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ABSTRACT 

We developed analogous parallel algorithms to implement 

CostRank for distributed memory parallel computers using 

multi processors. Our intent is to make CostRank calculations 

for the growing number of hosts in a fast and a scalable way. 

In the same way we intent to secure large scale networks that 

require fast and reliable computing to calculate the ranking of 

enormous graphs with thousands of vertices (states) and 

millions or arcs (links).  In our proposed approach we focus 

on a parallel CostRank computational architecture on a cluster 

of PCs networked via Gigabit Ethernet LAN to evaluate the 

performance and scalability of our implementation. In 

particular, a partitioning of input data, graph files, and ranking 

vectors with load balancing technique can   improve the 

runtime and scalability of large-scale parallel computations. 

An application case study of analogous Cost Rank 

computation is presented. Applying parallel environment 

models for one-dimensional sparse matrix partitioning on a 

modified research page, results in a significant reduction in 

communication overhead and in per-iteration runtime.We 

provide an analytical discussion of analogous algorithms 

performance in terms of I/O and synchronization cost, as well 

as of memory usage. 
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1. INTRODUCTION 
The CostRank algorithm is used as cost-centric model 

checking for network security. It uses an iterative numerical 

method to compute the maximal eigenvector of a transition 

matrix with the hosts‟ cost value derived from designated files 

structures. The principal indication for the CostRank 

algorithm to be considered a state is important if other 

important states are linked to it. However, not all states are 

equal in importance. The link from different states holds 

different cost value [5]. For n states V=v; v = 1; 2;. . .; n the 

corresponding CostRank is set to   ; v = 1; 2 ……; n. The 

mathematical formulation for the recursively defined 

CostRank is presented in the following equations:  
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To get the normalized cost matrix we used the following 

formula: 
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Since this is a recursive formula, an implementation needs to 

be iterative and will require several iterations before 

stabilizing to an acceptable solution.  This can be solved in an 

iterative fashion using algorithm thus:Let the probability of 

intrusion of attack be state v at time t and d be a damping 

factor representing the probability of an attacker to continue 

penetrating the current path of the attack..  

 

Figure-1: Serial CostRank Algorithm 

The initial value vector is calculated by following this 

formula: 1/V; where V is the number of states present that 

describes the initial CostRank value   for all states Vi. Then 

the excursive formula is iterated until two consecutively 

iterated CostRank vectors are similar enough [5].The 

CostRank computational algorithm we proposed in this paper 

does not directly take the input from link files; instead, we 

converted the out-link file into a binary graph file structure   

M as illustrated in Figure 2. The total number of floating point 

numbers read from personalization file is |Ѵ| at the start of an 

execution. While the size of the data read from the graph file 

during iteration is 2* |É| +2*|Ѵ|   integers.   Towards the end 

of the execution, total |Ѵ|   floating point numbers 

representing the consequential CostRank vectors are cast off 

into disks. Therefore, the total is: 

||V|2*|É|2|*||*2   V  

Where is the number of iterations? There is a linear 

association between the number of links and the number of 

states in a   graph file, and since the number of iterations is 
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nearly constant,  the total time spent on disk I/O during an 

execution is O(n) where n = |Ѵ|.  

 

Figure-2:  The structure of a sample graph file 

Figure 2 shows the structure of a graph file. This file consists 

of a file header and states entries for the hosts in the graph. 

The file header has three components: total number of states 

(v), total number of links (m) and the maximum out -degree in 

the graph. A state entry stores the necessary structural 

information for a host. It consists of a state ID, the out-degree, 

and the three forward links (Link 1, Link 2, and Link n) along 

with corresponding cost for each link (C1, C2, and Cv) 

respectively. The list is an array of d state IDs. All numbers 

are stored in 4 byte integers.The total volume of the graph file 

is = 4*(3+2v+2m). An example of representing states to graph 

file is shown in figure 2. As to memory usage, we used a 

buffer to hold personalization vector, size of 4 * max. out-

degree.  The setup for the CostRank implementation is done 

by creating two arrays of floating point values representing 

the rank vectors as you can see in figure 3, called the 

Costranksrc and the Costrankdest. Each rank vector has V 

entries, where V is the total number of states in the graph file. 

 

  
 

          
 

  

  
 

          
 

  

  
 

          
 

  

  
 

          
 

  

  
 

          
 

  

  
 

          
 

  
  

 

Figure-3: The setup for the CostRank implementation [7]. 

For each iteration step, the Costranksrc is referred to the rank 

score of iteration i and the Costrankdest is referred to the rank 

score of iteration i + 1. The sequential version of the 

CostRank computation is shown in figure 1. 

