
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

33

VGS Algorithm - an Efficient Deadlock Resolution
Method

 Kunwar Singh Vaisla

Deptt. of Comp. Sc. & Engg.
BT KIT, Dwarahat-263656
Dist – Almora (UK), India

 Menka Goswami

Deptt. of Comp. Sc. & Engg.
BT KIT, Dwarahat-263656
Dist – Almora (UK), India

Ajit Singh

Deptt. of Comp. Sc. & Engg.
BT KIT, Dwarahat-263656
Dist – Almora (UK), India

ABSTRACT

The occurrence of deadlocks should be controlled effectively

by their detection and resolution, but may sometimes lead to a

serious system failure. After implying an efficient detection

algorithm the deadlock is resolved by a deadlock resolution

algorithm whose primary step is to either select the victim

then to abort the victim transaction or cause it to rollback.

This step resolves deadlock but is not efficient one. This paper

proposes a new deadlock resolution algorithm which doesn‟t

cause any aborts /roll backs in fact it is based on the mutual

cooperation of transactions and a random number representing

time duration for which the process holding the resource will

be suspended.

Keywords

Deadlock, WFG, Transactions, Resources

1. INTRODUCTION
A deadlock occurs when there is a set of processes waiting for

resource held by other processes in the same set.The processes

in deadlock wait indefinitely for the resources and never

terminates their executions and the resources they hold are not

available to any other process [21]. A deadlock lowers the

system utilization and hinders the progress of processes. Also

the presence of deadlocks affects the throughput of the

system. The dependency relationship among processes with

respect to resources in a distributed system is often

represented by a directed graph, known as the Wait for Graph

(WFG) [13]. In the WFG each node represents a process and

an arc is originated from a process waiting for a resource to a

process holding the resource.

In a distributed system, a deadlock occurs when there is a set

of processes and each process in the set waits indefinitely for

the resources from each other. Therefore it is quite essential

that a fast deadlock detection and resolution mechanism is

applied otherwise the processes involved in the deadlock will

wait indefinitely and will lower the system utilization and

hinders the progress of processes. [6].

A deadlock needs to be resolved timely because if not

resolved, the deadlock size will increase with the deadlock

persistence time as more processes will be trapped in the

deadlock where a deadlock size is defined as the total number

of blocked processes (BP) involved in deadlock, where BP is

the process that waits indefinitely on other processes. [1]

Because of deadlock none of the any processes involved can

make any progress without obtaining the resources for which

they are waiting.

A deadlock has an adverse performance effect that offsets the

advantage of resource sharing and processing concurrency.

 Figure 1: A few processes in deadlock, referred from [1].

Figure 2: Increasing deadlock size as more processes

trapped in deadlock, referred from [1].

Because distributed systems are vulnerable to deadlocks, the

problems of deadlock detection and resolution have long been

considered important problem in such systems. Several

models have been proposed for the processes operating in

distributed system. As per the AND model, a process sits idle

until all of the requested resources are acquired. In the OR

model, a process resumes execution if any of the requested

resources is granted. In the P-out-of-Q model also known as

the generalized model, a process makes Q resource requests

and remains blocked until it obtains any P resources. A

generalized model is found in many domains such as resource

allocation in distributed operating systems [2] and

communicating processes [3].

A deadlock is defined differently depending on the underlying

model. Since a process becomes blocked if any of its resource

requests is not granted, a deadlock in the AND model

corresponds to a cycle in the WFG. In the OR model, the

presence of a knot in the graph implies a deadlock [4].In the

generalized model a deadlock involves a more complex

topology in the WFG. A cycle is a necessary but not sufficient

condition for deadlock in this model [5].

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

34

2. RELATED WORK:
The deadlock detection and resolution algorithm always

require that transactions should be aborted .For this reason

several issues must be carefully considered.

1) Aborts are more expensive than waits.

2) Unnecessary aborts result in wasted system resources.

