of embedding dimension m 

is to check for the closed false neighbors (FNN) in the 

trajectory of phase space at different value of m [10]. Kennel 

et al., [10] developed an algorithm that estimates the sufficient 

dimension for phase space reconstruction. It is known as the 

false nearest neighbor method. The false nearest neighbor 

algorithm identifies points within a nonlinear time series that 

looks to correlate, or relate, at a certain point in time. By 

increasing the embedding dimension, m, it is possible to 

detect ―false neighbors‖ within the vectors because once the 

attractors unfold; the vectors close in dimension m, move a 

significant distance apart in the next state.  This indicates that 

the attractors of the system have not been accurately identified 

then embedding dimension is increased by one or both the 

vectors and its neighbor by increasing the appropriate value of 

the data. 

FNN elucidate mathematically, as for each point X(i) in the 

time series look for its nearest neighbor X(j) in an m-

dimensional space. Calculate first the distance X (i) – X (j). 

Then, iterate both points and compute 
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If R (i, m) exceeds a given heuristic threshold say R(t), this 

point is marked as having a false nearest neighbor. The 

criterion that the embedding dimension is high enough is that 

the fraction of points for which R(i, m) > R(t) is zero, or at 

least sufficiently small [9]. In order to apply this method, we 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.10, May 2012 

3 

select a possible value of the distance )()( ji XX   in 

TISEAN software to the present time series. In our case the 

embedding dimension is 18 of original noisy time series 

because the first zero occurs at 18 as shown in the following 

figure 4.  

Fig.4:  False Nearest Neighbor-hood of trend removed time 

series. 

 

2.4 Effect of Noise on Correlation 

Dimension Estimation  
Apart from determining the sufficient embedding dimension, 

the false nearest-neighbor method is also used as an indicator 

of the amount of noise in our data. In above graph, false-

neighbors are being converge slowly in the range m= 7 to 18.  

Hence, there is high probability for random noise, which is 

responsible to spread the data.  Therefore, it needs to be filter. 

As a stochastic process, noise should have infinite degrees of 

freedom and therefore it should show no tendency to unfold at 

any specific dimension. Thus we were able to eliminate events 

that showed a slow rating at minimum embedding dimension. 

 

Moving average and low-pass filter are commonly used 

methods for noise reduction. In the present study, however, 

we use a nonlinear locally projective noise reduction scheme 

specifically developed for chaotic data as proposed by [11]. 

This algorithm gives the hypotheses that output data of the 

system is produced by a low dimension dynamical system but 

due to random noise, it exhibits a high dimensional output. If 

we suppose that the amplitude of the noise is sufficiently 

small, we can expect to find the data distributed closely 

around this manifold. The idea of the projective nonlinear 

noise reduction scheme is to identify the manifold and to 

project the data onto it. This algorithm is used in GHKSS 

TISEAN‘s command. Trend removed time series was 

embedded in eighteen dimension space (m18) and a delay 

time four (d4). Manifold dimension is set at three (q3) during 

noise reduction with three iteration (i3). 

Time delay and embedding dimension are again calculated for 

noise reduced data obtained from GHKSS‘s command of 

TISEAN. Following figures 5 and 6 exhibit a delay time is 3 

and the embedding dimension is 9 and figure 7 shows the 

phase space of noise reduced time series with the time delay 3 

in the embedding dimension of 3. It shows the trajectory of 

vectors at different times. The trajectories are exhibiting the 

random pattern in the time series and could be unfold in high 

dimension. 

 
Fig.5 AMI plot of noise reduced data. 

 

 
Fig. 6: Percentage of false nearest-neighbor plot. 

 
Fig. 7: 3-D representation of phase space of noise reduced 

data with time delay 3. 

 

2.5 Space-Time separation plot 
Any physical quantity can never be known exactly so it is 

appropriate to provide a confidence interval of the estimated 

quantity or in other words to identify the errors in estimation. 