2. ANALOGOUS COST RANK 

ALGORITHM 
We developed a parallel algorithm to implement CostRank for 

distributed memory parallel computers using multi processors. 

We selected parallel in-memory (Piccolo) algorithms [14] to 

extensively reduce access share state stored in memory and 

iterations, which include table partitioning (local access), 

synchronization of distributed table, check point/restore and 

load balance/ and task scheduling. 

 

 

Figure-4 synchronization of distributed binary graph files 

Our aim is to make CostRank calculations for the growing 

number of hosts in a fast and a scalable way. An accurate and 

efficient computing of the CostRank scores for a large 

network has to be addressed in order to secure significant 

assists among huge number of hosts in the network.The 

performance of serial algorithms is limited because these 

algorithms can only run on a single processor. Implementing 

the CostRank-calculations in a parallel environment opens 

several possibilities in partitioning the data and the load 

balancing the data. When we tried to implement partitions 

with load balance, we divided the binary graph file to relevant 

uniform parts and distributed to different hosts participating in 

rank calculating. This move lead to efficient use of all 

processors and this improved the overall quality of 

computing.We have considered three different methods for 

partitioning [11] the state matrix among the Processors thus: 

 1-Divide the matrix using a row-wise distribution  

 2-Divide the matrix using a column-wise distribution  

 3-Divide the matrix as a 2D grid 

The method chosen for our computations is the row-wise 

partitioning. We employed the cluster computing technology. 

We first equally partitioned the binary graph file M into β 

files, named later Mi, where 0 ≤ i < β, and allocated each 

partition to a PC processor. At each processor, we allocated 

additional array of floating point Vi in main memory for 

portion of rank vector, having β N entries to represent the 

portion of the corresponding source rank vector; and created a 

synchronization file Si, storing pairs of destination state ID 

and their corresponding rank scores, called the “synch”, to 

represent the destination rank vector adopted from the Serial 

CostRank Algorithm.  We first partitioned the binary link 

structure file M into β portions M0, M1, .. ,Mβ−1, such that 

each Mi started from )1
*

( 


Vi to )
*)1(

(


Vi  . 

In other words, the outgoing links of a node are bucketed 

according to the range that the identifier of the destination 

page falls into. We also created following arrays of 

Costrankdest, i, out-vector, and Costranksrc, i for each PC. The 

Costrankdest, i array and the out-vector array contain only the 

corresponding Vβ entries, while the Costranksrc, i array 

contains the full set of rank scores that each machine needs to 

compute in each iteration step. The parallel version of the 

CostRank computation is shown in Figure 5.Suppose Vβ 

receives an update message from some foreign document, and 

supposeXVβ1 and XVβ2 are two documents local to XVβ, both 

of which are out linked by XVβ then, one method of update 

Costranksrc Graph file Costrankdest 
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would be to simply increment the CostRanks of XVβ1 and 

XVβ2by w(v, u) ← h(v, u)/sum ×(update message received 

from XVβ).  If the absolute change in CostRank were to 

exceed epsilon, then XVβ1 would send its own local update 

message to XVβ2 this message would trigger a further update 

in the CostRank of XVβ2. In sum, the idea would be to set-up a 

local messaging analogue between foreign linked documents. 

 

Figure-5 Parallel CostRank Algorithm 

 

Figure 6 shows the parallel CostRank computation during an 

iteration using 10 processors and extra 2 pcs to perform 

synchronizations of Synch files between processors.

 

Figure-6 Matlab Topology Structure 

3. IMPLEMENTATION OF PARALLEL 

COSTRANK ALGORITHM AND 

RESULTS 

3.1 Matlab Topology Setup 
We did experiments on a cluster of 12 computers built with 

Pentium Core2Duo 2.54Ghz processor, 2GB RAM, 250GB 

Hard Disk interconnected with Gigabit Ethernet LAN, 

running the Linux operating system. We created a graph file 

containing 28 903 states, with about 1.2 million links. This are 

stored in   sparse format including the cost values and other 

fields in our graph file it totaled up to 74.6MB in CRS 

format.Variable Si corresponds to the synch file; Mi to the 

partitioned binary graph structure file; and Vi to the portion of 

source rank vector in memory residing at processor i. During 

iteration, the following process occurred: first, computing a 

new rank based on corresponding part of graph file Mi then 

pushing the calculated values in to Costrankdest vector.  

These processes will continue until the residual value exceeds 

epsilon. The calculated rank Costrankdest will be added to the 

local updated queue if the out link is local, or if the outlink 

belongs to a foreign host, it is sent to the master host. 