3) Optimal concurrency requires that the number of

aborted transactions be minimized.[6]

These factors must be considered so that the transaction being

aborted will have the least impact on system performance and

throughput. Deadlock prevention, deadlock avoidance,

deadlock detection and finally resolution are the common

strategies for handling deadlocks. It has been noted that both

the deadlock prevention and deadlock avoidance strategies are

conservative and less feasible in handling the deadlock

problem in general, whereas the deadlock detection/resolution

strategy is widely accepted as an optimistic and feasible

solution to the deadlock problem because of its exclusion of

the unrealistic assumption about resource allocation

requirements of the process [7].

Basically the deadlocks present in a system are detected by a

periodic initiation of an effective deadlock detection

algorithm and then resolved by a deadlock resolution

algorithm and it is always tried that the resolution algorithm

used does not cause any unnecessary aborts / roll backs.

The appropriate scheme for handling deadlocks in distributed

systems is detection and resolution. A typical method to

resolve deadlock is to select a proper victim. The victim is to

abort itself for deadlock resolution.

The primary issue of deadlock resolution [8], [9], [10] is to

selectively abort a subset of processes involved in the

deadlock so as to minimize the overall abortion cost [11],

[12]. This is often referred to as the minimal abort set

problem. The victim (aborted) processes need to cancel all

pending requests and releases all acquired resources so that

false deadlocks detection and resolution could be avoided.

[12], [13].

To further reduce the abortion cost, check pointing is

sometimes introduced to prevent the victim processes from

being rolled back from scratch [14].

Usually, the deadlocks are resolved by aborting deadlocked

processes. Therefore, two facts have to be considered when

analyzing the cost associated to deadlock resolution

algorithms: the cost of detecting a deadlock and the time that

the aborted processes have wasted [15, 16]. Deadlock

situations when detected should be resolved as soon as

possible but ensuring a minimum number of abortions and

only those processes should be aborted which has been

selected as victim. Thus, algorithms (safe-resolution

algorithms) verifying the safety correctness criterion of

resolving only true deadlocks should be designed [17].

Whenever multiple transactions are in a waiting state the

probability of deadlock occurrence increases. For this reason,

restart methods of concurrency control appear more attractive;

however, restarting global transactions is more expensive than

waiting [6].

Chen et al‟s algorithm [18], Mendivil‟s et al algorithm [19] all

believe in aborting transactions. In Chen et al‟s algorithm an

optimal set of victim processes is identified for abort with the

properly selected abortion cost to avoid starvation and live

lock problem. In Mendivil‟s algorithm a process with the

lowest priority is aborted.

In [17] deadlock resolution has been considered for OR

request models. In this action abort i is executed when

candidate node i has received n informed probe from each

node it had sent a notify probe. In such a moment, no other

node of the system has information about i, so its abortion will

not cause a posterior false deadlock resolution. Basically, a

node decides abort itself based on local information.

In [20] a history based deadlock detection and resolution

(DD&R algorithm) for the SR model is proposed. In this

algorithm victim is not defined a „priori‟ when a cycle is

formed i.e. the lowest priority process instead the victim is

dynamically calculated. It resolves deadlock by aborting node

(only processes).

In [21] a deadlock detection and resolution algorithm has been

proposed. According to thus algorithm if a deadlock exists

then an algorithm is applied which reduces the connect edges

from the system. At the end of algorithm no connect edges are

there in the system and therefore no deadlock in the system.

[22] Resolves deadlock with the help of use of random

number. It also helps in minimizing the chance of detecting

phantom deadlocks

Study of several authors [17, 5, 20] reveals that the primary

step of each deadlock resolution algorithm is to select a

victim and then to abort it. Although abortion will resolve

deadlock but it will cause the transaction to start from

beginning and again struggle for all the resources which it

require therefore abortion or rollback is not a good choice.

If we go by the literature review then it can be observed that

most of the algorithms reviewed above are safe deadlock

resolution algorithms and all of them chose to abort or

rollback the victim node.

A deadlock resolution algorithm in distributed systems is

correct if it satisfies the following two criteria:

1. Liveness: If a deadlock is present in the system, it should

be resolved by the algorithm in finite time.

