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ABSTRACT 

The optimization techniques such as Genetic algorithm (GA), 

Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Simulated Annealing (SA), etc., were 

commonly used in solving job shop scheduling problem 

(JSSP). There are different variants of these algorithms that 

were addressed in several previous works. In previous 

literatures, it was commonly mentioned that the initial 

solution were generally guessed in a very random manner 

(such as random initialization of population in GA). In this 

work, we will address the impact of such random initialization 

on solving the JSSP while using an optimization technique - 

GA. The performance of this algorithm will be evaluated with 

different set of initial conditions. In one experiment, during 

initialization stage, the initial population will be initialized 

with random schedules. In another experiment, the initial 

population will be initialized with a known, worst case 

schedule. The impact of this initial condition on the 

performance of algorithm has been studied and achieved 

makespan. The arrived results proved that the conventional 

way of randomly selecting initial conditions of the 

evolutionary process has a worst effect on performance in 

JSSP of higher dimensions. While initializing with known, 

worst case solution, the evolutionary process was capable of 

converging into meaningful and more optimum solutions. 

Keywords 

Scheduling, Job Shop Scheduling, Genetic Algorithm,  Gant-

Chart. 

 

1. INTRODUCTION 
In the modern competitive environment in manufacturing and 

service industries, the effective sequencing and scheduling has 

become an essential for survival in the marketplace [6]. 

Companies have to produce their product untimely as opposed 

to due date. Otherwise, it will impinge upon reputation of a 

business. At the same time, the activities and operations need 

to be scheduled with the intention that the available resources 

will be used in an efficient manner.  As a result, there is a 

great good scheduling algorithm and heuristics are invented. 

Most of the prevailing practical scheduling problems exist in 

stochastic and dynamic environment.   

Stochastic is a problem where some of the variables are 

uncertain while dynamic problem is when jobs arrive 

randomly. On the other hand, the problems with ready time is 

known and fixed are called problems static and for problem 

where all the parameter such as processing times are known 

and fixed is called deterministic problems (French, 1982). In 

spite of this, it is quite impossible to predict exactly when jobs 

will become available for processing. Additionally, the 

understanding of scheduling problems where there is no 

uncertainty involved will help us towards the solution of 

stochastic and dynamic problems.  

The main objective in solving the job shop scheduling 

problem is to find the sequence for each operation on each 

machine that optimizes the objective function. The most 

common objective function that has been used in scheduling 

the job shop problem is minimization of makespan value or 

the time to complete all jobs. It has been the principal 

criterion for academic research and is able to capture the 

fundamental computational difficulty which exists 

unconditionally in determining an optimal schedule (Jain and 

Meeran, 1999). 

 

1.1 The Types of Related Scheduling  

Problems 
 

We can group the main classical scheduling problems in five 

distinct classes: 

 

 Workshops with only one machine: There is only 

one machine which must be used for scheduling the 

given jobs, under the specified constraints. 

 

 Flow shop:  There is more than one machine and 

each job must be processed on each of the machines 

- the number of operations for each job is equal with 

the number of machines, the jth operation of each 

job being processed on machine j. 

 

 Job shop:  The problem is formulated under the 

same terms as for the flow shop problem, having as 

specific difference the fact that each job has 

associated a processing order assigned for its 

operations. 

 

 Open shop: The same similarity with the flow shop 

problem, the processing order for the operations 

being completely arbitrary  the order for processing 

a job's operations is not relevant; any ordering will 

do.  

 

 Mixed Workshop: There is a subset of jobs for 

which a fixed processing path is specified, the other 

jobs being scheduled in order to minimize the 

objective function. 

 

1.2 Problem Definition  
Scheduling has become a critical factor in many job shops in 

order to determine their capacity for more work and be able to 

schedule their work more efficiently. Job shop scheduling 

becomes more and more difficult when we deal with 

assemblies and/or multiple components which need to be 

made in an efficient manner. 
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In the following way, the job shop scheduling problem (JSSP) 

will be described: For „n‟ jobs, each one is composed of 

several operations that must be executed on „m‟ machines. For 

each operation uses only one „m‟ machines for a fixed 

duration. Each machine can process at most one operation  at  

a  time  and  once  an  operation  starts  processing  on  a  

given  machine,  it must  complete processing  on  that  same 

machine  without  any interruption.  The  operations  of a 

given  job  have  to  be  processed  in  a  given  set of order.  

