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ABSTRACT 

Association rule mining is one of the important problems of 

data mining. Single minimum support based approaches of 

association rule mining suffers from “rare item problem”. An 

improved approach MSApriori uses multiple supports to 

generate association rules that consider rare item sets. 

Necessity to first identify the “large” set of items contained in 

the input dataset to generate association rules results in high 

storage and processing time requirement. The proposed work 

overcomes this drawback by storing items and their support 

values as total support tree data structure, resulting in an 

algorithm that is more efficient than existing algorithm both in 

terms of memory requirement as well as in processing time. 

General Terms 

MSApriori Algorithm, Total Support Tree Data Structure, 

Association Rule mining, Data Mining. 

1. INTRODUCTION 
 Data mining [1] is extraction of interesting information or 

patterns from data in large databases. Association rule mining 

[2] [3] is important model in data mining. Association rule 

shows relationships among sets of items in a transaction 

database. Association rule discovery has been an active 

research area since its introduction in 1993[2]. 

Basic terminology about association rules is as follows: Let 

 
m

iiiI ,..,
21

  be a set of items and  Let D be a set of 

transaction where any transaction DT   is a set of items 

such that IT  . An item set containing k number of items is 

called k-item set. A transaction, DT   contains a set of items 

or an item set, IX  , if TX  . An association rule is an 

expression of the form YX  , where IX  , IY   

and YX . The rule YX   holds in D with support, 

   YXPYX sup  and    XYPYXconf |  

confidence. The objective of association rule mining is to 

discover all association rules that have support and confidence 

value greater than the user-specified minimum support 

(minsup) and minimum confidence (minconf) value. 

Real world datasets are mostly non-uniform containing 

frequently as well as relatively rarely occurring entities. But 

most of the data mining approaches ignore rare entities and 

discover knowledge by considering only frequently occurring 

entities. Since rare entities has useful knowledge patterns  [4] 

[5], research efforts are going on to find improved approaches 

that extracts rare knowledge patterns like rare association 

rules and rare class identification[4]. 

Various algorithms are proposed [2] [3] [6] [7] to mine 

association rules. Approaches that are single minimum 

support based like Apriori suffers from “rare item problem” 

dilemma [8]. Therefore, to extract frequent item sets involving 

rare items, an improved approach known as Multiple Support 

Apriori (MSApriori) has been proposed in [5]. This approach 

uses multiple supports instead of single. In the researches, 

efforts are being made to develop improved algorithms based 

on multiple supports [9] [10] [11]. In [5] frequent item sets 

involving rare items are obtained by assigning minimum item 

support (MIS) value to each item. Then item sets has to satisfy 

the lowest MIS value among the respective items. The rules 

generated are then pruned based on confidence value. 

However, for this pruning, the large set of item sets contained 

in the input data set need to be identified which in turn 

requires an effective storage structure. 

In this paper, we proposed an approach that uses total support 

tree (T-Tree) data structure to implement MSApriori 

algorithm, T-Tree is an efficient data storage mechanism for 

item set proposed in [12]. By applying this storage structure, 

need to scan database each time for generating set of item sets 

is eliminated. This makes the rule generation process faster. 

2. LITERATURE REVIEW 
In this section we briefly discuss MSApriori algorithm for 

mining association rules and total support tree storage 

mechanism. 

2.1 MSApriori Algorithm 
MSApriori is an association rule mining algorithm proposed to 

extract frequent item sets involving rare items and to give 

better performance in comparison with approaches that 

employs single minimum support. Approaches that are based 

on single minsup may suffer from “rare item problem” 

dilemma. The “rare item problem” is as follows: if minsup is 

set to high value, frequent item sets involving rare items are 

missed and if set to low value, the number of frequent item 

sets explodes. To overcome this drawback MSApriori 

algorithm uses multiple support. Frequent item sets involving 

rare items are discovered by assigning minimum item support 

(MIS) value to each item. The MIS value is calculated 

through item support value S (ij) and user specified (β) 

proportional value that can vary between 0 and 1. For every 

item Ii
j
 ,  

j
iMIS  is calculated as per equation 1. 

   
jj iSiMIS   , if   LSiS j    (1) 

              = LS   else 

Where, LS corresponds to user-specified least support value. 

In MSApriori approach, item set containing rare item or 

combination of rare and frequent items has to satisfy 

relatively lower value than the item set containing only 

frequent items, to be included in frequent item set as MIS 

value is calculated as percentage of the item support value. 

Therefore MSApriori approach has better performance in 

comparison with single minimum support based approaches 

as it addresses the “rare item problem”. But this approach has 

a drawback of scanning database each time to generate large 
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item set and their support values which are then compared 

with MIS values. The working of MSApriori is illustrated as 

follows: 

Table 1. Transaction Data Set. 

