
 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

17

A Parallel Algorithm to Calculate the Cost rank of a
Network

Thaier Hamid
University of Bedfordshire, UK

Carsten Maple
University of Bedfordshire, UK

 Yong Yue

University of Bedfordshire, UK

ABSTRACT

We developed analogous parallel algorithms to implement

CostRank for distributed memory parallel computers using

multi processors. Our intent is to make CostRank calculations

for the growing number of hosts in a fast and a scalable way.

In the same way we intent to secure large scale networks that

require fast and reliable computing to calculate the ranking of

enormous graphs with thousands of vertices (states) and

millions or arcs (links). In our proposed approach we focus

on a parallel CostRank computational architecture on a cluster

of PCs networked via Gigabit Ethernet LAN to evaluate the

performance and scalability of our implementation. In

particular, a partitioning of input data, graph files, and ranking

vectors with load balancing technique can improve the

runtime and scalability of large-scale parallel computations.

An application case study of analogous Cost Rank

computation is presented. Applying parallel environment

models for one-dimensional sparse matrix partitioning on a

modified research page, results in a significant reduction in

communication overhead and in per-iteration runtime.We

provide an analytical discussion of analogous algorithms

performance in terms of I/O and synchronization cost, as well

as of memory usage.

General Terms

Security, Algorithms, Networking.

Keywords

Parallel computing, distributed algorithms, PageRank..

1. INTRODUCTION
The CostRank algorithm is used as cost-centric model

checking for network security. It uses an iterative numerical

method to compute the maximal eigenvector of a transition

matrix with the hosts‟ cost value derived from designated files

structures. The principal indication for the CostRank

algorithm to be considered a state is important if other

important states are linked to it. However, not all states are

equal in importance. The link from different states holds

different cost value [5]. For n states V=v; v = 1; 2;. . .; n the

corresponding CostRank is set to ; v = 1; 2 ……; n. The

mathematical formulation for the recursively defined

CostRank is presented in the following equations:

 





Bvu
vuud

N

d
iv),(*)(

1
)1(

Where v is an initial state.

 )()1(vv i   Bvu
vuud),(*)( Otherwise

To get the normalized cost matrix we used the following

formula:

 


Ovw

wuc
vuc

vu
),(

),(
),(

Whereof)(uout

Since this is a recursive formula, an implementation needs to

be iterative and will require several iterations before

stabilizing to an acceptable solution. This can be solved in an

iterative fashion using algorithm thus:Let the probability of

intrusion of attack be state v at time t and d be a damping

factor representing the probability of an attacker to continue

penetrating the current path of the attack..

Figure-1: Serial CostRank Algorithm

The initial value vector is calculated by following this

formula: 1/V; where V is the number of states present that

describes the initial CostRank value for all states Vi. Then

the excursive formula is iterated until two consecutively

iterated CostRank vectors are similar enough [5].The

CostRank computational algorithm we proposed in this paper

does not directly take the input from link files; instead, we

converted the out-link file into a binary graph file structure

M as illustrated in Figure 2. The total number of floating point

numbers read from personalization file is |Ѵ| at the start of an

execution. While the size of the data read from the graph file

during iteration is 2* |É| +2*|Ѵ| integers. Towards the end

of the execution, total |Ѵ| floating point numbers

representing the consequential CostRank vectors are cast off

into disks. Therefore, the total is:

||V|2*|É|2|*||*2   V

Where is the number of iterations? There is a linear

association between the number of links and the number of

states in a graph file, and since the number of iterations is

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

18

nearly constant, the total time spent on disk I/O during an

execution is O(n) where n = |Ѵ|.

Figure-2: The structure of a sample graph file

Figure 2 shows the structure of a graph file. This file consists

of a file header and states entries for the hosts in the graph.

The file header has three components: total number of states

(v), total number of links (m) and the maximum out -degree in

the graph. A state entry stores the necessary structural

information for a host. It consists of a state ID, the out-degree,

and the three forward links (Link 1, Link 2, and Link n) along

with corresponding cost for each link (C1, C2, and Cv)

respectively. The list is an array of d state IDs. All numbers

are stored in 4 byte integers.The total volume of the graph file

is = 4*(3+2v+2m). An example of representing states to graph

file is shown in figure 2. As to memory usage, we used a

buffer to hold personalization vector, size of 4 * max. out-

degree. The setup for the CostRank implementation is done

by creating two arrays of floating point values representing

the rank vectors as you can see in figure 3, called the

Costranksrc and the Costrankdest. Each rank vector has V

entries, where V is the total number of states in the graph file.