3.2 I/O cost 
During iteration, each processor has to do the following 

functions: read the portion of Mi, compute the destination 

rank scores, write a created synch file Si back to disk and then 

re-read the Si during synchronization. Thus the total read-

write I/O cost will be: 





i

oi QiSiMiparalellC
0

/ ||2||
 

QSM  ||2||  

Where Qi =local update queue. At this time, the outline of all 

β partitions of Mi is equal to the binary graph structure file M, 

and the summation of all packet files Si is S. 
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Figure 7: I/O cost during iteration. 

The performance measure for parallel I/O is based upon an 

evaluation of its possible data movement and iterations. This 

data transfer rate is dependent upon the communication 

bandwidth of each processing element and I/O device, and on 

the collective start-up latency for the complete 

transfer.Following our analysis mentioned above, the I/O cost 

of data access is increased by the factor of 2 x Si and local 

update queue Qi  that explain the incremental of I/O with the 

number of processors as we can see in figure 7. 

3.3 Memory Norm 
All processors have to assign fixed size of memory to fit an 

array of source rank vector Vi. Therefore, the total memory 

usage will be: 

VViparalellCMem  ||  

As the source rank vector V is divided into β portions, the 

outline of all portions Vi will be equal to the size of the source 

rank vector V. Figure 8 reports the total memory usage during 

computation. 

 
Figure-8 Memory Usage 
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As seen in figure 8, there is an increase in memory usage 

when only two processors were used. This is due to the extra 

storage needed for synchronized files. As the number of 

processors increased with distributions of the tasks, the total 

memory usage decreased as in 4, 6, 8 and 10 processors.  

3.4 Synchronization cost 
Since an entry of a Synch file Si is two times larger than an 

entry of the source rank vector Vi.The synchronization cost 

between processors will be: 
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Figure-9: Synchronization time vs. number of processors 

The local CostRank scores have to be synchronized among 

the ten processors to obtain the final rank to be used in the 

next iteration step. Figure 9 concludes the synchronization   

time per number of processors. Each processor needs to 

receive an updated file from the neighbor host through master 

(synchronize) machine and processes the update, then sends 

the updated file to the next neighbor host through master 

machine. The two master machines need to replicate the data 

between them. Communication time is incurred when 

message passing takes place between machines. 

Synchronization overhead is incurred when the master 

machine has to wait for synchronization from other machines 

especially when the number of machines increases, The 

synchronization overhead maintains about the same 

percentage (slightly increased due to waiting time) when 

number of machines increases, whereas the percentage of 

communication overhead as you see in figure 10 grows with 

the number of hosts that waits for task completion on the 

slowest machine. Time devoted in communication and 

synchronization with other processors was calculated using 

the following formulas: 

TspTpTq   

TsCpTq   

 

Figure-10: Communication time vs. number of processors  

Figure 11 shows that the standard of residual errors increases 

when the synchronization interval increases and when the 

number of processors participating in computation increases 

as in 2, 4. 8 and 10 processors.  The average residual error 

calculated from synchronizing the local rank scores after 

every 5 consecutive steps is less than 0.020. This value is 

acceptable for our research purpose. We thus set the 

synchronization interval to 5 to be reported in experimental 

results. 

 

Figure-11: Residual Error 

3.5 Execution times 
The execution times estimated in this model should by theory, 

be equivalent to the serial execution time divided by the 

number of processors, given the assumptions of serialized 

network transfer between hosts and constant computational 

time per processor. Let Tpi be the computation time for a   

CostRank per processor i, Sti is the time to synchronize synch 

files. The execution time can then be estimated as: 


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As the Serial CostRank execution time is divided into β 

portions, the outline of all portions Tpi will be equal to Ts /β 

in addition to two synchronized files received from Pβ-1 and 

Pβ+1(Overhead). 

 

Figure-12: Total Execution times 

Our analogous and load balancing scheme indorsed us to load 

and distribute the matrices to the processors without 

overloading the memory on any particular machine.  Figure 

12 presents the execution time of the CostRank algorithm 

against the number of processors. For the simple distribution 

(equal number of rows on each processor), the runtime 

displays oscillations as the number of processors increases. 

This behavior is smoothened by the load-balancing 

distribution. Because our algorithms are so sensitive to the 

communication pattern in the matrix-vectormultiply 

operation, we believe that these peaks correspond to local 

maxima in the communication patterns. 

