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ABSTRACT 

In this paper, we present the numerical solution for the PDE-

constrained optimization problem arises in cardiac 

electrophysiology. The monodomain model, which is a well-

established model for simulating electrical behavior of the 

cardiac tissue, appears as the constraint in our problem. Our 

objective is to search for the optimal applied current, which is 

able to dampen out the excitation wavefront of the 

transmembrane potential during defibrillation process. The 

modified Dai-Yuan nonlinear conjugate gradient method is 

employed for computing the optimal applied current, and our 

numerical results show that the excitation wavefront is 

successfully dampened out by the optimal applied current.     
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1. INTRODUCTION 
Sudden cardiac death is an unexpected death of a person in a 

short time period, and is often attributed to cardiac 

arrhythmias. During an arrhythmia, the heart may beat too 

slowly, too rapidly, or irregularly. There are many types of 

cardiac arrhythmia, and the most common life-threatening 

arrhythmia is ventricular fibrillation. Currently, the only 

effective therapy for termination of ventricular fibrillation is 

through electrical defibrillation [1, 2]. However, there are 

some adverse effects associated with defibrillation such as 

myocardial dysfunction and damage [3]. In the effort of 

minimizing the adverse effects, it is essential to determine the 

minimal current required for successful defibrillation. As a 

result, the optimal defibrillation process can be formulated as 

a PDE-constrained optimization problem, in which the 

monodomain model appears as the constraint.   

The monodomain model is a well-established mathematical 

model for numerical simulation of cardiac electrical activity 

[4, 5]. It consists of a parabolic partial differential equation 

(PDE) coupled with a system of nonlinear ordinary 

differential equations (ODEs) representing cell ionic activity. 

In the context of optimally controlled defibrillation process, it 

is essential to determine the optimal applied extracellular 

current, which is able to drive the heart rhythm back to 

normal. In other words, we are trying to search for the optimal 

current in such a way that it dampens the excitation wavefront 

of the transmembrane potential during defibrillation process. 

The main purpose of this paper is therefore to provide a 

numerical solution for the optimal control problem of the 

monodomain model. 

The structure of the paper is organized as follows. Section 2 

presents the optimal control problem of the monodomain 

model with Rogers-Modified FitzHugh-Nagumo ion kinetic. 

The numerical approach used to solve the optimal control 

problem is discussed in Section 3, while the optimization 

algorithm is presented in Section 4. Next, the numerical 

results are given in Section 5. Finally, we conclude our paper 

with a short discussion in Section 6.  

2. OPTIMAL CONTROL PROBLEM 

Let 2  denotes the computational domain, c  

denotes the control domain and o  denotes the 

observation domain. The optimal control problem for 

monodomain model is given by 
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Here 0  is a regularization parameter, T  is final 

simulated time and   is unit normal vector directed outwards 

from  . Moreover, iD  is intracellular conductivity tensor, 

  is surface-to-volume ratio of the cell membrane, mC  is 

membrane capacitance per unit area,  wVIion  ,  is current 

density flowing through the ionic channels,  wVf  ,  is  

prescribed vector-value functions,   is a constant scalar used 

to relate the intracellular and extracellular conductivity 

tensors,  txV  ,  is transmembrane potential,  txw  ,  are ionic 

current variables and  txIe  ,  is extracellular current density 

stimulus. Both functions  wVIion  ,  and  wVf  ,  depend on 

the ionic model. In this paper, we adopt Rogers-Modified 

FitzHugh-Nagumo model [6] which is given by 
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Here pV  is plateau potential, thV  is threshold potential, and 

4321  , , , cccc  are positive parameters. Notice that the optimal 

control problem in (1) is a PDE-constrained optimization 

problem with V  and w  as the state variables, and eI  as the 

control variable. The control variable is chosen such that it is 

nontrivial only within the control domain. Also, the control 

variable is chosen in the best possible way to achieve our 

control objective, which is to dampen out the excitation 

wavefront of transmembrane potential in the observation 

domain.    

3. NUMERICAL APPROACH 

3.1 First Order Optimality System  
We adopt the optimize-then-discretize approach to solve the 

optimal control problem in (1). For deriving the first order 

optimality system, Lagrange functional, L , is formed. 
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where  txp  ,  and  txq  ,  are Lagrange multipliers which are 

used to adjoin the constraints to the cost functional. The first 

order optimality system is obtained by setting the partial 

derivatives of (2) equal to zero. As a result, the first order 

optimality system consists of the following: 
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where     denotes the partial derivative with respect to   

and 
o

V  denotes the transmembrane potential in the 

observation domain. Here, (3) is known as state system, (4) is 

known as adjoint system and (5) is the optimality condition.  

According to [7], the control-to-state mapping 

    eee IwIVIC  ,  is well-defined. Thus, the cost 

functional,  eIVJ  , , in (1) can be rewritten as 
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where  eIĴ  is known as reduced cost functional. 

Furthermore, the gradient of the reduced cost functional is 

given as 
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3.2 Numerical Discretization 
To complete the optimize-then-discretize approach, the 

optimality system needs to be discretized. In order to reduce 

the complexity of the optimality system, the operator splitting 

technique [8] is applied to split (3) and (4) into smaller parts 

that are easier to solve. After applying the operator splitting 

technique, the nonlinear PDE in (3) is split into a linear PDE 

and a nonlinear ODE as follows 
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For the discretization procedure, the linear PDEs are 

discretized with Galerkin finite element method in space and 

Crank-Nicolson method in time. On the other hand, the 

nonlinear ODEs are discretized with forward Euler method in 

time. The discretized state system is therefore given as 
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and the discretized adjoint system is given as 
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where M  is the mass matrix, K  is the stiffness matrix, 1t  

and 2t  are the local time-steps. 



