
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.7, April 2012

 7

Evaluation on GA based Model for solving JSSP

A. Tamilarasi

Professor and Head,
Dept. of MCA

 Kongu engineering college,
Erode, TN, India

S. Jayasankari
Assistant Professor

Dept. of MCA
VIIMS, Tiruchengode, TN, India

ABSTRACT

The optimization techniques such as Genetic algorithm (GA),

Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO), Simulated Annealing (SA), etc., were

commonly used in solving job shop scheduling problem

(JSSP). There are different variants of these algorithms that

were addressed in several previous works. In previous

literatures, it was commonly mentioned that the initial

solution were generally guessed in a very random manner

(such as random initialization of population in GA). In this

work, we will address the impact of such random initialization

on solving the JSSP while using an optimization technique -

GA. The performance of this algorithm will be evaluated with

different set of initial conditions. In one experiment, during

initialization stage, the initial population will be initialized

with random schedules. In another experiment, the initial

population will be initialized with a known, worst case

schedule. The impact of this initial condition on the

performance of algorithm has been studied and achieved

makespan. The arrived results proved that the conventional

way of randomly selecting initial conditions of the

evolutionary process has a worst effect on performance in

JSSP of higher dimensions. While initializing with known,

worst case solution, the evolutionary process was capable of

converging into meaningful and more optimum solutions.

Keywords

Scheduling, Job Shop Scheduling, Genetic Algorithm, Gant-

Chart.

1. INTRODUCTION
In the modern competitive environment in manufacturing and

service industries, the effective sequencing and scheduling has

become an essential for survival in the marketplace [6].

Companies have to produce their product untimely as opposed

to due date. Otherwise, it will impinge upon reputation of a

business. At the same time, the activities and operations need

to be scheduled with the intention that the available resources

will be used in an efficient manner. As a result, there is a

great good scheduling algorithm and heuristics are invented.

Most of the prevailing practical scheduling problems exist in

stochastic and dynamic environment.

Stochastic is a problem where some of the variables are

uncertain while dynamic problem is when jobs arrive

randomly. On the other hand, the problems with ready time is

known and fixed are called problems static and for problem

where all the parameter such as processing times are known

and fixed is called deterministic problems (French, 1982). In

spite of this, it is quite impossible to predict exactly when jobs

will become available for processing. Additionally, the

understanding of scheduling problems where there is no

uncertainty involved will help us towards the solution of

stochastic and dynamic problems.

The main objective in solving the job shop scheduling

problem is to find the sequence for each operation on each

machine that optimizes the objective function. The most

common objective function that has been used in scheduling

the job shop problem is minimization of makespan value or

the time to complete all jobs. It has been the principal

criterion for academic research and is able to capture the

fundamental computational difficulty which exists

unconditionally in determining an optimal schedule (Jain and

Meeran, 1999).

1.1 The Types of Related Scheduling

Problems

We can group the main classical scheduling problems in five

distinct classes:

 Workshops with only one machine: There is only

one machine which must be used for scheduling the

given jobs, under the specified constraints.

 Flow shop: There is more than one machine and

each job must be processed on each of the machines

- the number of operations for each job is equal with

the number of machines, the jth operation of each

job being processed on machine j.

 Job shop: The problem is formulated under the

same terms as for the flow shop problem, having as

specific difference the fact that each job has

associated a processing order assigned for its

operations.

 Open shop: The same similarity with the flow shop

problem, the processing order for the operations

being completely arbitrary the order for processing

a job's operations is not relevant; any ordering will

do.

 Mixed Workshop: There is a subset of jobs for

which a fixed processing path is specified, the other

jobs being scheduled in order to minimize the

objective function.

1.2 Problem Definition
Scheduling has become a critical factor in many job shops in

order to determine their capacity for more work and be able to

schedule their work more efficiently. Job shop scheduling

becomes more and more difficult when we deal with

assemblies and/or multiple components which need to be

made in an efficient manner.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.7, April 2012

 8

In the following way, the job shop scheduling problem (JSSP)

will be described: For „n‟ jobs, each one is composed of

several operations that must be executed on „m‟ machines. For

each operation uses only one „m‟ machines for a fixed

duration. Each machine can process at most one operation at

a time and once an operation starts processing on a

given machine, it must complete processing on that same

machine without any interruption. The operations of a

given job have to be processed in a given set of order.

The problem is to find out a schedule of the operations on

the machines, taking into an account the precedence

constraints, that minimizes the makespan (Cmax), ie, the

finishing time of the all the operations completed within the

scheduled time.