TID Items 

1 Item1, item2 

2 Item3,item1, item2 

3 Item4, item1, item2 

4 Item5, item1, item2 

5 Item5, item2 

6 Item6, item7 

7 Item6, item7 

8 Item8, item5 

9 Item8, item5 

10 Item8, item5 

 

Table 1 shows the dataset of 10 transactions. The working of 

MSApriori algorithm with β=0.75 and LS=20% is depicted in 

figure 1. Items are generated after scanning the dataset and 

their respective MIS value is calculated using equation 1. 

Items whose support value is greater than their MIS value 

included in frequent 1-itemset. Each frequent 1-itemset is 

joined with each other and are included in frequent 2-itemset 

if their support is greater than or equal to lowest MIS value of 

items in it.  

Example 1: The working of MSApriori for the transaction 

dataset shown in Table I is depicted in Figure 1.    

 

 

 

{item4}[S: 10, MIS: 20]  

{item3}[S: 10, MIS: 20] 

{item6}[S: 20, MIS: 20] 

{item7}[S: 20, MIS: 20] 

{item8}[S: 40, MIS: 30] 

{item1}[S: 40, MIS: 30] 

{item5}[S: 50, MIS: 40] 

{item2}[S: 50, MIS: 40] 

 

 

 

   

Fig 1: Working of MSApriori algorithm with β=0.75 and 

LS=20%. 

Support value is assigned to each 8 items in above example 

after scanning the data set and their corresponding MIS value 

is calculated by equation 1. Items whose support value is less 

than MIS value are not included further, for example item3 

and item4 are not considered as candidates to be included in 

frequent 2-itemset. In the same way algorithm continues to 

generate all frequent k-item sets based on multiple minimum 

support based criteria.   

2.2 Total Support Tree (T-tree) 
 In Association rule mining, performance of algorithms 

depends on size of input data set as the number of possible 

combinations represented by the items scales exponentially 

with the size of records resulting in an increase in memory 

and time requirement of algorithms. There are various 

methods proposed to optimize the performance of algorithms. 

One way of doing that is to make use of downward closure 

property of item sets which says that that for a frequent item 

set, all its subsets are also frequent and thus for an infrequent 

item set, all its supersets must also be infrequent. This 

property can be used to avoid generation and support 

computation for all combinations. But still there is need to 

scan data set number of times. 

The algorithm Apriori [2] makes use of downward closure 

property to generate association rules. It can be implemented 

using structures such as set enumeration trees [13]. Set 

enumeration tree enumerates item sets in a best first manner. 

The top level of the tree will contain the support for 1-

itemsets, the second level for 2-itemsets, and so on. 

The T-tree (Total Support Tree) is a compressed set 

enumeration tree structure. In T-tree, any sub branch nodes 

that are at the same level are organized as 1D-array where 

array indexes represents column numbers. This gives us 

advantage of direct indexing with the use of column numbers 

by building reverse version of tree. 

 

 

 

 

 

Fig.2. Total support tree structure for data set {1, 3, 4}, {2, 

4, 5}, {2, 4, 6} 

 The T-tree uses index mechanism which makes traversal fast. 

In T-tree there is no need to explicitly store the item set labels 

and thus no sibling’s reference variables are required. Total 

support tree structure for the data set r1:{1,3,4}, r2:{2,4,5}, 

r3:{2,4,6} is shown in figure 2, structure contains only 

combinations that actually appear in data set and thus 

eliminating need to generate each combinations. Level 1 

represent single item sets and store support values for each 

singleton. Level 2 represents pair of two and soon. 

3. PROPOSED WORK 
To overcome the drawback of MSApriori algorithm that needs 

high storage requirement and processing time, we proposed an 

approach that combines the MSApriori algorithm with a total 

support tree storage structure resulting in a more efficient 

algorithm in terms of storage requirement and processing 

time. Implementation has structure of tree as shown in figure 

5 with nodes at different level. Each total support tree node 

(TtreeNode) will have support value (sup), minimum support 

value (MIS) and reference to child nodes array (chdref). Tree 

is created level by level. Each level is created and 

corresponding support and MIS value is stored in it. The 

proposed algorithm (MSApriori-T) is as follows: 

Procedure CreateMSApriori-T(){ 

1) CreateTtreeTopLevel (); 

2

2

2

2

2

2 

{item6, item7} 

{item6, item8} 

{item6, item1} 

{item6, item5} 

{item6, item2} 

{item7, item8} 

{item7, item1} 
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2) Prune (start, 1); 

3) GenLevelN (start, 1, 1, null); 

4) k=2; 

5) While (isnewlevel) 

6) Addsupport (k); 

7) Prune (start, k); 

8) isnewlevel = false; 

9) GenLevelN (start, 1, k, {}); 

10) k++; 

11) End 

} 

In the algorithm start is a reference to the start of the top-level 

array, N is the number of attribute in the data set, k is a level 

in T-tree, and isnewlevel is a Boolean variable initialized to 

false. Main function is CreateMSApriori-T () which calls 

other functions to build MSApriori-T tree structure. 

