
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

21

Efficient Clustering Model for Utilization of Processor’s
Capacity in Distributed Computing System

Anurag Raii

Department of IT
College of Engineering Roorkee, Roorkee-247667,

(U.K.)

Vikram Kapoor

Department of CS
Omkarananda Institute of Management &

Technology

Rishikesh (U.K.)

ABSTRACT

Distributed Computing System (DCS) computing plays an

important role in computing world where processing load is

distributed for computational efficiencies. DCS are designed to

facilitate the sharing of resources as well as to reduce

communication costs, increase throughput, and decrease delay

of services. DCS are motivated by the need for cost reduction in

tasks execution. In such applications the quality of the output is

proportional to the amount of real-time computations. To meet

such challenging computing requirements at electrifying speeds

efficient clustering strategies are required for proper utilization

of Distributed System. In this paper, we proposed a model for

efficient utilization of the processing units in distributed

environment and calculated the through of individual processor

as 0.339789, 0.371609 and 0.529287 which is far better in

comparison to the non clustering model of Sig05.

General Terms

Distributed Computing systems

Keywords

Distributed system, Communication cost, clustering
1. INTRODUCTION
A distributed computing system is the system architecture that

makes a collection of heterogeneous computers, workstations, or

servers act and behave as a single computing system [1-4]. In

such a computing environment, users can uniformly access and

name local or remote resources, and run processes from

anywhere in the system, without being aware of which

computers their processes are running on. Using workstations

clusters for distributed computing has become popular with the

increase of inexpensive, powerful workstations. Workstation

clusters offer both a cost effective alternative to batch

processing and an easy entry into parallel computing. Recently,

there has been much interest in using inexpensive, powerful

workstations to form workstation clusters. Workstation clusters

offer many benefits over traditional central site computing. High

performance workstation clusters can off-load jobs from

saturated vector supercomputers, often providing comparable

turn around time at a fraction of the cost [5]. If workstations

within clusters have a high speed interconnect, they may also

serve as an inexpensive parallel computer.

Cluster plays a vital role in the development of high speed

computing environment. With the help of clustering one can get

logical independence of hardware and software resources [6].

Clustering provides the real globalization of computing era.

Process can execute on any cluster according to their

requirements. Cluster has a large number of computing

advantages that will make them contemporary computing

technique. Some of them are:

Heterogeneous Processing Support
There are two types of cluster environments, homogeneous and

heterogeneous. A homogeneous computing environment

consists of a number of computers of the same architecture

running the same operating system [7]. A heterogeneous

computing environment consists of a number of computers with

dissimilar architectures and different operating systems [8].

Many locations have a large number of different computers for

varying resource and performance considerations.

Batch Processing Support
A popular use of clusters is off-loading batch jobs from

saturated supercomputers [9] and to distribute it on different

computers. Clusters can often provide better turn around time

than supercomputers for small (in terms of memory and CPU

requirements) batch jobs.

Parallel Processing Support
There is interest in moving to massively parallel processing

machines via heterogeneous processing because of the

heterogeneous environment's application to a larger set of

problems. A cluster can serve as a parallel machine because

workstations are inexpensive and easier to upgrade as separate

pieces may be purchased to replace older models [10].

Interactive Execution Support

A cluster should provide users the option to execute interactive

jobs on the cluster. The input, output, and error messages should

all be optionally returned to the user's interactive machine.

Message Passing Support
Message passing is the ability to pass data between processes in

a standardized method. This inter-process communication

allows several processes to work on a single problem in parallel

[11]. A large distributed application can be split across the many

different platforms that exist in a heterogeneous environment.

Load Balancing Support

Load balancing refers to the distribution of the computational

workload across a cluster so that each workstation in the cluster

is doing an equivalent amount of work. On a network, some

machines may be idle while others are struggling to process their

workload.