We focus on job-shop scheduling problems composed of the

following elements [4]:

 Jobs: J = {J1, • • •, Jn } is a set of n jobs to be

scheduled. Each job Ji consists of a predetermined

sequence of operations. Oi,j is the operation j of Ji.

All jobs are released at time 0.

 Machines: M = {M1 , • • •, Mm } is a set of m

machines. Each machine can process only one

operation at a time. And each operation can be

processed without interruption during its

performance on one of the set of machines. All

machines are available at time 0.

 Constraints: The constraints are rules that limit the

possible assignments of the operations. They can be

divided mainly into following situations:

- Each operation can be processed by only one

 machine at a time (disjunctive constraint).

- Each operation, which has started, runs to

 completion (non-preemption condition).

- Each machine performs operations one after

 another (capacity constraint).

- Although there are no precedence constraints

 among operations of different jobs, the

 predetermined sequence of operation for each job

 forces each operation to be scheduled after all

 predecessor operations (precedence/conjunctive

 constraint).

 - The machine constraints emphasize the operations

 can be processed only by the machine from the

 given set (resource constraint).

 Objective(s): Most of the research reported in

the literature is focused on the single objective

case of the problem, in which the objective is to find

a schedule that has minimum time required to

complete all operations (minimum makespan).

Some other objectives, such as flow time or

tardiness are also important like the makespan.

1.3 Different Approaches for Solving

 Scheduling Problems
Job-shop scheduling problem is one of the well-known and

hardest combinatorial optimization problems. During the last

three decades, this problem has captured the interest of a

significant number of researchers.

The JSSPs are well-known combinatorial optimization

problems, which consist of a finite number of jobs and

machines. Each job consists of a set of operations that has to

be processed, on a set of known machines, and where each

operation has a known processing time.

A schedule is to be complete a set of operations, required by a

job, to be performed on different machines, in a given order.

In addition, the process may need to satisfy other constraints

such as (i) no more than one operation of any job can be

executed simultaneously and (ii) no machine can process

more than one operation at the same time. The objectives

usually considered in JSSPs are the minimization of

makespan, the minimization of tardiness, and the

maximization of throughput. The total time elapsed between

the starting of the first job‟s first operation and the ending of

the last operation, is termed as the makespan.

In JSSPs, the size of the solution space is an exponent of the

number of machines, which makes it quite expensive to find

the best makespan for larger problems. By larger problem, we

mean a higher number of jobs and (or) a higher number of

machines. Most JSSPs that have appeared in the literature are

for ideal conditions.

However, in practice, process interruptions like machine

breakdown and machine unavailability are very common,

which makes JSSPs more complex to solve. There exist a

variety of conventional optimization methods for solving

JSSPs, such as the integer programming method. However,

the conventional methods are unable to solve larger problems

due to the limitation of current computational power.

Considering the complexity of solving JSSPs, with or without

interruptions, and the limitations of existing methodologies, it

seems that an evolutionary computation based approaches

would do better, as they have proven to be successful for

solving many other combinatorial optimization problems.

Job shop scheduling is naturally a NP-hard problem with no

easy solution. Branch-and-bound, Tabu search, and

biologically stimulated approaches such as GA, Swarm

Intelligence and other stochastic model such as Simulated

Annealing algorithm were proposed for achieving possible

solutions to complex problems such as job shop scheduling.

During the last few decades, Evolutionary Computing (EC)

has emerged as an authoritative methodology for managing

the often highly complex problems of modern society, such as

optimizing engineering design, job shop scheduling, and

transport systems. Such real-world optimization problems

typically are characterized by huge, ill-behaved solution

spaces which are not feasible to exhaustively search and defy

traditional optimization algorithms because they are for

instance non-linear, non-differentiable, non-continuous, or

non-convex [3]. EC encompasses a class of stochastic,

population-based, optimization algorithms inspired by

biological evolution and genetics which have been shown to

perform well on problems with huge, ill-behaved solution

spaces.