2. Safety: If the algorithm detects and resolves a deadlock,

the deadlock is present in the system and there is no other

algorithm instance that resolves the same deadlock. [24]

3. PROBLEM SPECIFICATION:
In fact most of the deadlock detection algorithms in literature

are safe detection algorithms and they are considered correct

because they detect in finite time, all deadlock of the system

and do not detect false deadlock. Generally the algorithms

which are under detection criteria don‟t take into account how

a detected deadlock is resolved. It is only assumed that it is

properly resolved. The algorithms do not explicitly model the

resolution of detected deadlocks. Neither the system nor the

code of the algorithm includes the effect of resolutions [17].

Most of the reviewed algorithms imply rollback/abort as the

solution to deadlocks. The only ways in which they differ is

how they select the victim. Most of the strategies of victim

selection have been reviewed in the literature, the only

drawback of such strategies is that it leads to abort of the

victim, or they restart the victim which leads to wastage of

resources, wastage of the work done by the aborted process,

low throughput of system and it makes execution time of

processes unpredictable. May be sometimes the aborted

process have to be restarted in order to complete their work.

And as it has been discussed that restarting a transaction is

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

35

more expensive than waiting, therefore aborting a transaction

needs to be avoided.

Therefore in this paper an algorithm has been proposed which

do not cause any aborts or rollbacks instead it resolves the

deadlock with the mutual cooperation of the transactions.

4. VGS ALGORITHM FOR DEADLOCK

RESOLUTION
This section describes the solution to deadlocks in distributed

systems i.e. VGS Algorithm an efficient deadlock resolution

algorithm. In a distributed system if deadlock is detected at a

site, then the site coordinator can apply VGS algorithm to

resolve the deadlock. This algorithm is based on the mutual

cooperation of the transactions and is described as follows:

Figure 3: A deadlock cycle

TI REQUESTS Ri+1

Ti+1 REQUESTS Ri+2

.

.

Tn-1 REQUESTS Rn

TN REQUESTS Ri

Ti

Tn Tn-1

Ti+1Ri Ri+1

Rn-1

Rn

Ti+1 SUSPENDS FOR
RANDOM t
SECONDS

Tn SUSPENDS
FOR RANDOM
t SECONDS

Figure 4: Transaction Ti+1, Tn suspended and release

resources

Figure 5: Ti, Tn-1 successfully executing.

Figure 6: Tn, Ti+1 successfully executing

Suppose Ti, Ti+1, Ti+2………Tn are the transactions

involved in a deadlock. They form a deadlock cycle such that

Ti holds resource Ri, Ti+1 holds resource Ri+1, Ti+2 holds

resource Ri+2…………..Tn holds Rn and Ti is requesting for

resource Ri+1 , Ti+1 is requesting for resource Ri+2 ……,Tn

is requesting for Ri. Since each transaction is holding a

resource and waiting indefinitely for other resource held by

the other transaction, they form a deadlock cycle and none of

them is being able to proceed ahead.

In the proposed deadlock resolution algorithm transaction,

coordinator observes the scenario and it suspends Ti+1 for

some random t seconds and it releases resource Ri+1 which is

acquired by the requesting transaction Ti. It has been allotted

the resource for the t seconds which is the time for which

Ti+1 has been suspended. Ti is supposed to utilize Ri+1 and

execute successfully in t seconds.

If Ti successfully executes before t seconds it sends a message

to coordinator that it has successfully executed and to resume

transaction Ti+1 and gives its resource Ri+1 back to Ti+1. If

Ti is not able to complete its execution within t second

coordinator preempts resource Ri+1 from Ti and provides it

back to Ti+1. The value Ri+1 is the value partially updated by

Ti. Now Ti+1 will check whether Ti is still requesting for

Ri+1. If it is requesting ,Ti+1 informs coordinator and is

suspended again for some random t seconds and resource

Ri+1 is again allotted to Ti, Ti acquires it and resumes its

execution and when completed before t seconds Ti informs

coordinator to resume Ti+1 and gives back resource Ri+1 to

Ti+1.

Similarly coordinator blocks Tn for some random t seconds

and it releases resource Rn which is acquired by the

requesting transaction Tn-1. It has been allotted the resource

for the t seconds which is the time for which Tn has been

suspended. Tn-1 is supposed to utilize Rn and execute

successfully in t seconds.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

36

If Tn-1 successfully executes before t seconds it sends a

message to coordinator that it has successfully executed and

to resume transaction Tn and gives its resource Rn back to Tn.