 Distributed computing systems have been studied extensively

by researchers, and a great many claims and benefits have been

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

22

made for using such systems [12]. In fact, it is hard to rule out

any desirable feature of a computing system that has not been

claimed to be offered by a distributed system [13]. However, the

current advances in processing and networking technology and

software tools make it feasible to achieve the advantages such as

increased performance, sharing of resources, increased

extendibility, Increased reliability, availability, and fault

tolerance, and cost-effectiveness. With the use of distributed

computing is increased performance. The existence of multiple

computers in a distributed system allows applications to be

processed in parallel and thus improves application and system

performance [14].

The above mentioned advantages cannot be achieved easily

because designing a general purpose distributed computing

system is several orders of magnitude more difficult than

designing centralized computing systems[15]. Designing a

reliable general-purpose distributed system involves a large

number of options and decisions such as the physical system

configuration, communication network and computing platform

characteristics, task scheduling and resource allocation policies

and mechanisms, consistency control, concurrency control, and

security, to name just a few. The difficulties can be attributed to

many factors related to the lack of maturity in the distributed

computing field, the asynchronous and independent behavior of

the systems, and the geographic dispersion of the system

resources [16].

The use of a communication network to interconnect the

computers introduces another level of complexity. Distributed

system designers not only have to master the design of the

computing systems and system software and services, but also

have to master the design of reliable communication networks,

how to achieve synchronization and consistency, and how to

handle faults in a system composed of geographically dispersed

heterogeneous computers [17]. The number of resources

involved in a system can vary from a few to hundreds,

thousands, or even hundreds of thousands of computing and

storage resources.

Despite these difficulties, there has been limited success in

designing special-purpose distributed systems such as banking

systems, online transaction systems, and point-of-sale systems.

However, the design of a general purpose reliable distributed

system that has the advantages of both centralized systems and

networked systems.

2. MAIN ASPECTS OF DISTRIBUTED

COMPUTER SYSTEM (DCS)
Following are some important aspects of DCS that need special

consideration

2.1 Tasks
A task is a sequential program, which performs some predefined

action and possibly communicates with other tasks in a system.

Some tasks often have priorities relative to other tasks in a

system [18]. Other common words for tasks are threads and

processes. Tasks can be preemptive or non preemptive and are

defined to take different states/modes: ready, executing, waiting,

blocked or dormant. A task will experience state changes during

its execution time [19]. Three blocks usually construct a task: a

control block, a program code and a data area. When a task is

ready to execute, it is set to active (ready state). The task with

the highest priority among the ones ready will then begin its

execution. There exist different kinds of tasks depending on

what action they implement. Since actions handle events and

events have different structures, tasks can be periodic, aperiodic

or sporadic. Periodic means that tasks are activated at a

repeatedly periodic interval. Aperiodic means that tasks can

occur at any time and there are no known arrival patterns

between the occasions. Sporadic tasks can also occur at any time

but there is a known minimum time between the arrivals [20].

Moreover in a DCS the ability to meet task deadlines largely

depends on the underlying task allocation and hence we need a

pre-runtime task allocation algorithm that takes into

consideration the real-time constraints [21]. Since the end-to-end

system response time of distributed applications is affected

significantly by inter-task communication, one must account for

the effect of delays and precedence constraints imposed by inter-

task communication when task allocation decisions are made.

3. TASKS ALLOCATION PROBLEM
Consider a set P={p1, p2, p3,………,pn} of n processors

interconnected by communication links and a set

T={t1, t2, t3,………,tn} of m executable tasks. The allocation of

each task to n available processors such that an objective time

functions is minimized subject to the certain resource limitations

and constraints imposed by the application or environment. In a

DCS, a program is portioned into small tasks and distributed

among several processors to minimize the overall system time.

Several challenges have been posed by this mode of processing

which can be classified mainly into two broad categories. One

class belongs to the hardware oriented issues of building such

systems more and more effective while the other class aims at

designing efficient algorithms to make the best use of the

technology in hand. The task allocation problem in DCS belongs

to the later class.

Assigning m tasks to n processors requires nm exhaustive

enumerations [22] Showed that the problem of finding an

optimal allocation from amongst all possible assignments is

exponentially complex. An efficient task allocation policy

should avoid excessive Inter-Processor Communication (IPC)

and exploit the specific efficiencies of the processors and in case

of a system having similar processors, the tasks or modules

should be distributed as evenly as possible. The IPC is the

bottleneck in providing linear speed-up with the increase in the

number of processors [21-22].

