
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

34

Robustness of Heuristic Resource Allocation

Techniques in Grid Computing System

Sampa Sahoo
Department of CSE

PCE Rourkela
Rourkela, India

Bibhudatta Sahoo
Department of CSE

NIT Rourkela
Rourkela, India

Ashish Chandak
Department of CSE

NIT Rourkela
Rourkela, India

ABSTRACT

Grid computing system consists of machines with varied

computational capabilities. These systems assist in the

computing of large amounts of complicated tasks in scientific

and engineering areas. It may operate in an environment

where system performance features degrade due to

unpredictable changes, inaccuracies in the estimation of task

execution times etc. These systems need robustness. The

robustness guarantees limited degradation in system

performance. The following research is based on the

requirement of robustness for resource allocation in grid

computing environment. Four heuristic techniques for

resource allocation are used to compare the robustness.

General Term

Grid Computing System

Keywords

Grid computing system, robustness, makespan heuristic

resource allocation.

1. INTRODUCTION
Grid computing consists of machine sets with varying

computing capabilities. It solves problems by allocating idle

computing resources across geographically distributed area.

The key goal of grid computing is to design a system that can

provide improved efficiency and a platform for proper

utilization of all computing resources within an enterprise or

extended enterprise to meet end user demands [3, 8].

Grid is a decentralized heterogeneous system in which

resources belong to multiple organizations. It does not enforce

absolute control over these resources. From user’s

perspective, grid computing is a collaborative problem-

solving environment in which one or more user jobs can be

submitted without knowing where the resources are or whom

it is allocated to. A grid computing system must guarantee the

quality of service of a job’s execution. It utilizes the network

and combines idle resources scattered in every region for

distributed applications [4]. A grid environment aggregates

the rich computing resources from every part of the world to

form a powerful computing capability. Traditional parallel

scheduling problem deals with scheduling the subtasks of an

application to the parallel machines in order to reduce the

turnaround time [6]. In large grid computing system it is

unwieldy for an individual to select the resources manually.

So resource management and scheduling of tasks into

machines are required for better performance. Grid computing

systems should be able to assign the tasks of different users to

the different avail resources efficiently and utilize the

resources of unused devices (known as load balancing/job

scheduling/resource allocation). Purpose of resource

allocation is to improve the performance of the grid

computing system through an appropriate distribution of the

user’s application tasks [2].

The rest of the paper is organized as follows. Section 2

describes system model and defines the resource allocation

problem. Section 3 provides the work dealing with robustness

and some robustness metrics. Section 4 presents some

experiments and their results that highlight the usefulness of

the robustness metric. Related work is given in section 5.

Section 6 concludes the paper.

2. GRID-COMPUTING SYSTEM

MODEL AND RESOURCE

ALLOCATION
Grid is a system having a number of independent sites as

shown in Fig. 1 and task execution in grid system is shown in

Fig.2. A site may have either a single computing node or a

number of computing nodes connected in a distributed

manner. Resources in a site are not exclusively dedicated for

grid usage. Sites can freely participate in grid computing by

offering resources. We represent a grid as two tuple G = <S,

TM> where S is the set of sites and TM is the set of tasks. We

further represent the set S as S = {

1

1

N
S

,
2

2

N
S

,………

iN

iS
,……,

nN

nS
} where

iN

iS
is the

ith site have Ni number of resources, TM = { Tj | j ε 1,2 ….

,M}, the set of tasks to be executed in the grid. The resources

at site Si can be of data, computational or I/O type. Each site

Si is associated with few attribute. They are status Sti of the

site (whether working or not working) and maximum capacity

Capi of the site. A site Si can be represented in three tuple Si =

< Ri, Sti, Capi >. The resource Ri at site Si can be represented

in three tuple Ri = <I/Oi, Ci, Di> where

I/Oi = Set of resources of I/O type,

Ci = Set of resources of computational type and

Di = Set of resources of data type.