Job Shop Problem has been basically considered using the

following approaches [5]:

 Exact methods: Giffler and Thompson (1960),

Brucker et al. (1994) and Williamson et al. (1997)

 Branch and bound: Lageweg et al. (1977), Carlier

and Pinson (1989, 1990), Applegate and Cook (1991)

and Sabuncuoglu and Bayiz (1999). Carlier and

Pinson (1989) have been successful in solving the

notorious 10´10 instance of Fisher and Thompson

proposed in 1963 and only solved twenty years later;

Heuristic procedures based on priority rules:

French (1982), Gray and Hoesada (1991) and

Gonçalves and Mendes (1994)

 Shifting bottleneck: Adams et al. (1988). Problems

of dimension 15´15 are still considered to be

beyond the reach of today's exact methods. Over

the last decade, a growing number of

metaheuristic procedures have been presented to

solve hard optimization problems[5]:

 Simulated Annealing: Laarhoven et al. (1992) and

Lourenço (1995)

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.7, April 2012

 9

 Tabu Search: Taillard (1994), Lourenço and

Zwijnenburg (1996) and Nowicki and Smutnicki

(1996)

 Genetic Algorithms: Davis (1985), Storer et al.

(1992), Aarts et al. (1994), Croce et al. (1995),

Dorndorf et al. (1995), Gonçalves and Beirão (1999)

and Oliveira (2000).

Additionally, some researchers have developed local

search procedures: Lourenço(1995), Vaessens et al.

(1996), Lourenço and Zwijnenburg (1996) and Nowicki and

Smutnicki (1996). Surveys of heuristic methods for the JSP

are given in Pinson (1995), Vaessens et al. (1996) and Cheng

et al. (1999).

A survey of Job Shop Scheduling techniques can be found

in Jain and Meeran (1999). Recently Wang and Zheng

(2001) developed a Hybrid Optimization strategy for JSP,

Binato et al. (2002) present a greedy randomized adaptive

search procedure (GRASP) for JSP and Aiex et al. (2003)

introduced a parallel GRASP with path-relinking for JSP.

2. THE JSSP AND MODELS

 CONSIDERED FOR SOLVING JSSP

2.1 Mathematical Representation of the

 JSSP

Let J = {0, 1, …, n, n+1} denote the set of operations to be

scheduled and M = {1,..., m} the set of machines. The

operations 0 and n+1 are not original, and they have no

duration and represent the initial and final operations. The

operations are interrelated by two types of constraints. First,

the precedence constraints, which force each operation j

to be scheduled after all predecessor operations, Pj, are

completed. Second, operation j can only be scheduled if

the machine it requires is idle. Further, let dj denote the

(fixed) duration (processing time) of operation j.

Let Fj represent the finish time of operation j. A schedule can

be represented by a vector of finish times (F1, , Fm, ... , Fn+1).

Let A(t) be the set of operations being processed at time t, and

let rj,m = 1 if operation j requires machine m to be processed

otherwise rj,m = 0.

The model of the JSP can be described the following way[5]:

Minimize Fn+1 (Cmax) ……….(1)

Subject to:

Fk ≤ Fj – dj j-1,…,n+2 ; k ϵ Pj ……….(2)

 () ,jA t j mr ≤ 1 m ϵ M ; t ≥ 0 ……….(3)

Fj ≥ 0 j=1,….,n+1 ……….(4)

The objective of function is to (1) minimize the finishing

time of operation n+1 (the last operation), and

minimizes the makespan. Constraints (2) impress the

precedence relations between operations and constraints (3)

state that one machine can only process one operation at a

time. Finally (4) forces the finishing time to be non-

negative.

2.2 Genetic Algorithm (GA)
Genetic Algorithms (GAs) are known as Evolutionary

Algorithms used in regular practice. GAs and other EAs are

population based search techniques that explore the solution

space in a discrete manner. In this algorithm, the solutions

evolve by applying reproduction operators. When GAs/EAs

are hybridized with local search, they are known Memetic

Algorithms (MAs).

The priority rules are widely used in the scheduling area for

either problem solving or refinement of solutions with another

technique. In solving JSSPs, the priority rules can be used as

local search in conjunction with genetic algorithms, which is

basically a memetic algorithm. These approaches have been

proved to be efficient for solving job-shop scheduling

problems.

Genetic algorithms are adaptive methods, which may be

used to solve search and optimization problems (Beasley et

al. (1993)). They are based on the genetic process of

biological organisms. Over many generations, natural

populations evolve according to the principles of natural

selection, i.e. survival of the fittest, first clearly stated by

Charles Darwin in The Origin of Species. By mimicking this

process, genetic algorithms are able to evolve solutions to real

world problems, if they have been suitably encoded.

Before a genetic algorithm can be run, a suitable encoding (or

representation) for the problem must be devised. A fitness

function is also required, which assigns a figure of merit to

each encoded solution. During the run, parents must

be selected for reproduction, and recombined to generate

offspring.