The  problem  is to find out a schedule  of  the  operations  on  

the  machines,  taking  into  an account  the  precedence 

constraints,  that  minimizes  the  makespan  (Cmax),  ie,  the  

finishing  time  of  the  all the operations completed within the 

scheduled time. 

We focus on job-shop scheduling problems composed of the 

following elements [4]: 

 Jobs: J = {J1, • • •, Jn } is a set of n jobs to be 

scheduled. Each job Ji  consists of a predetermined 

sequence of operations. Oi,j  is the operation j of Ji. 

All jobs are released at time 0. 

 Machines: M  = {M1 , • • •, Mm } is a set of m 

machines. Each machine can process only one 

operation at a time. And each operation can be 

processed without interruption during its 

performance on one of the set of machines. All 

machines are available at time 0. 

 Constraints: The constraints are rules that limit the 

possible assignments of the operations.  They can be 

divided mainly into following situations: 

- Each operation can be processed by only one   

   machine at a time (disjunctive constraint). 

- Each operation, which has started, runs to   

   completion (non-preemption condition). 

- Each machine performs operations one after   

   another (capacity constraint). 

- Although there are no precedence constraints  

   among operations of different jobs, the   

   predetermined sequence of operation for each job  

   forces each operation to be scheduled after all  

   predecessor operations (precedence/conjunctive  

   constraint). 

  - The machine constraints emphasize the operations  

                   can be processed only by the machine from the    

                   given set (resource constraint). 

 Objective(s):  Most  of  the  research  reported  in  

the  literature  is focused  on  the  single  objective 

case of the problem, in which the objective is to find 

a schedule that has minimum time required to 

complete  all operations (minimum makespan).   

Some other objectives, such as flow time or 

tardiness are also important like the makespan.   

1.3 Different Approaches for Solving        

       Scheduling Problems 
Job-shop scheduling problem is one of the well-known and 

hardest combinatorial optimization problems. During the last 

three decades, this problem has captured the interest of a 

significant number of researchers.   

The JSSPs are well-known combinatorial optimization 

problems, which consist of a finite number of jobs and 

machines. Each job consists of a set of operations that has to 

be processed, on a set of known machines, and where each 

operation has a known processing time.   

A schedule is to be complete a set of operations, required by a 

job, to be performed on different machines, in a given order. 

In addition, the process may need to satisfy other constraints 

such as (i) no more than one operation of any job can be 

executed simultaneously and (ii) no machine can process 

more than one operation at the same time. The objectives 

usually considered in JSSPs are the minimization of 

makespan, the minimization of tardiness, and the 

maximization of throughput. The total time elapsed between 

the starting of the first job‟s first operation and the ending of 

the last operation, is termed as the makespan. 

In JSSPs, the size of the solution space is an exponent of the 

number of machines, which makes it quite expensive to find 

the best makespan for larger problems.  By larger problem, we 

mean a higher number of jobs and (or) a higher number of 

machines. Most JSSPs that have appeared in the literature are 

for ideal conditions. 

However, in practice, process interruptions like machine 

breakdown and machine unavailability are very common, 

which makes JSSPs more complex to solve. There exist a 

variety of conventional optimization methods for solving 

JSSPs, such as the integer programming method. However, 

the conventional methods are unable to solve larger problems 

due to the limitation of current computational power. 

Considering the complexity of solving JSSPs, with or without 

interruptions, and the limitations of existing methodologies, it 

seems that an evolutionary computation based approaches 

would do better, as they have proven to be successful for 

solving many other combinatorial optimization problems.   

Job shop scheduling is naturally a NP-hard problem with no 

easy solution. Branch-and-bound, Tabu search, and 

biologically stimulated approaches such as GA, Swarm 

Intelligence and other stochastic model such as Simulated 

Annealing algorithm were proposed for achieving possible 

solutions to complex problems such as job shop scheduling. 

During the last few decades, Evolutionary Computing (EC) 

has emerged as an authoritative methodology for managing 

the often highly complex problems of modern society, such as 

optimizing engineering design, job shop scheduling, and 

transport systems. Such real-world optimization problems 

typically are characterized by huge, ill-behaved solution 

spaces which are not feasible to exhaustively search and defy 

traditional optimization algorithms because they are for 

instance non-linear, non-differentiable, non-continuous, or 

non-convex [3]. EC encompasses a class of stochastic, 

population-based, optimization algorithms inspired by 

biological evolution and genetics which have been shown to 

perform well on problems with huge, ill-behaved solution 

spaces. 