The QoS for I/O resources is characterized by speed and

latency. The QoS for computational resources is characterized

by computational speed and load. The QoS for data resources

is characterized by space and disk bandwidth. So, the total no

of resources available at all sites at a point of time tj for a task

is:

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

35

Fig 1: Grid system

R= {C1, C2, C3......., Cn, I/O1, I/O2, I/O3......., I/On, D1, D2,

D3......., Dn}

We represent the grid system as a M/M/s: N/FCFS queuing

model as shown in Fig. 2 where: M - represents exponential

inter arrival times between tasks, M - represents exponential

execution time of tasks, s - represents number of computing

sites, N - represents capacity of system i.e maximum task

allowed in the system (this includes executing task plus

waiting task), FCFS – represents First Come First Serve queue

discipline.

Let i be the rate of arrival of task from each grid user i at

the grid scheduler. Assuming that there are j numbers of grid

user, the total rate  at which task arrive at the grid

scheduler





j

i

i

1


 Let i be the rate at which a task is

served at each site i. We assume that the service rate is

independent and identically distributed. The combined service

rate of all sites in a grid is





n

i

i

1


.

Our queuing model is characterized by following parameters:-

n - Number of tasks in the system.

 - Arrival rate of tasks.


- Service rate of tasks.

Fig 2: Grid system task model

The process of assigning each task to a machine and

scheduling the execution of the tasks on each machine is

known as resource allocation/mapping/resource management

[3]. The goal of resource allocation is to achieve high system

throughput. It also matches the application needs with

available computing resources satisfying the required QoS [6].

A resource allocation is defined to be robust if system

degradation is limited in the presence of unpredictable

circumstances such as machine failure, higher than expected

system load etc [8]. The degree of robustness is the maximum

amount of collective uncertainty in perturbed system

parameters. This should guarantee user-specified level of

system performance. In robust system actual makespan (i.e

completion time for an entire set of tasks) under the perturbed

conditions does not exceed the required time constraint [3].
Following simple heuristics are used for resource allocation.

FCFS: FCFS (First come First serve) means first come first

serve. As the name specifies the scheduler executes the jobs in

the order of their submission i.e. job submitted earlier will be

executed earlier.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

36

Random: Tasks are selected randomly among all tasks that

are submitted but not yet started for execution and this

schedule is non-deterministic.

Min-min: The Min-min heuristic requires two steps. In first

step, machine with minimum completion time is selected for

each task. Second step, from all tasks, task with minimum

completion time for execution is sent for execution.

Max-min: The Max-min heuristic method’s first step is same

as Min-min’s but sends the task with maximum completion

time for execution. This strategy is useful in a situation where

completion time for tasks varies significantly.

3. JUSTIFYING THE USE OF

ROBUSTNESS AS THE PERFORMANCE

METRIC
Resource allocation that maximizes the robustness of a system

in heterogeneous computing environment is an important

research problem [5]. Heterogeneous computing (HC)

systems utilize various resources with different capabilities to

satisfy the requirements. It is very difficult to measure the

performance of the system-using throughput as performance

parameter since, it consists of different machines scattered

here and there with different capabilities. These systems often

operate in an environment where certain desired performance

features degrade due to unpredictable circumstances, such as

higher than expected work load or inaccuracies in the

estimation of task and system parameters. .Thus when

resources are allocated to tasks it is desirable to do this in a

way that makes the system performance on these tasks robust

against unpredictable changes [3]. The robustness of a

computing system can be defined as the measure to which a

system can perform correctly in the presence of parameter

values different from those assumed [5]. This can be

measured using different techniques described in section 2.

Unpredictable changes may happen in any situations, which

results system failure in grid computing environment. This

may lead to degradation in system performance. So robustness

can be used as performance metric to guarantee limited

degradation in system performance in grid computing

environment.

4. SIMULATION RESULTS
Grid scheduling is NP complete problem [3]. Various

heuristics have been developed to solve this Grid scheduling

problem. The four basic heuristic are economic heuristic [4, 5,

6], meta-heuristic [7, 8], population based heuristic [9, 3, 10,

11, 12], hybrid heuristic [13, 14, 15, 16, 17]. A grid scheduler

acts as an interface between the user and distributed resources.

It hides the complexities of the computational grid from the

grid user [3]. This paper presents a brief discussion on various

heuristics and their importance in grid scheduling.

 We developed a simulation application in matlab to

carry out the experiments. This is used to evaluate

performance of grid scheduler and tasks are schedule using

simple heuristic viz. Max-Min, Min-Min and FCFS heuristics.