Figure-3: The setup for the CostRank implementation [7].

For each iteration step, the Costranksrc is referred to the rank

score of iteration i and the Costrankdest is referred to the rank

score of iteration i + 1. The sequential version of the

CostRank computation is shown in figure 1.

2. ANALOGOUS COST RANK

ALGORITHM
We developed a parallel algorithm to implement CostRank for

distributed memory parallel computers using multi processors.

We selected parallel in-memory (Piccolo) algorithms [14] to

extensively reduce access share state stored in memory and

iterations, which include table partitioning (local access),

synchronization of distributed table, check point/restore and

load balance/ and task scheduling.

Figure-4 synchronization of distributed binary graph files

Our aim is to make CostRank calculations for the growing

number of hosts in a fast and a scalable way. An accurate and

efficient computing of the CostRank scores for a large

network has to be addressed in order to secure significant

assists among huge number of hosts in the network.The

performance of serial algorithms is limited because these

algorithms can only run on a single processor. Implementing

the CostRank-calculations in a parallel environment opens

several possibilities in partitioning the data and the load

balancing the data. When we tried to implement partitions

with load balance, we divided the binary graph file to relevant

uniform parts and distributed to different hosts participating in

rank calculating. This move lead to efficient use of all

processors and this improved the overall quality of

computing.We have considered three different methods for

partitioning [11] the state matrix among the Processors thus:

 1-Divide the matrix using a row-wise distribution

 2-Divide the matrix using a column-wise distribution

 3-Divide the matrix as a 2D grid

The method chosen for our computations is the row-wise

partitioning. We employed the cluster computing technology.

We first equally partitioned the binary graph file M into β

files, named later Mi, where 0 ≤ i < β, and allocated each

partition to a PC processor. At each processor, we allocated

additional array of floating point Vi in main memory for

portion of rank vector, having β N entries to represent the

portion of the corresponding source rank vector; and created a

synchronization file Si, storing pairs of destination state ID

and their corresponding rank scores, called the “synch”, to

represent the destination rank vector adopted from the Serial

CostRank Algorithm. We first partitioned the binary link

structure file M into β portions M0, M1, .. ,Mβ−1, such that

each Mi started from)1
*

(


Vi to)
*)1(

(


Vi  .

In other words, the outgoing links of a node are bucketed

according to the range that the identifier of the destination

page falls into. We also created following arrays of

Costrankdest, i, out-vector, and Costranksrc, i for each PC. The

Costrankdest, i array and the out-vector array contain only the

corresponding Vβ entries, while the Costranksrc, i array

contains the full set of rank scores that each machine needs to

compute in each iteration step. The parallel version of the

CostRank computation is shown in Figure 5.Suppose Vβ

receives an update message from some foreign document, and

supposeXVβ1 and XVβ2 are two documents local to XVβ, both

of which are out linked by XVβ then, one method of update

Costranksrc Graph file Costrankdest

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

19

would be to simply increment the CostRanks of XVβ1 and

XVβ2by w(v, u) ← h(v, u)/sum ×(update message received

from XVβ). If the absolute change in CostRank were to

exceed epsilon, then XVβ1 would send its own local update

message to XVβ2 this message would trigger a further update

in the CostRank of XVβ2. In sum, the idea would be to set-up a

local messaging analogue between foreign linked documents.

Figure-5 Parallel CostRank Algorithm

Figure 6 shows the parallel CostRank computation during an

iteration using 10 processors and extra 2 pcs to perform

synchronizations of Synch files between processors.