Job Shop Problem has been basically considered using the 

following approaches [5]: 

 

 Exact methods:  Giffler and Thompson (1960), 

Brucker et al.  (1994)  and Williamson et al. (1997) 

 Branch and bound: Lageweg et al. (1977), Carlier 

and Pinson (1989, 1990), Applegate and Cook (1991) 

and Sabuncuoglu and Bayiz (1999).  Carlier  and 

Pinson (1989) have been successful in solving the 

notorious 10´10 instance of Fisher and Thompson 

proposed in 1963 and only solved twenty years later; 

Heuristic  procedures  based  on  priority  rules:  

French  (1982),  Gray  and Hoesada (1991) and 

Gonçalves and Mendes (1994) 

 Shifting bottleneck: Adams et al. (1988). Problems  

of  dimension  15´15  are  still  considered  to  be  

beyond  the  reach  of  today's exact  methods. Over  

the  last  decade,  a  growing  number  of  

metaheuristic  procedures have been presented to 

solve hard optimization problems[5]: 

 Simulated Annealing: Laarhoven et al. (1992) and 

Lourenço (1995) 
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 Tabu   Search:   Taillard   (1994),   Lourenço   and   

Zwijnenburg   (1996)   and Nowicki and Smutnicki 

(1996) 

 Genetic  Algorithms:  Davis  (1985),  Storer  et  al.  

(1992),  Aarts  et  al.  (1994), Croce et al. (1995), 

Dorndorf et al. (1995), Gonçalves and Beirão (1999) 

and Oliveira (2000). 

Additionally,  some  researchers  have  developed  local  

search  procedures:  Lourenço(1995),  Vaessens  et  al.  

(1996), Lourenço and Zwijnenburg (1996) and Nowicki and 

Smutnicki (1996). Surveys of heuristic methods for the JSP 

are given in Pinson (1995), Vaessens et al. (1996) and Cheng 

et al. (1999). 

A  survey of  Job  Shop Scheduling techniques  can  be  found  

in Jain  and Meeran  (1999).  Recently  Wang  and  Zheng  

(2001)  developed  a  Hybrid  Optimization strategy  for  JSP,  

Binato  et  al.  (2002)  present a greedy randomized adaptive 

search procedure (GRASP) for JSP and Aiex et al. (2003) 

introduced a parallel GRASP with path-relinking for JSP. 

 

2. THE JSSP AND MODELS  

      CONSIDERED FOR SOLVING JSSP 

2.1 Mathematical Representation of the       

      JSSP 

Let J = {0, 1, …, n, n+1} denote the set of operations to be 

scheduled and M = {1,..., m} the set  of  machines.  The  

operations  0  and  n+1  are  not original,  and they have  no  

duration  and represent the initial and final operations. The 

operations are interrelated by two types of constraints.  First,  

the  precedence  constraints,  which  force  each  operation  j  

to  be scheduled  after  all  predecessor  operations, Pj,  are  

completed.  Second,  operation j  can only be  scheduled  if  

the  machine  it  requires  is  idle.  Further, let dj  denote  the  

(fixed) duration (processing time) of operation j. 

Let Fj  represent the finish time of operation j. A schedule can 

be represented by a vector of finish times (F1, ,  Fm, ... , Fn+1).  

Let A(t) be the set of operations being processed at time t, and 

let rj,m  = 1 if operation j requires machine m to be processed  

otherwise rj,m  = 0. 

The model of the JSP can be described the following way[5]: 

 

Minimize Fn+1 (Cmax)                  ……….(1) 

 

Subject to: 

 

Fk ≤ Fj – dj                                j-1,…,n+2 ; k ϵ Pj  ……….(2) 

 

 ( ) ,jA t j mr ≤ 1                      m ϵ  M ; t ≥  0 ……….(3) 

  

Fj ≥  0   j=1,….,n+1 ……….(4) 

 

The  objective  of function  is to (1)  minimize  the  finishing   

time  of  operation  n+1  (the  last operation),   and      

minimizes   the   makespan.   Constraints   (2)   impress   the 

precedence relations between operations and constraints (3) 

state that one machine can only process one operation at a 

time.  Finally (4) forces the finishing time  to  be  non- 

negative.  