Each simulation experiment ends when 30-50 tasks

executions are completed. The simulation model consists of

four nodes each having different computing capability. The

arrival of tasks is modeled as Poisson random process.

 Different arrival rates are low (=1), moderate (=3),

high (=5). For each mapping 20% delay in execution time

was allowed i.e. actual completion time could be no more than

1.2 times of estimated value and the robustness metric was

evaluated. Fig 3, Fig 4, Fig 5, and Fig 6 shows the robustness

of a mapping against the number of tasks, with different

arrival rate (λ). Fig 3, Fig 4, Fig 5 shows that max-min is

better than fcfs, random, min-min even if we increase the

arrival rate i.e. a system is more robust using max-min

resource allocation strategy than the rest three. Fig 6 shows

that for the same arrival rate if we increase the number of task

robustness also increases, still max-min performs better than

the rest three. The experiment also shows that in every case

min-min is the worst strategy to implement for robust system.

Fig 3: robustness V/s number of tasks with low arrival

rate

Fig 4: robustness V/s number of tasks with moderate

arrival rate

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

37

Fig 5: robustness V/s number of tasks with high arrival

rate

Fig 6: robustness V/s number of tasks with high arrival

rate

5. RELATED WORK
Robustness is defined differently by different authors. Sotkov

and Tanaev [7] have developed a metric for the robustness

considering makespan against uncertainties in the estimated

execution times of the application. It describes the effect of

the uncertainties on the value of makespan and how the

robustness metric could be used to find more robust resource

allocation. Burns et al. [7, 14] use probabilistic guarantees for

fault-tolerant real-time systems. In first step the authors have

determined the maximum frequency of software or hardware

faults that the system can tolerate without violating any hard

real-time constraint. In second step the authors give value of

the probability. The frequency determined in the first step is

the maximum limit for a system failure. Davenport et al. [7,

10] uses slack-based techniques for producing robust resource

allocations in a job-shop environment. Hence each task is

provided with extra time defined as slack. Slack absorbs some

level of uncertainty without reallocation.

In [3, 9] a single machine scheduling environment is

considered where the processing times of individual jobs are

uncertain. Using probabilistic information about processing

time for each job a normal distribution is determined. The risk

value is calculated by using the approx. distribution of flow

time. One minus the risk of achieving substandard flow time

performance gives the robustness of a given schedule. Slack is

used as measure of robustness [3, 10] where slack is the extra

time given to each job for completion so that some level of

uncertainty can be tolerated without having to reallocate. In

[3, 11] the authors use rescheduling policy in the event of

breakdowns.

The researchers in [7, 13] examine the use of probability

distribution of an applications execution time. They have

described a scheduling policy, which tries to assign data to

each processor so that all processors finish nearly about same

time. Since execution times are different for different

machines there may be machines, which are heavily loaded.

Jobs are assigned to machines with smaller variability in

performance. The research in [3, 15, 16] considers a scenario-

based approach to represent the input data uncertainty to their

robustness decision model.

There are various scheduling algorithms used to minimize the

overall completion time of the tasks. These algorithms find

the most suitable resources to be allocated to the tasks in a

heterogeneous system. In [12, 17, 18, 19, 20, 21] max-min

and min-min algorithms estimate the execution and

completion times of each task on all the heterogeneous

resources. The min-min algorithm selects the task with

minimum completion time and assigns it to the, resource on

which minimum execution time is achieved. One of the

problems with this algorithm is that it assigns the smaller

tasks to the resources with relatively higher computational

power. Max-min is one of the variations of min-min algorithm

where task with minimum completion time is assigned to

resource on which maximum execution time is achieved.

Max-min shows better performance than min-min algorithm if

the number of shorter tasks is much more than longer ones. In

case of max-min algorithm the small tasks may wait for larger

ones to be executed. The researchers in [3, 12] used max-max,

a variation of min-min algorithm. They argued that it

performs better for static and dynamic mapping problem. QoS

(Quality of services) guided min-min technique; a variation of

conventional min-min is used in [17, 18].