3.6 Speedup time 
Speedup is a measure of the performance improvement 

achieved by parallelizing a sequential CostRank algorithm. Sŝ 
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is the ratio of the time taken to calculate the rank on a single 

processor to the time required on a given parallel computer 

with p processors 

Tp
TsS 

 

Ts is the time taken on one processor in serial algorithms.Tp 

is the time taken on p processors. 

 

Figure-13: Speedup vs. number of processors 

The parallel simulated CostRank algorithm is shown in figure 

13. We plotted the speed up of our parallel simulated 

algorithm versus the number of processors. In this graph, 

speedup is defined to be the ratio of time for the serial 

CostRank algorithm execution to the time for the parallel 

algorithm execution. Notice that the speedup time is sharply 

increased when we did the experiments using only 2 hosts: 

that is due partitioning of the graph file, and the reduction of 

the speed up time due to the overall loads slump on each 

processor.The overall increment slightly reduced when we 

used 4 hosts that is due to the overhead of synchronization 

process and load balancing.There was gradual   increase we 

got when we used 8 and 10 hosts.  

3.7 Cost of parallel algorithms 
The cost of a analogous algorithm on a parallel system with p 

processors, denoted by Cϸ, is defined as the product of the 

parallel runtime for each processor and the number of 

processors used. Intuitively, this is the amount of processor-

time working together to calculate the cost ranking in parallel: 

Tpp*C   

Figure 14 presents the computation time of the CostRank 

algorithm against the number of processors. The computation 

time displays sharp decline as the number of processors 

increases. This is due to load distributions on processors 

working together to calculate the cost ranking in parallel. 

 

Figure-14: Computation time of the CostRank algorithm 

against the number of processors 

3.8 Efficiency of parallel algorithms 
Eϸ is the segment of the parallel runtime that the analogous 

system is doing effective work. It is given: 
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Figure-15:  Algorithms’ efficiency vs. no. of Processors 

Efficiency is defined as speedup divided by the number of 

processors. Ideal efficiency is always 1, and anything above 1 

is super-linear. Values less than 1 indicate withdrawing 

returns as more processors are added as you can see in figure 

15. 

3.9 Load Balancing 
The load of a parallel program must be balanced among 

processors to achieve higher utilization of processing 

resources.To accelerate the CostRank computation we equally 

distributed the binary graph file among all the processor using 

following function: 

p

S
Si 

 

If „p‟ represents the total number of processors and „S‟ 

represents the total number of states in the binary graph file 

then we distributed the states based on the unique state-ID 

going from 0 to S-1 Every processor is set to handle a 

particular value in the range of the   function i.e. 0 to Si All 

states having state-ID whose satisfies a particular processor‟s 

value. To achieve this we needed to implement Greedy 

algorithm with round robin to distribute the tasks according 

number of keys in table partition to multiple processors as we 

see in figure 16. In heterogeneous hardware we cannot 

determine the exact execution time 

 

 

 

 

 

Figure-16 Greedy algorithm with round robin 
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As we can see in figure 17 due to the states distributions 

across hosts and processors and due to the use of greedy 

algorithm with round robin technique shown in figure 16, the 

load per processor reduces sharply with the number of hosts 

we used during our experiments. 

 

Figure-17: Processors loads vs. number of processors     

Based on our observations, this partitioning scheme yields an 

agreeable load balancing. This is a result of the uniform 

distribution of states within the graph file. 

4. CONCLUSIONS 
In this paper, we have presented a new parallel algorithm to 

calculate the CostRank of a network. We have put into 

practice a developed algorithm to speed up the execution of 

CostRank computation through the use of graph file 

partitioning-based techniques. We have untaken the 

implementations of CostRank in a parallel environment 

models for one-dimensional sparse matrix partitioning on a 

modified research page results in a significant reduction in 

communication overhead and in per-iteration runtime. We 

implemented conventional load balancing breakdown 

methods. Our experiments on a gigabit PC cluster have shown 

that our algorithm  models consistently and substantially 

decreased distributed per-iteration communication overhead, 

resulting in high reductions of per-iteration run-time when 

compared to the Serial Cost Rank  alternative.We 

implemented and tested our algorithm on a cluster of ten 

machines, networked via a Gigabit Ethernet. To study its 

efficiency, we performed several tests using out-vector files 

synthesized from the real networked data. The given results 

are quite encouraging.We have proposed a Partition-based 

CostRank algorithm that can efficiently run on a parallel 

environment. We also provided a visible analytical discussion 

in terms of I/O and synchronization cost, and memory usage, 

of the algorithms.Our algorithm will run on any number of 

processors with the optimal cost. 
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