It is assumed that a potential solution to a problem may

be represented as a set of parameters. These parameters

(known as genes) are joined together to form a string of

values (chromosome). In genetic terminology, the set of

parameters represented by a particular chromosome is

referred to as an individual. The fitness of an individual

depends on its chromosome and is evaluated by the fitness

function.

The individuals, in the reproductive phase, are selected

from the population and recombined, producing offspring,

which comprise the next generation. Parents are randomly

selected from the population using a scheme, which favors

fitter individuals. Having selected two parents, their

chromosomes are recombined, typically using mechanisms

of crossover and mutation. Mutation is usually applied to

some individuals, to guarantee population diversity. The

general form of genetic algorithm is as follows:

Genetic Algorithm

{

Generate initial population Pt

Evaluate population Pt

While stopping criteria not satisfied Repeat

{

Select elements from Pt to copy into Pt+l Crossover

elements of Pt and put into Pt+l Mutation elements

of Pt and put into Pt+l Evaluate new population Pt+l

Pt = Pt+l

}

}

3. THE REPRESENTATION OF JSSP

 SOLUTIONS
In [10] the authors give the formal definition of string

representation and then, in order to show that the string

representation is a valid encoding for schedules, they

formulated two most important theorems which are the

foundation of this stochastic models.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.7, April 2012

 10

Definition 1. String Representation.

Consider three finite sets, a set J of jobs, a set M of

machines and a set O of operations. For each operation a

there is a job j(a) in J to which it belongs, a machine m(a)

in M on which it should be executed and a processing

time d(a). For each operation a its successor in the job is

given by sj(a), except for the last operation in a job. The

representation of a solution is a string consisting of a

permutation of all operations in O, that is an element of the

set:

StrRep = { s belongs to On | n = |O| and for all i, j with 1 ≤ i

< j ≤ n: s(i) ≠ s(j) } ……..(7)

Now we can define legal strings. Formal for s in StrRep:

Legal(s) = For all a, sj(a) belongs to O: a ~< sj(a) ……..(8)

where a ~< b means: a occurs before b in the string s.

Theorem 1. (Feasible Solution → Legal String)

Each and every feasible solution can be represented by a

legal string. And one legal string corresponding to the same

feasible solution may exist.

Theorem 2. (Legal String → Feasible Solution)

Every legal string corresponds exactly to one feasible

solution.

To explain the JSSP and a valid/legal and invalid/illegal

solutions, we have chosen the simplest 3x3 JSSP presented in

[10]. This example of a 3x3 JSSP is given in Table1. The data

includes the routing of each job through each machine and the

processing time for each operation in parentheses. For

example, “2(3)” in the third row represents the operation one

of the Job 3 and the 2 in “2(3)” represents that that operation

should be scheduled to machine 2 and the operation will

consume 3 units of time.

 Table 1 : A 3x3 JSSP

Job Operations Routing Processing time

1 1 (3) 2 (3) 3 (3)

2 1 (2) 3 (3) 2 (4)

3 2 (3) 1 (2) 3 (1)

The one of the known optimum schedule of the above

problem is [J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3].Here, for

example, J1,2 represents the operation 2 of the Job 1.

Figure1shows one of such a optimum solution for the problem

represented by “Gantt-Chart".

Figure 1 : The Gantt-Chart Representation of the

 Solution of the above 3x3 Problem

If we denotes the operations of the job as follows,

Job1: Op1, Op2, Op3

Job2: Op4, Op5, Op6

Job3: Op7, Op8, Op9

Or simply

1 2 3

4 5 6

7 8 9

then, the schedule [J1,1, J1,2, J1,3, J2,1, J2,2, J2,3, J3,1, J3,2, J3,3] or

simply [1, 2, 3, 4, 5, 6, 7, 8, 9] will be the one of the known

worst case schedule which will satisfy all the conditions of the

JSSP. But in this case, the makespan will not be optimum.

The schedule [J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3] or

simply [1, 7, 4, 2, 8, 5, 6, 3, 9] will be the one of the best

know optimum solution. Here the strings “1, 2, 3, 4, 5, 6, 7, 8,

9” and “1, 7, 4, 2, 8, 5, 6, 3, 9” represents solutions and

known as valid strings.