If Tn-1 is not able to complete its execution within t seconds

coordinator preempts resource Rn from Tn-1 and provides it

back to Tn. The value of Rn is the value partially updated by

Tn-1. Now Tn checks whether Tn-1 is still requesting for Rn.

If it is requesting Tn informs coordinator and is suspended

again for some random t seconds and resource Rn is again

allotted to Tn-1, Tn-1 acquires it and resumes its execution

and when completed before t seconds Tn-1 informs

coordinator to resume Tn and gives back resource Rn to Tn.

Like this the deadlock is successfully resolved without

causing any aborts/roll backs. The transaction execute

successfully with mutual cooperation of each other. The

algorithm for deadlock resolution is as follows:

TRANSACTION (Ti, Ti+1….Tn),

RESOURCE (Ri, Ri+1……Rn)

START:

// suppose on using an efficient deadlock detection mechanism

a deadlock is detected in the system.

Suppose Ti………..Tn be the transactions involved in a

deadlock and form a cycle.

BEGIN,

Ti holds resource Ri

Ti+1 hold resource Ri+1

...

...

Tn holds resource Rn

and

Ti requests resource Ri+1

Ti+1 requests resource Ri+2

.

.

Tn requests resource Ri

Each transaction is in a circular wait and hold condition

DO,

Coordinator suspends transaction Ti+1 and Tn for random t

seconds and releases resource Ri+1 and Rn respectively.

{

Ri+1 is now taken by transaction Ti and it executes.

{

 IF Ti executes successfully before t seconds

{

{

 Ti informs coordinator to resume Ti+1 .Ti+1 resumes and

takes the resource Ri+1 back.

}

 Now Ti+1 will wait for resource Ri+2 and will proceed

successfully as there is no deadlock now

}

 ELSE

 {

Ti+1 preempts the resource from Ti and value of Ri+1 will be

the value partially updated by Ti

 }

Ti+1 CHECKS

IF

Ti is still requesting for resource Ri+1

{

 {

 Coordinator again suspends Ti+1 for random t seconds and

gives the resource Ri+1 to Ti

Ti will acquire the resource Ri+1 and will lock it.

After Ti executes successfully it releases Ri+1.

Ti informs coordinator to resume Ti+1 and gives its resource

Ri+1 back

 }

 Now Ti+1 will wait for resource Ri+2 and will proceed

successfully as there is no deadlock now

 }

ELSE Ti+1 will wait for resource Ri+2 and will proceed

successfully as there is no deadlock now

 }

Rn is locked by Tn-1

// as coordinator had suspended Tn and released the resource

Rn for Tn-1

IF Tn-1 executes successfully before t seconds

{

{

Tn-1 informs coordinator to resume Tn. Tn resumes and takes

the resource Rn back

}

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

37

Now Tn will wait for resource Ri and will proceed

successfully as there is no deadlock now

}

ELSE

Tn preempts resource from Tn-1 and the value of Rn will be

the partially updated by Tn-1

Tn CHECKS

IF Tn-1 is still requesting for resource Rn

{

{

Coordinator again suspends Tn for random t seconds and

releases the resource Rn

Tn-1 will acquire the resource and will lock the resource Rn

After Tn-1 executes successfully it releases Rn resource

Tn-1 informs coordinator to resume Tn and gives its resource

Rn back

}

Now Tn will wait for resource Ri and will proceed

successfully as there is no deadlock now

}

ELSE

Tn will wait for resource Ri and will proceed successfully as

there is no deadlock now

}

//the coding for both Ti+1, Tn will run parallel.

The algorithm is based on the fact that when transaction Ti+1

will suspend and release its resources for transaction Ti then

Ti will execute and be in the way of being committed. Now as

we know transaction Tn is waiting for Ti to release resource

Ri so that it can proceed and execute. But Ti is executing with

resources Ri and Ri+1 so it is much better and efficient if we

suspend transaction Tn. It is more appreciable because of

following features:

1.Transaction Tn needs resource Ri , which is held by Ti

therefore it is trapped and cannot proceed therefore instead of

waiting for resource Ri, Tn should also suspend and release its

resource and let other transaction Tn-1 proceed.