Figure-6 Matlab Topology Structure

3. IMPLEMENTATION OF PARALLEL

COSTRANK ALGORITHM AND

RESULTS

3.1 Matlab Topology Setup
We did experiments on a cluster of 12 computers built with

Pentium Core2Duo 2.54Ghz processor, 2GB RAM, 250GB

Hard Disk interconnected with Gigabit Ethernet LAN,

running the Linux operating system. We created a graph file

containing 28 903 states, with about 1.2 million links. This are

stored in sparse format including the cost values and other

fields in our graph file it totaled up to 74.6MB in CRS

format.Variable Si corresponds to the synch file; Mi to the

partitioned binary graph structure file; and Vi to the portion of

source rank vector in memory residing at processor i. During

iteration, the following process occurred: first, computing a

new rank based on corresponding part of graph file Mi then

pushing the calculated values in to Costrankdest vector.

These processes will continue until the residual value exceeds

epsilon. The calculated rank Costrankdest will be added to the

local updated queue if the out link is local, or if the outlink

belongs to a foreign host, it is sent to the master host.

3.2 I/O cost
During iteration, each processor has to do the following

functions: read the portion of Mi, compute the destination

rank scores, write a created synch file Si back to disk and then

re-read the Si during synchronization. Thus the total read-

write I/O cost will be:





i

oi QiSiMiparalellC
0

/ ||2||

QSM  ||2||

Where Qi =local update queue. At this time, the outline of all

β partitions of Mi is equal to the binary graph structure file M,

and the summation of all packet files Si is S.

0

1

2

3

4

5

6

7

8

9

6 8 12 15 17

N
o

.
o

f
p

ro
ce

ss
o

rs

Data Access(GB)

Figure 7: I/O cost during iteration.

The performance measure for parallel I/O is based upon an

evaluation of its possible data movement and iterations. This

data transfer rate is dependent upon the communication

bandwidth of each processing element and I/O device, and on

the collective start-up latency for the complete

transfer.Following our analysis mentioned above, the I/O cost

of data access is increased by the factor of 2 x Si and local

update queue Qi that explain the incremental of I/O with the

number of processors as we can see in figure 7.

3.3 Memory Norm
All processors have to assign fixed size of memory to fit an

array of source rank vector Vi. Therefore, the total memory

usage will be:

VViparalellCMem  ||

As the source rank vector V is divided into β portions, the

outline of all portions Vi will be equal to the size of the source

rank vector V. Figure 8 reports the total memory usage during

computation.

Figure-8 Memory Usage

0

50

100

150

200

250

300

1 2 4 6 8 10

M
em

or
y

U
sa

ge
 (M

B
)

No. of Processors

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

20

As seen in figure 8, there is an increase in memory usage

when only two processors were used. This is due to the extra

storage needed for synchronized files. As the number of

processors increased with distributions of the tasks, the total

memory usage decreased as in 4, 6, 8 and 10 processors.

3.4 Synchronization cost
Since an entry of a Synch file Si is two times larger than an

entry of the source rank vector Vi.The synchronization cost

between processors will be:





i

Synch ViSiparalellC
0

||)
2

||
(*2|

||2|| VP 

Figure-9: Synchronization time vs. number of processors

The local CostRank scores have to be synchronized among

the ten processors to obtain the final rank to be used in the

next iteration step. Figure 9 concludes the synchronization

time per number of processors. Each processor needs to

receive an updated file from the neighbor host through master

(synchronize) machine and processes the update, then sends

the updated file to the next neighbor host through master

machine. The two master machines need to replicate the data

between them. Communication time is incurred when

message passing takes place between machines.

Synchronization overhead is incurred when the master

machine has to wait for synchronization from other machines

especially when the number of machines increases, The

synchronization overhead maintains about the same

percentage (slightly increased due to waiting time) when

number of machines increases, whereas the percentage of

communication overhead as you see in figure 10 grows with

the number of hosts that waits for task completion on the

slowest machine. Time devoted in communication and

synchronization with other processors was calculated using

the following formulas:

TspTpTq 

TsCpTq 

Figure-10: Communication time vs. number of processors

Figure 11 shows that the standard of residual errors increases

when the synchronization interval increases and when the

number of processors participating in computation increases

as in 2, 4. 8 and 10 processors. The average residual error

calculated from synchronizing the local rank scores after

every 5 consecutive steps is less than 0.020. This value is

acceptable for our research purpose. We thus set the

synchronization interval to 5 to be reported in experimental

results.