The primary source of errors is Geometrical errors, 

Dynamical errors and Statistical errors. Dynamical errors are 

caused by certain properties of the trajectories that are related 

with dynamics e.g. autocorrelation effects, finite correlation 

dimension by certain types of filtered noise. 
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Space time separation plot (STSP) was introduced by [12]. 

The algorithm of STSP is based on to detect the behavior of r-

neighboring points of the current point with respect to time 

and distance apart at different constant probability of time. 

As a remedy, apply Theiler‘s correction (window) [13] in the 

calculation of correlation sum C(r) by using space-time 

separation plot (STSP). It is also used to determine the 

stationarity of the time series data. This helps identifying 

temporal correlations inside the time series and is relevant to 

estimate a reasonable delay time, and, more importantly, the 

Theiler-window in correlation dimension. In others words, it 

shows how large the temporal distance between points should 

be so that we can assume that they form independent samples 

according to the invariant measure.  
 
The following space-time separation plot of the noise reduced 

rainfall data is given in fig. 8 and it shows stationarity in the 

data as lines of constant probability are horizontal. The low 

temporal variability is dominant in this system and is reflected 

in fig. 8. The temporal correlation is evident within the first 

10 time steps where the lines increase consistently. To be safe, 

we have chosen the minimum correlation time to be 10. After 

10 time steps the lines of each constant probability shows the 

stationary pattern in space-time separation plot. 

 
Fig 8: Space-time separation plot of noise-reduced data. 

Probability densities are 1/8 to 1 with increments of 1/8 

from bottom to top. 

 

2.6 Fractal Dimension Analysis 

2.6.1 Correlation Dimension 
In section 2.1, we constructed a phase space of the attractor of 

our time series using time delays theorem and estimated 

embedding dimension m. That value of m could be possible 

value of the variables in order to make a model of the system. 

Correlation dimension provides the dimensionality of the 

dynamical system occupied by the random points and a lower 

bound to the fractal dimension. Thus it satisfies the following 

inequality 

 

                            fc dd 
                              (4) 

There are many ways to define the fractal dimension, but one 

of the numerically simplest and most widely used is the 

correlation dimension by [4, 5].The correlation dimension is 

obtained by considering the cumulative correlation function, 

defined by [4] as 
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 Where r is finite length scale and Ө is the Heaviside function, 

such that Ө (x) = 0 if x ≤ 0 and Ө (x) = 1 if x > 0. The idea is 

to construct a correlation sum function C(r) that is the 

probability that two arbitrary points on the orbit are closer 

together than r. The Euclidean norm utilized in (5) is defined 

as 
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The cumulative correlation function is related to the 

correlation dimension by the power law  

  
0,~)( rwhererrC cd

 
                              (7) 

This results in the correlation dimension dc being defined as 

             r
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For the correlation dimension, C(r) verses r is plotted on a 

log-log graph, and the gradient of the region of the graph, 

which exhibits scaling behavior, yields an estimate of the 

correlation dimension. This is usually done by calculating the 

separation between every pair of N data points and sorting 

them into bins of width dr proportional to r. The correlation 

dimension in the limit  

                
 Nrasdr ,0,0

 
is given by   

 

)log(
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            (9) 

 

We used TISEAN software to evaluate correlation dimension 

of noise reduced data setting time delay 3, embedding 

dimension 20, Thieler window 10, minimal length scale 0.4 in 

d2 command. Figure 9 shows the plot slopes of correlation 

sum against logarithm of r. The linear part of the graph is 

estimation of correlation dimension, which has the value 

≈1.54. 
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             Fig 9:  Slopes of correlation sum C(r) by Grossberger and 

Procaccia algorithm. 