4. ASSUMPTIONS AND DEFINITIONS
In our underline model some assumption should be taken for the

batter utilization of the resources. Number of task is more than

the number of processor’s. Total m task are arranged in a list

T= [t1, t2,…tm].

The size of different task of the list are arranged in the task size

matrix TS []. We have Inter Task Communication Time Matrix

ITCTM[,]. It holds the communication time between the Inter

Task Communication CTS [].

In our distributed computing system we have n processor’s, P=

{p1,p2,…pn} interconnected by communication links, each of the

n processor’s in the system have their different execution rate

(because of heterogeneous system). The processing efficiency of

individual processor is given in the form of PER [] (Process

Execution Rate). With the help of ECM algorithm k-cluster are

created from m task over the n processor’s and store it in the list

CLS [].

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

23

5. PROBLEM STATEMENT
Let us given a distributed computing system consist of a set of n

processor’s, P=[p1,p2…pn] interconnected by communication

links. These links serves the purpose of transferring messages

between the processors, and a set of m task T=[t1,t2,..tn] that

constitute a communicated program. These constitute a

communicated program. These tasks are collectively responsible

for attaining the desired goal.

The processing efficiency of individual processor is given in the

form of matrix ECM[,] of order m X n and ITCTM[,] is taken in

the form of a symmetric matrix CCM[,] or order m X m. The

proposed model relies upon:

(i) Developing the methods fro clustering m task.

(ii) Reduction of ITCTM

(iii) Formulating the Cost Function to measure ECM

(iv) Making utilization of each processor, and developing

an algorithm for allocation of processor to the

respective cluster to obtain minimum Cost.

6. THE PROPOSED METHOD
A task is allocated to a processor in such a way that extensive

Inter Task Communication is avoided and the capabilities of the

processor’s suit to the execution requirement of the task. The

proposed allocation policy involves clustering of task to the

heterogeneous multiprocessor’s environment.

Initially we concentrate on the task selection for strategy cluster.

With the help of ECM algorithm different cluster are created

with respect to the number of processor’s in the system.

Now these clusters are allocated to the different processing

units. This allocation is governed by the optimistic allocation

strategy. That includes both communication cost and execution

cost.

Computational Algorithm

Declaration Section-

TASK_CLUSTER(): // form the clusters of tasks.

GENERATE_ECM(,): // by multiplying the TS(,) and PSR(,)

TASK_MAPPING(): //Map the task clusters to the processors

using the Optimal Allocation Algorithm

End Declaration Section

Input: m, n, TS (), PSR () and ITCCM (,)

TASK_CLUSTER()

Start Procedure

Begin

 Set: task cluster K

If K=m

 then

 No of clusters to be form =n and a cluster

may not contain more than K= [m/n] task

 endif

Initially each task is treated like a cluster Ci={ti}for i=1 to m.

Store these clusters in a linear array CLS={Ci, 1<=i <=m}.

Select the first tasks pair say (tr,ts) (say tr ε Cr and ts ε Cs)

from TS().

If the sum of number of tasks for clusters Cr and Cs is less than

or equal to [m/n],

then

 fuse the clusters Cr with Cs

else

select the next task pair from TS().

Modify CLS={} by replacing the cluster Cr as Cr

Cr υ Cs={tr,rs} .and.

Modify the TS() by deleting this tasks pair (tr,ts) also

Modify TS() and ITCTM(,) as:

(a): Modify the TS(,) by adding s-th row into

r-th.

(b): Reduce the communication time

between tr and ts to zero.

(c): Add the communication time Csj to Crj

for all j.

(d): Delete task ts from ITCTM (,).

The above procedure is repeated until and unless we

do not get number get number of tasks clusters equal

to number of processors.