Figure-11: Residual Error

3.5 Execution times
The execution times estimated in this model should by theory,

be equivalent to the serial execution time divided by the

number of processors, given the assumptions of serialized

network transfer between hosts and constant computational

time per processor. Let Tpi be the computation time for a

CostRank per processor i, Sti is the time to synchronize synch

files. The execution time can then be estimated as:





i

tiExecution SynchTpiparalellTime
0

||2||

As the Serial CostRank execution time is divided into β

portions, the outline of all portions Tpi will be equal to Ts /β

in addition to two synchronized files received from Pβ-1 and

Pβ+1(Overhead).

Figure-12: Total Execution times

Our analogous and load balancing scheme indorsed us to load

and distribute the matrices to the processors without

overloading the memory on any particular machine. Figure

12 presents the execution time of the CostRank algorithm

against the number of processors. For the simple distribution

(equal number of rows on each processor), the runtime

displays oscillations as the number of processors increases.

This behavior is smoothened by the load-balancing

distribution. Because our algorithms are so sensitive to the

communication pattern in the matrix-vectormultiply

operation, we believe that these peaks correspond to local

maxima in the communication patterns.

3.6 Speedup time
Speedup is a measure of the performance improvement

achieved by parallelizing a sequential CostRank algorithm. Sŝ

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

21

is the ratio of the time taken to calculate the rank on a single

processor to the time required on a given parallel computer

with p processors

Tp
TsS 

Ts is the time taken on one processor in serial algorithms.Tp

is the time taken on p processors.

Figure-13: Speedup vs. number of processors

The parallel simulated CostRank algorithm is shown in figure

13. We plotted the speed up of our parallel simulated

algorithm versus the number of processors. In this graph,

speedup is defined to be the ratio of time for the serial

CostRank algorithm execution to the time for the parallel

algorithm execution. Notice that the speedup time is sharply

increased when we did the experiments using only 2 hosts:

that is due partitioning of the graph file, and the reduction of

the speed up time due to the overall loads slump on each

processor.The overall increment slightly reduced when we

used 4 hosts that is due to the overhead of synchronization

process and load balancing.There was gradual increase we

got when we used 8 and 10 hosts.

3.7 Cost of parallel algorithms
The cost of a analogous algorithm on a parallel system with p

processors, denoted by Cϸ, is defined as the product of the

parallel runtime for each processor and the number of

processors used. Intuitively, this is the amount of processor-

time working together to calculate the cost ranking in parallel:

Tpp*C 

Figure 14 presents the computation time of the CostRank

algorithm against the number of processors. The computation

time displays sharp decline as the number of processors

increases. This is due to load distributions on processors

working together to calculate the cost ranking in parallel.

Figure-14: Computation time of the CostRank algorithm

against the number of processors

3.8 Efficiency of parallel algorithms
Eϸ is the segment of the parallel runtime that the analogous

system is doing effective work. It is given:

p

S

pTp

Ts
E



 

Figure-15: Algorithms’ efficiency vs. no. of Processors

Efficiency is defined as speedup divided by the number of

processors. Ideal efficiency is always 1, and anything above 1

is super-linear. Values less than 1 indicate withdrawing

returns as more processors are added as you can see in figure

15.

3.9 Load Balancing
The load of a parallel program must be balanced among

processors to achieve higher utilization of processing

resources.To accelerate the CostRank computation we equally

distributed the binary graph file among all the processor using

following function:

p

S
Si 

If „p‟ represents the total number of processors and „S‟

represents the total number of states in the binary graph file

then we distributed the states based on the unique state-ID

going from 0 to S-1 Every processor is set to handle a

particular value in the range of the function i.e. 0 to Si All

states having state-ID whose satisfies a particular processor‟s

value. To achieve this we needed to implement Greedy

algorithm with round robin to distribute the tasks according

number of keys in table partition to multiple processors as we

see in figure 16. In heterogeneous hardware we cannot

determine the exact execution time

Figure-16 Greedy algorithm with round robin

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10

Ef
fic

ie
m

cy
 T

s/
p

Tp

No. of processors.