2.6.2 Takens Estimator 
Another algorithm to calculate correlation dimension is to find 

Takens estimator. It was suggested by [14] and [12]. It 

requires maximal cutoff distance R on which all pair wise 

distances larger than R are discarded and for correlation 

dimension, a maximum likelihood estimator DT is calculated 

by 

  




rT

dr
r

rC

rC
rD

0

'

'

' )(

)(
)(

            (10) 

DT is an alternative to the usual local slope. DT can be 

obtained from TISEAN command c2t by processing on r and 

C(r) obtained either from c2naive or c2 file of d2 output file. 
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   Fig 10: Correlation dimension by Taken method 

We used c2t on c2-file obtained from d2 command and 

obtained DT with r. Figure 10 shows the plot of DT against 

log(r). The value of the correlation dimension by Taken 

estimator is the value of the linear portion in the graph which 

has the value ≈1.95. 

2.6.3  Rescaled Range (R/S) Analysis 
Harold Edwin Hurst in 1951 developed this algorithm in his 

Nile‘s study [15]. R/S analysis of a time series is used to find 

future patterns that might be repeated. In this analysis there 

are two main inputs, rang and standard deviation of the data. 

A derivative of this mathematical result is known as a Hurst 

exponent (H); if a trend actually exists in the data, this Hurst 

exponent can extrapolate a future value or average for the data 

point. As we know that many natural phenomena previously 

suppose to be governed by random Gaussian process shows 

long term statistical dependence. H (0<H<1) describes 

measure of degree of correlation.  

 

The relation between Hurst exponent (H) and correlation 

dimension (D) is D = 2 – H. 

The Hurst exponent (H) of our noise reduced daily rainfall 

time series (2440 points) is 0.06 i.e. D=1.94. 

2.7 Wavelet Fractional Brownian motion 

        (wfBm) 
Fractional Brownian motion (fBm) is a continuous and self 

similar in distribution time stochastic process depending on 

the Hurst parameter H, proposed by Mendelbort and Van Ness 

[16]. It consists in fractional integration of a white Gaussian 

process and is therefore a generalization of Brownian motion 

because it produces a deep connection with concept of self-

similarity and fractal [17]. Hence, the variance of the 

increments of fBm is given by 

      
H

stsfBmtfBmVar
2

)]()([               (11) 

Where α is the positive constant. [17] developed an effective 

wavelet-based algorithm of fBm called wfBm. Because, the 

formulation of the fBm process as a fractional integral has to 

be started for the white noise process, the idea of the 

algorithm is to build a bi-orthogonal wavelet depending on a 

given orthogonal one and adapted to the parameter H. Then 

the generated sample path is obtained by the reconstruction 

using the new wavelet starting from wavelet decomposition at 

a given level and exact coefficients are independent random 

Gaussian realizations and approximation coefficients come 

from a fractional ARIMA process.  

 

In this paper, simulation is performed which is based on Abry 

and Sellan algorithm [17] that is used to generate samples of 

wfBm for the Hurst exponent (H=0.06) and 2440 data points 

of the noise reduced rainfall time series and a fractal 

dimension estimated by the R/S analysis to be 1.94 is 

exhibited in the following figures (fig.  11 and 12) show the 

same fractal dimension estimate. The similarity is obvious. 
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Fig. 11: A sample of wfBm with parameter H=0.06 and  

D=1.94 

 
Fig. 12: A plot of rainfall time series from Lahore, 

Pakistan 

3. CONCLUSION 
Since the value of the fractal dimension of phase space 

depends on noise level. So noise must be reduced because it 

increases the value of fractal dimension. In our case, by 

comparing the algorithms of fractal dimension, Takens 

algorithm and R/S analysis are approximately equal to 1.95 of 

our noise reduced monsoon daily rainfall time series of twenty 

years which is unexpectedly low. Because the correlation 

dimensional estimate provides the lower bound for the 

number of independent variables for necessary to model the 

system and assists one to determining the appropriateness of 

the model, in this case the minimum number of independent 

variables and the number of equations required to model the 

rainfall dynamical system are 2 which is an important 

estimation for modeling the system.      

 

Our rainfall time series shows the self-similarity i.e. the daily 

fluctuations exhibit the same statistical behavior over different 

scales of time. Analysis needs to be made for different limit of 

scales to be self-similar. For considering the simulation for 

rainfall time series, wfBm is possible as a model. 
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