2.2 Genetic Algorithm (GA) 
Genetic Algorithms (GAs) are known as Evolutionary 

Algorithms used in regular practice. GAs and other EAs are 

population based search techniques that explore the solution 

space in a discrete manner. In this algorithm, the solutions 

evolve by applying reproduction operators. When GAs/EAs 

are hybridized with local search, they are known Memetic 

Algorithms (MAs).  

The priority rules are widely used in the scheduling area for 

either problem solving or refinement of solutions with another 

technique. In solving JSSPs, the priority rules can be used as 

local search in conjunction with genetic algorithms, which is 

basically a memetic algorithm. These approaches have been 

proved to be efficient for solving job-shop scheduling 

problems.  

Genetic  algorithms  are  adaptive  methods,  which  may  be  

used  to  solve  search  and optimization problems (Beasley et 

al. (1993)). They are based on the genetic process of 

biological organisms. Over many generations, natural 

populations evolve according to the principles of natural 

selection,  i.e.  survival of  the fittest,  first  clearly  stated  by 

Charles Darwin in The Origin of Species. By mimicking this 

process, genetic algorithms are able to evolve solutions to real 

world problems, if they have been suitably encoded.  

Before a genetic algorithm can be run, a suitable encoding (or 

representation) for the problem must be devised. A fitness 

function is also required, which assigns a figure of merit   to   

each   encoded   solution.   During   the   run,   parents   must   

be   selected   for reproduction, and recombined to generate 

offspring. 

It  is  assumed  that  a  potential  solution  to  a  problem  may  

be  represented  as  a  set  of parameters. These parameters 

(known as genes) are joined together to form a string of 

values (chromosome).  In  genetic  terminology,  the  set  of  

parameters  represented  by a particular  chromosome  is  

referred  to  as  an  individual.  The fitness of an individual 

depends on its chromosome and is evaluated by the fitness 

function.  

The  individuals,  in  the  reproductive  phase,  are  selected  

from  the  population  and recombined,  producing  offspring,  

which  comprise  the  next  generation.  Parents are randomly 

selected from the population using a scheme, which favors 

fitter individuals. Having  selected  two  parents,  their  

chromosomes  are  recombined,  typically  using  mechanisms 

of crossover and mutation. Mutation is usually applied to 

some individuals, to guarantee population diversity.  The 

general form of genetic algorithm is as follows: 

 

Genetic Algorithm 

{ 

Generate initial population Pt 

Evaluate population Pt 

While stopping criteria not satisfied Repeat 

{ 

Select elements from Pt  to copy into Pt+l Crossover 

elements of Pt  and put into Pt+l Mutation elements 

of Pt  and put into Pt+l Evaluate new population Pt+l 

Pt  = Pt+l 

} 

} 

 

3. THE REPRESENTATION OF JSSP  

     SOLUTIONS  
In [10] the authors give  the formal definition of string 

representation and then,  in order  to show  that  the  string  

representation  is a valid encoding  for  schedules, they  

formulated  two most important theorems which are the 

foundation of this stochastic models.  
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Definition 1. String Representation.   

Consider  three  finite  sets,  a  set  J  of  jobs,  a  set M  of 

machines  and  a  set O  of  operations. For  each operation a  

there  is a  job  j(a)  in J  to which  it belongs, a machine m(a)  

in M  on which  it should  be  executed  and  a  processing  

time  d(a). For each operation a its successor in the job is 

given by sj(a), except for the last operation in a job.  The  

representation  of  a  solution  is  a  string  consisting  of  a  

permutation  of  all operations in O, that is an element of the 

set:  

StrRep = { s belongs to  On   | n = |O| and  for all i, j with 1 ≤ i 

< j ≤  n: s(i) ≠ s(j) }                              ……..(7) 

Now we can define legal strings. Formal for s in StrRep:  

Legal(s) = For all a, sj(a) belongs to  O: a ~< sj(a) ……..(8) 

where a ~< b means: a occurs before b in the string s.  

Theorem 1. (Feasible Solution  → Legal String)  

Each and every  feasible  solution can be  represented by a  

legal  string. And one  legal  string corresponding to the same 

feasible solution may exist. 