In GA, a legal string or a illegal string (of numbers) which

represent the order of the schedule can be represented by a

chromosome. For example, the known worst case solution can

be represented as a chromosome of GA by a string “1, 2, 3, 4,

5, 6, 7, 8, 9” . Similarly, the chromosome of GA “1, 7, 4, 2, 8,

5, 6, 3, 9” will represent a legal string which is an optimal

solution of JSSP.

And for example, the chromosome “3, 9, 4, 2, 1, 5, 6, 7, 8”

will be an invalid string which correspond to an illegal

operation or schedule since this schedule will not satisfy the

conditions of JSSP.

So, if we select the initial chromosomes of GA or initial

points of SOP with random values, then there will be lot of

invalid strings in the initial guessing values. The scope of the

evolutionary algorithm is to permute the most optimal string

to better most optimal string which will hopefully make that

string as a legal string in proceeding generations/steps and

finally we will end up with a string belongs to a better

solution or optimal schedule with minimum makespan.

This assumption will be good and can produce meaningful

solutions for lower order scheduling problems such as 3x3

JSSP or 4x4 JSSP. But, it may produce illegal solutions even

after very long runs in the case of higher order scheduling

problems like 15x15 JSSP. Because, if we randomly chose

initial population then there will be much chance for getting

all illegal strings in the initial set which belongs to no nearby

solution. So the fitness calculation methods will lead to

meaningless fitness values and the selection method will also

be incapable of selecting a better solution in each generation

or step. So in each step of the evolutionary process there will

not be any guaranty of getting progressive solution.

So we believe that the random selection of initial

solution/seed in an evolutionary algorithm will not lead to a

better result in higher order scheduling problems such as

15x15 JSSP. So in this work, we have evaluated the

performance of evolutionary optimization technique GA with

different initial conditions.

4. RESULTS AND ANALYSIS

In the experiment, we have randomly chosen the initial

conditions as in the traditional evolutionary method. We

expect that, it will be capable of producing at latest one

meaningful legal string in every generation/step and hence

there will be a much good probability of achieving a better

solution in the succeeding generations or steps.

4.1 Analysis of Performance with Different

 Problem Size
The simplified GA parameters

Number of generations : 100

Number of population : 100

Probability : 0.5

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.7, April 2012

 11

The Analysis with 3x3 JSSP

In fact, in small JSSP problems, we did not expect any

difference in behavior. But, while running the GA based

algorithm, the algorithm found different optimum solutions

with same best makespan.

In the following figures we are presenting the Gantt-Chart

found by the GA based method for the 3x3 problem[10]

presented in table 1. In the following schedules, the forth one

is solution already discussed in figure 1. The code developed

for drawing Gantt-Chart will display the chart in color. But

here we displayed the output of 3x3 as a gray image for better

visibility.

Figure 2: The Gantt-Chart Representation of the

Solutions found by GA based algorithm for the previously

mentioned 3x3 Problem

4.2 The Analysis with Higher Dimensional

 JSSP

With the problems of lower dimensions, there was not much

noticeable difference in convergence process, in this type of

initialization if initial condition of the evolutionary process.

But, while solving higher dimensional problems, the impact

was more obvious. To minimize the time, we have chosen

very low number of generations/steps. So the final fitness will

not be the ideal and more optimum result. Even though the

Gantt-Charts attained were not optimal, but they were not

illegal solutions. But in the case of random initialization, the

algorithm only produced illegal solutions up to that 100

generations/steps.

The Analysis with 6x6 JSSP

Result with Random Initialization

Due to random initialization, the fitness stares from a worst

value 3.5x106(avg.) and 10x105 (min).

 Figure 3 : Gantt-Chart

Results of Initialization with Worst Case Solution

As shown in the following Gantt-Chart, the initialization with

worst case solution produced better results. Due to the

meaningful worst case initialization, the fitness stares from a

meaningful value 160 (min) and the mean value also fall

between zero and 3x105 (avg).

 Figure 4 : Gantt-Chart

Performance in terms of speed

To measure the performance in terms of speed, with problems

of different sizes, the model was run with problems of

different sizes.

Table 2 : The time taken for different JSSP size

Sl.No JSSP Size
Time Taken(sec)

GA

1 3x3 4.14

2 4x4 5.06

3 6x6 8.39

4 10x10 25.02

5 15x15 89.45

Convergence Capability of the Algorithms

The convergence property was also measured with problems

of different sizes and tabulated below.