 P1 P2 P3

 T

3

P1 P2 P3

T

1

T

2

T

3
T

4

T

5

T=Task Execution Time

T

2

T

1

T

4

T

5

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

22

As we can see in figure 17 due to the states distributions

across hosts and processors and due to the use of greedy

algorithm with round robin technique shown in figure 16, the

load per processor reduces sharply with the number of hosts

we used during our experiments.

Figure-17: Processors loads vs. number of processors

Based on our observations, this partitioning scheme yields an

agreeable load balancing. This is a result of the uniform

distribution of states within the graph file.

4. CONCLUSIONS
In this paper, we have presented a new parallel algorithm to

calculate the CostRank of a network. We have put into

practice a developed algorithm to speed up the execution of

CostRank computation through the use of graph file

partitioning-based techniques. We have untaken the

implementations of CostRank in a parallel environment

models for one-dimensional sparse matrix partitioning on a

modified research page results in a significant reduction in

communication overhead and in per-iteration runtime. We

implemented conventional load balancing breakdown

methods. Our experiments on a gigabit PC cluster have shown

that our algorithm models consistently and substantially

decreased distributed per-iteration communication overhead,

resulting in high reductions of per-iteration run-time when

compared to the Serial Cost Rank alternative.We

implemented and tested our algorithm on a cluster of ten

machines, networked via a Gigabit Ethernet. To study its

efficiency, we performed several tests using out-vector files

synthesized from the real networked data. The given results

are quite encouraging.We have proposed a Partition-based

CostRank algorithm that can efficiently run on a parallel

environment. We also provided a visible analytical discussion

in terms of I/O and synchronization cost, and memory usage,

of the algorithms.Our algorithm will run on any number of

processors with the optimal cost.

5. REFERENCES
[1] T.H. Haveliwala. Topic-sensitive pagerank. Proc. of the

11th WWW Conf., 2002

[2] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H.

Golub. Exploiting the block structure of the web for

computing pagerank. Preprint, March 2003.

[3] T.H. Haveliwala. Efficient encodings for document

ranking vectors. Technical report, Stanford University,

November 2002.

[4] U.V. Catalyurek and C. Aykanat. Hypergraph-

Partitioning-Based Decomposition for Parallel Sparse-

Matrix Vector Multiplication. IEEE Transactions on

Parallel and Distributed Systems, 10(7):673–693, 1999.

[5] Thaier Hamid and Carsten Maple, IJCA Special Issue on

Network Security and Cryptography Number 1 2011,

ISBN: 978-93-80865-66-7.

[6] U.V. Catalyurek and C. Aykanat. A Fine-grain

Hypergraph Model for 2D Decomposition. In Proc. 15th

IEEE International Parallel and Distributed Processing

Symposium, San Francisco, CA, 2001.

[7] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS:

Parallel Graph Partitioning and Sparse Matrix Ordering

Library, Version 3.0. University of Minnesota, 2002.

[8] B. U¸car and C. Aykanat. Encapsulating multiple

communication cost metrics in artitioning sparse

rectangular matrices for parallel matrix–vector multiples.

SIAM Journal on Scientific Computing, 25(6):1837–

1859, 2004.

[9] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin.

Pagerank computation and the structure of the web:

Experiments and algorithms. Proc. of the 11th WWW

Conf.,2002. Poster Track.

[10] K. Bharat, B.W. Chang, and M. Henzinger. Who links to

whom: Mining linkage between web sites. Proc. of the

IEEE Conf. on Data Mining, November 2001.

[11] Aleksandar Trifunovic. Parallel Algorithms for Hyper

graph Partitioning. Ph.D. thesis, University of London

2006.

[12] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques

for computing pagerank. Proc. of the 11th ACM CIKM

Conf., 2002.

[13] S. Chien, C. Dwork anf R. Kumar, and D. Sivakumar.

Towards exploting link evolution. Workshop on

Algorithms and Models for the Web Graph, 2001.

[14] Russell Power, Jinyang Li. Piccolo Building fast,

distributed program with partitioned tables.

[15] Arnon Rungsawang and Bundit Manaskasemsak,

PageRank Computation Using PC Cluster, Dongarra, D.

Laforenza, S. Orlando 2003.