Theorem 2. (Legal String →  Feasible Solution)  

Every legal string corresponds exactly to one feasible 

solution.  

To explain the JSSP and a valid/legal and invalid/illegal 

solutions, we have chosen the simplest 3x3 JSSP presented in 

[10]. This example of a 3x3 JSSP is given in Table1. The data 

includes the routing of each job through each machine and the 

processing time for each operation in parentheses.  For 

example, “2(3)” in the third row represents the operation one 

of the Job 3 and  the 2 in “2(3)” represents that that operation 

should be scheduled to machine 2 and the operation will 

consume 3 units of time.  

 

          Table 1 :  A 3x3 JSSP  

 

Job Operations Routing Processing time 

1 1 (3) 2 (3) 3 (3) 

2 1 (2) 3 (3) 2 (4) 

3 2 (3) 1 (2) 3 (1) 

 

The one of the known optimum schedule of the above 

problem is   [ J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3 ].Here, for 

example,  J1,2 represents the operation 2 of the Job 1. 

Figure1shows one of such a optimum solution for the problem 

represented by “Gantt-Chart". 

 
 

Figure  1 :  The Gantt-Chart Representation of the    

           Solution of the above 3x3 Problem  

 

If we denotes the operations of the job as follows, 

 

Job1: Op1, Op2, Op3  

Job2: Op4, Op5, Op6  

Job3: Op7, Op8, Op9  

 

Or simply 

1  2  3 

4  5  6 

7  8  9 

 

then,  the schedule [ J1,1, J1,2, J1,3, J2,1, J2,2, J2,3, J3,1, J3,2, J3,3] or 

simply [1, 2, 3, 4, 5, 6, 7, 8, 9]  will be the one of the known 

worst case schedule which will satisfy all the conditions of the 

JSSP. But in this case, the makespan will not be optimum. 

The schedule  [ J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3 ] or 

simply [1, 7, 4, 2, 8, 5, 6, 3, 9]  will be the one of the best 

know optimum solution. Here the strings “1, 2, 3, 4, 5, 6, 7, 8, 

9” and “1, 7, 4, 2, 8, 5, 6, 3, 9” represents solutions and 

known as valid strings. 

In GA, a legal string or a illegal string (of numbers) which 

represent the order of the schedule can be represented by a 

chromosome. For example, the known worst case solution can 

be represented as a chromosome of GA by a string “1, 2, 3, 4, 

5, 6, 7, 8, 9” . Similarly, the chromosome of GA “1, 7, 4, 2, 8, 

5, 6, 3, 9” will represent a legal string which is an optimal 

solution of JSSP. 

And for example, the chromosome “3, 9, 4, 2, 1, 5, 6, 7, 8” 

will be an invalid string which correspond to an illegal 

operation or schedule since this schedule will not satisfy the 

conditions of JSSP. 

So, if we select the initial chromosomes of GA or initial 

points of SOP with random values, then there will be lot of 

invalid strings in the initial guessing values. The scope of the 

evolutionary algorithm is to permute  the most optimal string 

to better most optimal string which will hopefully make that 

string as a legal string in proceeding generations/steps and 

finally we will end up with a string belongs to a better 

solution or optimal schedule with minimum makespan. 

This assumption will be good and can produce meaningful 

solutions for lower order scheduling problems such as 3x3 

JSSP or 4x4 JSSP. But, it may produce illegal solutions even 

after very long runs in the case of higher order scheduling 

problems like 15x15 JSSP. Because, if we randomly chose 

initial population then there will be much chance for getting 

all illegal strings in the initial set which belongs to no nearby 

solution. So the fitness calculation methods will lead to 

meaningless fitness values and the selection method will also 

be incapable of selecting a better solution in each generation 

or step. So in each step of the evolutionary process there will 

not be any guaranty of getting progressive solution.  

So we believe that the random selection of initial 

solution/seed in an evolutionary algorithm will not lead to a 

better result in higher order scheduling problems such as 

15x15 JSSP. So in this work, we have evaluated the 

performance of evolutionary optimization technique GA with 

different initial conditions.  

4. RESULTS AND ANALYSIS 

In the experiment, we have randomly chosen the initial 

conditions as in the traditional evolutionary method. We 

expect that, it will be capable of producing at latest one 

meaningful legal string in every generation/step and hence 

there will be a much good probability of achieving a better 

solution in the succeeding generations or steps. 