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No12, April 2012 

13 

4. OPTIMIZATION ALGORITHM 
The nonlinear conjugate gradient method is an attractive 

method for solving large-scale unconstrained optimization 

problem due to its simplicity and low memory requirements 

[9, 10]. For the previous work, Nagaiah et. al. [11] applied the 

Dai-Yuan (DY) nonlinear conjugate gradient method [12] for 

solving the optimal control problem of the monodomain 

model. For this paper, the modified Dai-Yuan (MDY) method 

[13] is employed. MDY method is chosen because it not only 

inherits all the nice properties of DY method, but also proven 

to converge globally, independent of the line search used. The 

algorithm for solving the discretized optimal control problem 

is shown as follows. 

Overall Solution Algorithm: 

Step 0.  Provide an initial guess 0
eI  and set 0k . 

Step 1.  Set    xx 0V V 0,  and    xx 0w w 0, . Solve the 

  discretized state system (6). 

Step 2.  Evaluate the reduced cost functional kĴ . 

Step 3.  Set   0 p Tx,  and   0 q Tx, . Use the result 

 obtained in Step 1 to solve the discretized adjoint 

 system (7). 

Step 4.  Update the gradient kkk
pIJ e







1

1ˆ . 
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Step 7. Compute step-length k  using Armijo line 

 search. 

Step 8.  Update the control variable kkkk
dII ee 1 . Set 

 1 kk  and go to Step 1. 

5. NUMERICAL EXPERIMENTS 

5.1 Experiments Setup 
The numerical experiments are carried out on a two-

dimensional computational domain    1 ,01 ,0   of size 

2cm 11  for ms 3T simulation time. Two control domains 

are considered, namely    531.0 ,469.0438.0 ,375.01 c  

and    531.0 ,469.0625.0 ,563.02 c . The observation 

domain is defined as the complement of neighborhoods of 

1c  and 2c . By taking    547.0 ,453.0453.0 ,359.0
~

1 c  

and    547.0 ,453.0641.0 ,547.0
~

2 c  as the neighborhoods 

of the control domains, the observation domain is therefore 

given as  21

~~
\ cco   . The excitation domain is the 

region where cardiac arrhythmia first occurs, and is denoted 

as     oexi  504.0 ,498.0502.0 ,498.0 . The observation 

domain and the control domain are shown in Figure 1.  

Fig 1: The control and observation domains 

Table 1 lists the parameters that we have used in our 

numerical experiments, with some of them adopted from [14]. 

Furthermore, the initial conditions for V , eI  and w are given 

as 

 


 


otherwise,      mV, 0

,  mV, 105
0 ,

exix
xV  

 




 






otherwise,  ,cmmA  0

,  ,cmmA  0
0 ,

3

3
c

e

x
xI  

   xxw    ,00 ,  

Table 1. Parameters used in numerical experiments 

Parameter Value Units 

  310  1cm  

mC  310  2cm mF   

l
iD  3103   1cm S   

t
iD  4101525.3   1cm S   

thV  1103.1   mV  

pV  210  mV  

1c  5.1  2cm mS   

2c  4.4  2cm mS   

3c  2102.1   1ms   

4c  1  dimensionless 

  410  dimensionless 

  110062.7   dimensionless 
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5.2 Numerical Results 
In this section, we present the numerical results for the 

optimal control problem of the monodomain model. The 

uncontrolled solutions and the optimally controlled solutions 

at times 0.2 ms, 1 ms and 3 ms are illustrated in Figure 2 and 

Figure 3. Numerical results show the uncontrolled wavefront 

of the transmembrane potential spreads from the excitation 

domain to the rest of the computational domain if no action 

for controlling is carried out. On the other hand, when the 

control is switched on, the excitation wavefront is 

successfully dampened out by the optimal applied current 
opt
eI  during the time interval from 0 ms to 3 ms.  

 

(a) (b) (c) 

Fig 2: The uncontrolled solutions  V  at (a) 0.2 ms (b) 1 ms and (c) 3 ms 

 

(a) (b) (c) 

Fig 3: The controlled solutions  optV  at (a) 0.2 ms (b) 1 ms and (c) 3 ms 

 

Next, we discuss the performance of MDY method for solving 

the optimal control problem of monodomain model. Figure 4 

depicts the minimum value of the reduced cost functional  eIĴ  

along the optimization process. As shown in the figure, the 

MDY method converges to the minimizer with 38 optimization 

iterations. Unlike the DY method which descent property 

depends on the line search [13], the MDY method is well-

performed even if the Armijo line search is used in our 

numerical experiments. 

Figure 5 depicts the corresponding norm of gradient of the 

reduced cost functional,  eIĴ , for 3 ms of simulation time. 

Note that the logarithmic scale is used in Figure 5 for clear 

presentation on how the gradient is decreased during 

optimization process. As shown in Figure 5, the gradient is 

decreased sharply at the beginning of optimization iterations, 

followed by a smooth decrease from iteration 15th to the end of 

iterations. 
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Fig 4: Minimum value of Ĵ  for 3 ms of simulation time 

 

Fig 5: Norm of gradient of Ĵ  for 3 ms of simulation time 

6. CONCLUSIONS 
In this paper, we have presented the numerical solution for the 

optimal control problem of monodomain model using the MDY 

method. Our numerical results indicated that the excitation 

wavefront of the transmembrane potential has been successfully 

dampened out by the optimal applied current. Numerical results 

also indicated that the MDY method perform quite well under 

Armijo line search. These results motivate us to continue our 

numerical experiments with different locations and sizes of the 

control domains using the MDY method. 
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