Table 3: Startup with known worst case solution

Sl.No

JSSP
Achieved Optimal

Solution (Makespan)

Size
Known best

optimum value
GA

1 3x3 12 12

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.7, April 2012

 12

2 4x4 272 272

3 6x6 55 68

4 10x10 902 2214

5 15x15 1268 6771

Even though the arrived solution is far from the optimal

solution (since we run this for low generations), the better

performance in the case of GA is very obvious.

5. CONCLUSION
We have successfully implemented the basic evolutionary

model for solving JSSP using GA. The arrived results show

that the models produced optimal or near-optimal solutions

medium level job shop scheduling problems. Even the system

was capable of finding more than one solution with same

makespan value.

The arrived result proves that the conventional way of

randomly selecting initial conditions of the evolutionary

process has a worst effect on performance in JSSPs of higher

dimensions. While initializing with known, worst case

solution, the evolutionary process was capable of converging

into meaningful and more optimum solutions. GA was

capable of finding more than one better solution from the

problem space.

6. FUTURE WORK

In this work, we have just selected the evolutionary

algorithms based on their popularity. There are few more

algorithms of the same kind exists. Future works may address

the impact of the selection of initial condition in those

algorithms also. We observed that the overall performance

lack of this kind of evolutionary algorithm is due to the illegal

strings appeared again and again during the evolutionary

process. Lot of time is unnecessarily wasted to identify a

string as illegal and eliminating it from further processing.

Future works may address evolutionary techniques which will

avoid even the generation of illegal strings during the

evolutionary process. A new kind of mutation and crossover

operation may be developed to avoid the production of illegal

strings or solutions to make GA exclusively suitable for JSSP.

7. ACKNOWLEDGEMENTS
Our sincere thanks to our management Kongu Engineering

College, Vivekanadha Institutions for Women, and the

innovative members who helped us towards the development

of this research paper come in a successful way.

8. REFERENCES
[1] Moraglio , H.M.M. Ten Eikelder, R. Tadei, “Genetic

Local Search for Job Shop Scheduling Problem”,

Technical Report, CSM-435 ISSN 1744-8050.

[2] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,

D.B. Shmoys. - Sequencing and scheduling:

Algorithms and complexity. - In: S.C. Graves,

A.H.G. Rinnoy Kan and P. Zipkin, editors, Handbooks

in Operations Research and Management Science 4,

North- Holland, 1993.

[3] Dr. Daniel Tauritz, The abstract of the talk "Grand

Challenges in Evolutionary Computing - Part II",

Missouri S&T .

[4] Hongbo Liu, Ajith Abraham,Zuwen Wang, "A Multi-

swarm Approach to Multi-objective Flexible Job-shop

Scheduling Problems", School of Information Science

and Technology, Dalian Maritime University, Dalian

116026, China, Fundamenta Informaticae,IOS Press,

2009.

[5] José Fernando Gonçalves, Jorge José de Magalhães

Mendes,Maurício G. C. Resende, “A Hybrid Genetic

Algorithm for the Job Shop Scheduling Problem”, AT&T

Labs Research Technical Report TD-5EAL6J, September

2002.

[6] Mahanim Binti Omar, “A Modified Multi-Step

Crossover Fusion (Msxf) In Solving Some Deterministic

Job Shop Scheduling Problem (Jssp), A thesis work

submitted to Universiti Sains Malaysia, 2008.

[7] Puspa MahatPuspa Mahat, "Swarm Intelligence and

Machine Learning", Xiangyang Wang, Jie Yang, Richard

Jensenb Xiaojun Liu, , "Rough Set Feature Selection and

Rule Induction for Prediction of Malignancy Degree in

Brain Glioma ", Institute of Image Processing and

Pattern Recognition, Shanghai Jiao Tong University,

Shanghai, China and Department of Computer Science,

The University of Wales, Aberystwyth, UK.

[8] Y. Shi, R. C. Eberhart, Parameter selection in particle

swarm optimization, in Evolutionary Programming VII:

Proc. EP98, pp. 591-600 (New York: Springer-Verlag,

1998).

[9] Takeshi Yamada and Ryohei Nakano, "Genetic

Algorithms for Job-Shop Scheduling Problems", NTT

Communication Science Labs, JAPAN, Proceedings of

Modern Heuristic for Decision Support, pp.67, UNICOM

seminar, March 1997, London.

[10] Runwei Cheng, Mitsuo Gen and Yasuhiro Tsujimura, “A

tutorial survey of job-shop scheduling problems using

genetic algorithms, part II: hybrid genetic search

strategies”, Computers & Industrial Engineering,

Volume 36, Issue 2, April 1999, Pages 343-364.