End

End Procedure TASK_CLUSTER

GENERATE_ECM(,)

Start Procedure

Begin

To determine the ECM(,) Initially we have taken the transpose

of the PSR(j)T and multiply with TS(i) as:

ECM(I,j)=

t1 Ts1

X

P1 p2 p3 . . pn

t2 Ts2

t3 Ts3 Er1 Er2 er3 . . ern

. .

. .

tm tsm

End

End Procedure GENERATE_ECM

TASK_MAPPING()

Start Procedure

Begin

Apply the optimistic Algorithm to get the allocation.

Store the assignment in an linear array Tass(j)

(where j=1,2,….n).

Processor position are stored in a another linear array

Aalloc(j).

Get the value of TTASK (j) by adding the values of Aalloc(j) if a

task is assigned to a processor otherwise continue.

Evaluate the processor’s wise Execution cost and Inter Task

Communication Cost.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

24

Calculate RT, MSR and TRP

End

End Procedure TASK_MAPPING

7. RESULTS AND DISCUSSIONS
The present paper deals with a simple yet efficient mathematical

and computational algorithm for clustering of task for evaluation

of performance of the DCS. A simple procedure has been

developed to determine the following

i) Clustering of task.

ii) Processing rate of different CPU’s.

iii) Communication delay.

iv)Throughput of the processors.

Figure 1 shows the throughput of DCS with the set of seven

tasks and three processor having the processing cost, throughput

and service rate as according to the Table 1.

With the help of ECM algorithm we calculate the throughput of

individual processor as 0.339789, 0.371609 and 0.529287 which

is far better in comparison to the non clustering models. Overall

cost of the existing system is reduced which makes it efficient.

Also the service rate of the existing system will constant during

the high load of execution.

Table 1

Processor P_Cost Throughput Service Rate

p1 0.047
0.339789331

0.169894665

p2 0.051
0.371609067

0.185804534

p3 0.044
0.529287227

0.176429076

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Processing Cost Throughput Service Rate

Cluster Performance

Figure 1: Process Cost ,Throughput and Service Rate of

Efficient Clustering System

8. CONCLUSIONS
In this paper, we presented computational algorithm for

clustering of task for evaluation of performance of the DCS. The

algorithm is general and can accommodate a large number of

task to be clustered on any number of processor’s to check the

generality of our algorithm several sets of input data are

considered and is found that the algorithm is suitable for

arbitrary number of processor’s with the random program

structure and workable in all the cases.

9. REFERENCES
[1] A. Tom P. and Ram Murthy, C. S. 1997. An improved

algorithm for module allocation in distributed computing

Systems. Journal of Parallel and Distributed Computing

Systems, Vol. 42, pp. 82-90.

[2] Kafil, M. and Ahmad, I. 1997. Optimal task assignment in

heterogeneous computing systems, In Proceeding of Sixth

Heterogeneous Computing Workshop, pp. 135-146.

[3] Peng, D. T., Shin, K.G. and Abdel, Zoher, T.F. 1997.

Assignment scheduling communication periodic tasks in

distributed real time system. IEEE Transactions on

Software Engineering, SE-13, pp. 745- 757.

[4] Chu, W.W. Holloway, L.J., Lan, M.T., and Kfe, K. 1980.

Task allocation in distributed data processing. IEEE

Concurrency, pp.57-69.

[5] Richard, P.Y., Edward, M., Lee, Y.S., and Tsuchiya, M.

1982. A task allocation model for distributed computing

systems. IEEE Transactions on Computers, Vol.C-31, pp.

41- 46.

[6] Shen, C. C., and Tasi, W.H. 1985. A graph matching

approach to optimal task assignment in distributed

computing systems using a minimax criterion. IEEE

Transactions on Computers, Vol. C- 34, pp. 197-203.

[7] Stone, H.S. 1978. Critical load factors in two- processor

distributed system. IEEE Transactions on Software Engrg.

Vol. 4, pp. 254- 258.

[8] Muhammad, I.A., Dhodhi, K., and Ghafoor, A. 1995. Task

assignment in distributed computing systems. IEEE

Concurrency, pp.49-53.