QoS priority grouping scheduling [17, 20] considers deadline

and acceptation rate of the tasks and makespan of the whole

system as major factors for task scheduling. The authors have

discussed that this algorithm performs better than min-min. In

[22] FCFS is considered to be inefficient for many workloads

as large number of jobs wait for execution. This situation may

cause unnecessary idle time of some resources. The research

in [22] showed that random policy is non-deterministic as jobs

submitted earlier have a higher probability to be started before

a given time.E.Elmroth et al. have proposed a user-oriented

algorithm using advanced reservation and resource selection

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

38

[17, 23] for heterogeneous environment. This algorithm

minimizes the total execution time of all the submitted tasks.

6. CONCLUSION
This paper presents a comparison of robustness of different

simple heuristic such as FCFS, random, max-min and min-

min. The results show that max-min performs better than

FCFS, random and min-min i.e. max-min has highest

capability to perform against the uncertainties. It also

performs better than other algorithms even if we increase the

number of task. The Max-min heuristic First, select a “best”

(with minimum completion time) machine for each task.

Second, from all tasks, send the one with maximum

completion time for execution. Here larger tasks are executed

first in best available machine which reduces the waiting time

of these tasks. This leads to better load-balancing and efficient

use of system. In FCFS execution of jobs are done according

to their order of submission. Task execution will not be

started until required resources are present which results

stalling of others tasks in the submission queue So this

method is inefficient as wide jobs waiting for execution can

result in unnecessary idle time for some resources. Random

heuristic randomly selects job for execution so it is highly

non-deterministic. Min-min heuristic selects task with small

completion time to schedule first on the best available

machines. In this case task with longer completion time will

have to wait for indefinite time which leads to load imbalance.

So from the above discussion and experiment results we can

conclude that max-min is better heuristic.

7. REFERENCES
[1] I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of the

Grid: Enabling Scalable Virtual Organizations",

International Journal Supercomputer Applications, 2001

[2] Satish Penmatsa & Anthony T. Chronopoulos”Job

allocation schemes in computational Grids Based on cost

optimization”. In Proc. 19th IEEE International parallel

& distributed processing symposium (IPDPS’05), 2005.

[3] Prasanna Sugavanam,H.J.Seigel,Anthony A.

Maciejewski,Mohana Oltikar,Ashish Mehta,Ron

Pichel,Aaron Horiuchi,Vladimir Shestak,Mohammad

AL-Qtaibi,Yogish Krishnamurthy,Syed Ali,Junxing

Zhang,Mahir Aydin,Panho Lee,Kumara Guru,Michael

Raskey,Alan Pippin “Robust static allocation of

resources for independent tasks under makespan and

dollar cost constraints “the journal of parallel and

distributed computing (JPDC),2005.

[4] K.Q Yan,S.C. Wang,C.P. Chang and J.S. Lin “A hybrid

load balancing policy underlying grid computing

environment” in computer standards and interfaces,2006.

[5] Ashish M. Mehta, Jay Smith, H.J. Seigel, Anthony

A.Maciejewski, Arun Jayaseelan, Bin Ye “Dynamic

Resource Allocation heuristics that manage tradeoff

between makespan and robust”in Springer Science-

Business Media LLC 2007.

[6] Xiaoshan He, Xian-He Sun and Gregor Von Laszewski

“A QoS Guided Scheduling Algorithm for Grid

Computing” international workshop on grid &

cooperative computing (GCC02) Pages 442-450, 2002.

[7] Zhimin Tian,Yang Yang,Zhengli Zhai “Modelling

Robust Resource allocation for Grid computing” in

proc.15th International Conference on Grid and

Cooperation Computing(GCC’06),2006.

[8] Shoukat Ali,Anthony A. Maciejewski,Howard Jay

Seigel, and Jong-Kook Kim “Definition of a Robustness

Metric for Resource Allocation” in proc.17th

International Parrallel and distributed processing

symposium(IPDPS’03),2003.

[9] R.L. Daniels, J.E Carrilo “β-robust scheduling for single-

machine systems with uncertain processing times “, IIE

Trans.29 (11)(November-1997), 977-985.

[10] A.J. Davenport, C. Gefflot, J.C Beck “slack-based

techniques for robust schedules”, in: Sixth European

conference on planning, September 1001,pp.7-18.

[11] V.J.Leon, S.D. Wu, R.h. Storer,”Robustness measures

and robust scheduling for job shops, IIE Trans. 26(5)

(September 1994) 32-34.