4.1 Analysis of Performance with Different   

      Problem Size 
The simplified GA parameters 

Number of generations  : 100 

Number of population   : 100 

Probability  : 0.5 
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The Analysis with 3x3 JSSP 

In fact, in small JSSP problems, we did not expect any 

difference in behavior.  But, while running the GA based 

algorithm, the algorithm found different optimum solutions 

with same best makespan. 

In the following figures we are presenting the Gantt-Chart 

found by the GA based method for the 3x3 problem[10]  

presented in table 1. In the following schedules, the forth one 

is solution already discussed in figure 1. The code developed 

for drawing Gantt-Chart will display the chart in color. But 

here we displayed the output of 3x3 as a gray image for better 

visibility.  

 

 

 

 

Figure 2: The Gantt-Chart Representation of the        

Solutions found by GA based algorithm for the previously                     

mentioned 3x3 Problem 

4.2 The Analysis with Higher Dimensional  

      JSSP 

With the problems of lower dimensions, there was not much 

noticeable difference in convergence process, in this type of 

initialization if initial condition of the evolutionary process.  

But, while solving higher dimensional problems, the impact 

was more obvious. To minimize the time, we have chosen 

very low number of generations/steps. So the final fitness will 

not be the ideal and more optimum result. Even though the 

Gantt-Charts attained were not optimal, but they were not 

illegal solutions. But in the case of random initialization, the 

algorithm only produced illegal solutions up to that 100 

generations/steps. 

The Analysis with 6x6 JSSP  

Result with Random Initialization 

Due to random initialization, the fitness stares from a worst   

value 3.5x106(avg.) and 10x105 (min). 

 

      Figure  3 : Gantt-Chart  

Results of Initialization with Worst Case Solution 

As shown in the following Gantt-Chart, the initialization with 

worst case solution produced better results. Due to the 

meaningful worst case initialization, the fitness stares from a 

meaningful value 160 (min) and the mean value also fall 

between zero and   3x105 (avg). 

 

 
       

      Figure  4 : Gantt-Chart  

Performance in terms of speed 

To measure the performance in terms of speed, with problems 

of different sizes, the model was run with problems of 

different sizes. 

 

Table 2 : The time taken for different JSSP size  

 

Sl.No JSSP Size 
Time Taken(sec) 

GA 

1 3x3 4.14 

2 4x4 5.06 

3 6x6 8.39 

4 10x10 25.02 

5 15x15 89.45 

Convergence Capability of the Algorithms 

The convergence property was also measured with problems 

of different sizes and tabulated below. 

 

 

Table 3: Startup with known worst case solution 

 

Sl.No 

JSSP 
Achieved Optimal 

Solution (Makespan) 

Size 
Known best 

optimum value 
GA 

1 3x3 12 12 
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2 4x4 272 272 

3 6x6 55 68 

4 10x10 902 2214 

5 15x15 1268 6771 

 

Even though the arrived solution is far from the optimal 

solution (since we run this for low generations), the better 

performance in the case of GA is very obvious.  

5. CONCLUSION 
We have successfully implemented the basic evolutionary 

model for solving JSSP using GA. The arrived results show 

that the models produced optimal or near-optimal solutions 

medium level job shop scheduling problems. Even the system 

was capable of finding more than one solution with same 

makespan value. 

The arrived result proves that the conventional way of 

randomly selecting initial conditions of the evolutionary 

process has a worst effect on performance in JSSPs of higher 

dimensions. While initializing with known, worst case 

solution, the evolutionary process was capable of converging 

into meaningful and more optimum solutions.  GA was 

capable of finding more than one better solution from the 

problem space. 

6. FUTURE WORK 

In this work, we have just selected the evolutionary 

algorithms based on their popularity. There are few more 

algorithms of the same kind exists. Future works may address 

the impact of the selection of initial condition in those 

algorithms also. We observed that the overall performance 

lack of this kind of evolutionary algorithm is due to the illegal 

strings appeared again and again during the evolutionary 

process.  Lot of time is unnecessarily wasted to identify a 

string as illegal and eliminating it from further processing. 

Future works may address evolutionary techniques which will 

avoid even the generation of illegal strings during the 

evolutionary process.  A new kind of mutation and crossover 

operation may be developed to avoid the production of illegal 

strings or solutions to make GA exclusively suitable for JSSP. 
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