[9] Lee, C.H., Lee, D. and Kim, M. 1997. Optimal task

assignment in linear array networks. IEEE Transactions on

Computers, Vol.41, No. 7, pp.877-880.

[10] Shatz, S.L., Wang, J.P., and Goto, M. 1992. Task allocation

for maximizing reliability of distributed computer systems.

IEEE Transactions on Computers, Vol.41, 9, pp.

[11] Kartik, S., and Ram Murthy, C.S. 1997. Task allocation

algorithms for maximizing reliability of distributed

computing system. IEEE Transactions on computers,

Vol.46, No. 6, pp. 719-724.

[12] Chen, D.J., Chen, R.S., Hol, W.C., Ku, K.L. 1995. A

heuristic algorithm for the reliability- oriented file

assignment in a distributed computing system. Computers

Math. Applic., Vol. 29, No.10, pp. 85- 104.

[13] Yin, P.Y., Yu, S.S., Wang, P.P., Wang, Y.T. 2007. Task

allocation for maximizing reliability of a distributed system

using hybrid particle swarm optimization. The Journal of

Systems and Software, Vol. 80, pp. 724-735.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4432

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

25

[14] Srinivasan, S., and Jha, N.K. 1999. Safety and reliability

driven task allocation in distributed systems. IEEE

transactions on Parallel and Distributed Systems, Vol.10.

No. 3, pp.238-251.

[15] Vidayarthi, D.P., and Tripathi, A.K. 2001. Maximizing

reliability of distributed computing system with task

allocation using simple genetic algorithm. Journal of

System Architecture, Vol. 47. pp. 549-559.

[16] Kng, Q.M., He, H., Song, H. M., Deng, R. 2010. Task

allocation for maximizing reliability of distributed

computing system using honeybee mating optimization.

The Journal of Systems and software, Vol.83, No. 2.pp.

[17] Woo, S.H., Yang, S. B., Kim, S.D., and Han, T.D. 1997.

Task scheduling in distributed computing systems with a

genetic algorithm. Doi.0- 8186- 7901- 8/97 10.000, IEEE

p.p. 301-305.

[18] Lu, H. 1996. Load balanced task allocation in locally

distributed computer sciences. Technical report# 633.

[19] Elsadek, A.A., and Wells, B. E. 1999. A heuristic model for

task allocation in heterogeneous distributed computing

systems. International journal of computers and there

applications, Vol.6, No.1, March 1999. pp. 1-35.

[20] Lo, V.M. 1988. Heuristic algorithms for task assignment in

distributed systems. IEEE Transactions on computers,

Vol.37. No. 11, pp. 1384- 1397.

[21] Kfe, K. 1982. Heuristic models of task assignment

scheduling in distributed systems. Computer, Vol. 15, pp.

50- 56.

[22] Ellis, H., Sahni, S. and Rajsekaram, S. 2005. Fundamentals

of computers algorithm. Galgotiya publication Pvt Ltd.

[23] Tushar Deepak Chandra, Vassos Hadzilacos , Sam Toueg

1996. The weakest failure detector for solving consensus.

In the Journal of ACM (JACM), Volume 43 Issue 4

[24] Florina M. Ciorba, Timothy Hansen, Srishti Srivastava,

Ioana Banicescu, Anthony A. Maciejewski, and Howard

Jay Siegel, “A Combined Dual-stage Framework for

Robust Scheduling of Scientific Applications in

Heterogeneous Environments with Uncertain Availability,”

21st Heterogeneity in Computing Workshop (HCW 2012).

[25] Mourad Elhadef and Amiya Nayak, Comparison-Based

System-Level Fault Diagnosis: A Neural Network

Approach IEEE transactions on parallel and distributed

systems, vol. 23, no. 6, june 2012

[26] Jay Smith, Edwin K. P. Chong, Anthony A.Maciejewski,

and Howard Jay Siegel, “Overlay Network Resource

Allocation Using a Decentralized Market-Based

Approach,” Future Generation Computer Systems, Vol. 28,

No. 1,pp. 24-35, Jan. 2012.