[12] T. D. Braun, H. J. Seigel, N. Beck, L.Boloni, R.F.

Freund,D. Hensgen,M.Maheswaran,A.I. Reuther,J.P

Robertson,M.D. Theys,B.Yao “A comparison of eleven

static heuristics for mapping a class of independent tasks

onto heterogeneous distributed computing systems”

Journal of Parallel Distributed computing.61 (6) (june

2001)810-837.

[13] J.M. Schopf and F. Berman. “Stochastic scheduling “in

proc of the 1999 ACM/IEEE conference on

supercomputing, 1999.

[14] A. Burns, S. Punnekkat, B. Littlewood,and D.

Wright,”Probabilistic Guarrantees for fault-Tolerant

Real-time Systems” Technical Report,Design for

validation (De Va) TR No. 44,Esprit Long Term

Research Project no. 20072,Dept. of Computer

Science,Univ. of Newcastle upon Tyne,U.K.,1997.

[15] P.Kouvelis, R.Daniels, G. Vairaktarakis “Robust

scheduling of a two-machine flow shop with uncertain

processing times” Iie Trans. 38 (5)(May 2000) 421-432.

[16] P. Kouvelis,G. Yu “Robust Discrete Optimization and its

Applications” Kluwer Academic

Publisher,Dordrecht,1997.

[17] Saeed Parsa and Reza Entezari-Maleki “RASA: A new

task scheduling algorithm in grid environment” in World

Applied sciences journal 7,152-160, 2009.

[18] He, X., X-He sun and G.V. Laszewski, 2003 “QoS

guided Min-min heuristic for grid task scheduling”

Journal of computer science and technology, 18:442-451.

[19] Maheswaran, M. Sh. Ali, H. Jay Siegel, D. Hensgen and

R.F. Freund, 1999 “Dynamic Mapping of a class of

independent Tasks onto Heterogeneous computing

systems “ journal of Parallel and Distributed Computing,

59:107-131.

[20] Dong, F., J. Luo,L. Gao and L. Ge,2006 “A grid task

scheduling algorithm based on QoS priority grouping “

in proc. Of the fifth international conference on grid and

cooperative computing (GCC’06), IEEE.

[21] Etminani,K. and M. Naghibzadeh,2007 “A min-min

Max-min Selective algorithm for grid task scheduling

“The third IEEE/IFIP international conference on

internet. Uzbekistan.

[22] Volker Hamscher, Uwe Schwiegelshohn, Achim streit,

and Ramin Yashyapour “evaluation of job scheduling

strategies for grid computing” in Grid-2000, volume:

1971, issue: 1, publisher: springer, pages: 191-202.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.23, April 2012

39

[23] Elmroth, E. and J. Tordsson, 2008 “grid resource

brokering algorithms enabling advance reservations and

resource selection based on performance predictions”

journal of future generation computer systems, 24:585-

593.

[24] Mohana Oltikar, Jeff Brateman , Joe White, Jon Martin,

Keith Knapp, Anthony A. Maciejewski, H.J. Seigel

“Robust resource allocation in weather data processing

system” in proc international conference on parallel

processing workshops(ICPPW’06),2006.

[25] Ashish Chandak, Bibhudatta Sahoo, and Ashok Kumar

Turuk, "An Observation on Performance Analysis of

Grid Scheduler", International Journal of Computer

Science and Technology, Volume: 02, Issue: 04, Pages:

516-520, 2011, ISSN 2229-4333.

[26] Ashish Chandak, Bibhudatta Sahoo, and Ashok Kumar

Turuk, "Performance Analysis of Adaptive Resource

Clustering in Grid", International Journal of Computer

Application, Volume: 29, Issue 09, Pages: 41-47, 2011,

ISSN 0975 - 8887.

[27] Pratibha Zunjare, and Bibhudatta Sahoo, “Evaluating

Robustness of Resource Allocation in Uniprocessor Real

Time System", International Journal of Computer

Application, Volume: 40, Issue 03, Pages: 13-18, 2011,

ISSN 0975 - 8887.

[28] Bibhudatta Sahoo, S. Mohapatra, and S.K. Jena, “A

Genetic Algorithm Based Dynamic Load Balancing

Scheme for Heterogeneous Distributed Systems", in

Proc. PDPTA, pp.499-505, 2008.