By the time Ti executes, suspending Tn will make resource

Rn available to Tn-1 and Tn-1 will execute i.e the waiting

time of transaction Tn for Ri will not be wasted instead it will

be utilized.

2. Deadlock will be resolved speedily.

Figure 7(i): Flowchart of the working of the VGS deadlock resolution algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

38

Figure 7(ii): Flowchart of the working of the VGS deadlock resolution algorithm

Figure 7(iii): Flowchart of the working of the VGS deadlock resolution algorithm.

VGS algorithm is based on a very simple basis. In the above

figure 3 a deadlock cycle is there, Ti needs resource Ri+1

which is possessed by Ti+1in a hold condition. Here, to

proceed Ti needs only Ri+1 and it doesn‟t depends on any

other transaction for resources , so if Ti+1 is suspended(i.e.

the transaction has been ceased for some time) for a random

duration of t seconds Ti can proceed and successfully commit,

also Tn needs resource Ri. Since Ri is being processed by Ti

so it cannot be made available therefore Tn can also suspend

itself for random duration t seconds and Tn‟s resource Rn can

be made available to Tn-1 transaction to proceed.

The proposed VGS algorithm does not resolves deadlock by

aborting any process. It considers the fact that when a process

aborts it cancels all of its pending requests and it has to

release the resources that it holds. Moreover the work done by

the aborted process gets wasted. May be sometimes the

aborted process have to be restarted in order to complete their

work. Obviously the abortion increases the response time of

the process because it has to perform the work previously

wasted again. [23]

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

39

5. CONCLUSION
In this paper we presented deadlock resolution algorithm

which resolves deadlocks effectively. As the paper describes

in this algorithm the transactions resolve deadlock with the

mutual cooperation of each other. Transaction Ti+1 and Tn

suspend themselves and let other transactions proceed

successfully and continuously co-operate them till they are not

able to commit successfully. As compared to other resolution

algorithms which cause abort or rollback it does not cause any

such aborts or rollbacks, which proves its effectiveness. In the

proposed algorithm the distributed system‟s site coordinator

manages its own transactions and resolves any deadlock when

detected.

6. REFERENCES
[1] Akikazu IZUMI, Tadashi DOHI and Naoto KAIO,

Deadlock Detection Scheduling for Distributed Processes

in the Presence of System Failures, 2010 Pacific Rim

International Symposium on Dependable Computing,

DOI 10.1109/PRDC.2010.49, 2010 IEEE.

[2] G. Bracha and S. Toueg. A distributed algorithm for

generalized deadlock detection. Distributed Computing,

2:127–138, 1987.

[3] A. D. Kshemkalyani and M. Singhal. Distributed

detection of generalized deadlocks. Proc. 17th Int‟l Conf.

Distributed Computing Systems, pages 553–560, May

1997.

[4] A. Boukerche and C. Tropper. A distributed graph

algorithm for the detection of local cycles and knots.

IEEE Trans. Parallel and Distributed Systems, 9(8):748–

757, Aug. 1998.

[5] Soojung Lee. Fast Detection and Resolution of

Generalized Distributed Deadlocks, Proceedings of the

10th Euromicro Workshop on Parallel, Distributed and

Network-based Processing (EUROMICRO-PDP.02)

1066-6192/02, IEEE computer society 2002.

[6] Omran Bukhres, Jeanne Alm and Noureddine Boudriga,

A Priority-Based PCG Algorithm for Global Deadlock

Detection and Resolution in Multidatabase Systems,

IEEE 0-8186-3710-2/9, 1993.

[7] Yibei Ling, Shigang Chen, Cho-Yu Jason Chiang, On

Optimal Deadlock Detection Scheduling, IEEE

TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9,

SEPTEMBER 2006.

[8] S. Lee, “Fast, Centralized Detection and Resolution of

Distributed Deadlocks in the Generalized Model,” IEEE

Trans. Software Eng., vol. 30, no. 8, pp. 561-573, Sept.

2004.

[9] S. Lee and J.L. Kim, “Performance Analysis of

Distributed Deadlock Dectection Algorithms,” IEEE

Trans. Knowledge and Data Eng., vol. 13, no. 3, pp. 623-

636, May/June 2001.

[10] X. Lin and J. Chen, “An Optimal Deadlock Resolution

Algorithm in Multidatabase Systems,” Proc. 1996 Int‟l

Conf. Parallel and Distributed Systems, pp. 516-521,

1996.

[11] P.P. Macri, “Deadlock Detection and Resolution in a

CODASYL Based Data Management System,” Proc.

1976 ACM SIGMOD Int‟l Conf. Management of Data,

pp. 45-49, 1976.

[12] M. Singhal, “Deadlock Detection in Distributed

Systems,”Computer, vol. 40, no. 8, pp. 37-48, Nov. 1989

[13] A.D. Kshemkalyani and M. Singhal, “Efficient Detection

and Resolution of Generalized Distributed Deadlocks,”

IEEE Trans.Software Eng., vol. 20, no. 1, pp. 43-54, Jan.

1994.

[14] Y. Ling, J. Mi, and X. Lin, “A Variational Calculus

Approach to Optimal Checkpoint Placement,” IEEE

Trans. Computers, vol. 50,no. 7, pp. 699-708, July 2001

[15] K. Min. Performance Study of Distributed Deadlock

Detection Algorithms for Distributed Database Systems.

PhD thesis, Univ. of Illinois at Urbana-Champaign Nov.

1989.

[16] S. Warnakulasuriya and T. M. Pinkston. A formal model

of message blocking and deadlock resolution in

interconnection networks. IEEE Transactions on Parallel

and Distributed Systems, 11(3):221–229, March 2000.

[17] J. Villadangos, F. Fari˜na, A. C´ordoba, J.R. Gonz´alez

de Mend´ıvil and J.R. Garitagoitia, Knot Resolution

Algorithm and its Performance Evaluation, Proceedings

of the Eleventh Euromicro Conference on

Parallel,Distributed and Network-Based Processing

(Euro-PDP‟03) 0-7695-1875-3/03,IEEE computer

society,2003.

[18] S. Chen, Y. Deng, and W. Sun, “Optimal Deadlock

Detection in Distributed Systems Based on Locally

Constructed Wait-For Graph,” Proc. 16th Int‟l Conf.

Distributed Computing Systems, pp. 613-619, 1996.

[19] J.R. Gonzales de Mendivil, J.R. Garitagoitia, C.F.

Alastruey, and J.M. Bernabeu-Auban, “A Distributed

Deadlock Resolution Algorithm for the AND Model,”

IEEE Trans. Parallel and Distributed Systems, vol. 10,

no. 5, pp. 433-447, May 1999.

[20] A. Cordoba, F. Fari˜na, J.R. Garitagoitia, J.R. Gonz´alez

de Mend´ıvil, J. Villadangos A Low Communication

Cost Algorithm for Distributed Deadlock Detection and

Resolution, Proceedings of the Eleventh Euromicro

Conference on Parallel,Distributed and Network-Based

Processing (Euro-PDP‟03),IEEE computer society,0-

7695-1875-3/03,2003.

[21] H. A. Ali, T. EL-DNAF, and MSALAH, A proposed

algorithm for solving deadlock detection in distributed

database systems 0-7803-8575-6/04, 2004, IEEE.

[22] Mehdi Hashemzadeh, Nacer Farajzadeh, Abolfazl T.

Haghighat, Optimal Detection and Resolution of

Distributed Deadlocks in the Generalized Model,

Proceedings of the 14th Euromicro International

Conference on Parallel, Distributed, and Network-Based

Processing (PDP‟06),IEEE computer society, 1066-

6192/06, 2006.

[23] Manuel Prieto, Jesús Villadangos, Federico Fariña,

Alberto Córdoba, An O(n) distributed deadlock

resolution algorithm, Proceedings of the 14th Euromicro

International Conference on Parallel, Distributed, and

Network-Based Processing (PDP‟06) IEEE computer

society, 1066-6192/06, 2006 .

[24] Soojung Lee, Fast, Centralized Detection and Resolution

of Distributed Deadlocks in the Generalized Model,

published by IEEE computer society, 0098-5589/04,

2004.