CreateTtreeTopLevel () creates top level of tree and add 

support (assuming count as support value) and MIS value to 

each node. Number of nodes created in first level will be 

equal to number of attributes N in the data set.  

CreateTtreeTopLevel (){ 

//create top level of Ttree 

start[i] = new TtreeNode (); 

//where 0< i < N 

//Support and MIS value is added to nodes 

start [sj].sup++; 

start [sj].MIS = beta * start[sj].sup; 

if (start [sj].MIS < LS) 

start [sj].MIS = LS; 

} 

The method TtreeNode is a constructor to build a new 

TtreeNode object. After the level is created prune() is called to 

prune the nodes which does not satisfy minimum support 

criteria. 

Prune(ref,k){ 

If (k=1) //level =1 

    If (ref[t]! = null & ref[t].sup < ref[t].MIS) 

    ref[t] = null; //nodes pruned 

else 

//other levels 

    if (ref[t] != null & ref[t].chdref !=null) 

    Prune (ref[t].chdref, k-1); 

} 

Similarly, other levels are generated by GenLevelN (). Their 

corresponding support and MIS value is added by Addsupport 

() function. Then nodes are pruned according to condition 

given in algorithm. Pseudo code for other methods is as 

follows: 

AddSupport (k){ 

    Addsup (start,k,|ri|,ri); 

} 

Addsup (ref, k, end, r){ 

if (k==1) 

    if (ref[si] != null) 

        ref [si].sup++; 

        ref [si].MIS= ref[si].sup * beta; 

        if (ref[sj].MIS  < LS){ 

         ref [sj].MIS= LS; 

        } 

        If (parentof ref[si].MIS < ref[si].MIS){ 

        ref [si].MIS =    parentofref[si].MIS 

        } 

Else 

If (ref[si] != null) 

     Addsup (ref[si].chdref,k-1,I,r); 

}        

GenLevelN (ref, k, newk ,I){ 

if (k= newK) 

    if(ref[i] != null ) genLevel(ref,I,append({i},I); 

else 

if( ref[i] != null) 

    GenLevelN (ref[i].chdref, k-1, newK, append({i},I)); 

} 

GenLevelN (ref, end, I){ 

// create new array of t-tree nodes 

Ref [end].chdref = new TtreeNode[end]; 

//Initialise elements where appropriate 

If (ref[i] != null) 

    newI= append ({i}, I); 

    if (testcombinations(newI)) 

        ref [end].chdref[i] = new TtreeNode (); 

        isNewLevel = true; 

    else 

ref [end].chdref[i]= null; 

} 

Testcombinations (I) { 

If (|I| < 3) return (true); 

 I1= {I [1], I[0]} 

 I2=delN (I, 2); 

 Return(combinations(null,0,2,I1 I2)); 

} 
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Combinations (I, start, end, I1, I2) { 

If (end > | I2|) 

     Testset = append (I, I1); 

     Return (FindInTtree (testset)); 

Else 

     Tempset= append (I2[i], I); 

     If (~combinations (tempSet, i+1, end+1, I1, I2 )) 

     Return (false); 

     Return (true); 

} 

 Figure 5 Shows the structure of the tree that is built by the 

proposed method for the data set r1:{1,3,4}, r2:{2,4,5}, 

r3:{2,4,6}, taking β=0.75. Level 1 in tree contains nodes for 

each single attribute, where each node have corresponding 

support and MIS value calculated by Equation 1. This level is 

pruned by method prune(start,1) ,it prunes the node which 

does not satisfy minimum support criteria. The method 

genLevelN () creates other levels of the tree. Nodes in level 1 

has link to level 2 nodes indicating frequent 2-itemset. Level 2 

nodes store support and MIS value of this pair. In our example 

itemset {1, 3} has support value 1 and 0.75 as its MIS value.   

4. OBSERVATION AND RESULTS 
 The proposed algorithm is implemented in java 1.7.0, i5 core 

processor, windows 7 operating system. Figures are obtained 

by experimenting with different real data sets taken from UCI 

repository [14]. Table 1 shows the memory requirement of 

both the algorithms in bytes and Table 2 shows the running 

time of both the algorithms in seconds for different real data 

sets.  

Table 2. Memory required by algorithms for different 

datasets. 

Datasets MSApriori 

Memory(in 

bytes) 

MSApriori-T 

Memory(in 

bytes) 

Car 7578128 2973376 

Ecoli 5612984 1982296 

Iris 2994456 1651960 

Heart 3895584 2312688 

Horsecolic 3214456 2312736 

Pima 7356080 2651224 

Glass 6611736 1652024 

Tictactoe 14087936 2643040 

 

 

Table 3. Time required by algorithms for different 

datasets. 

Datasets MSApriori 

Time(in sec) 

MSApriori-T 

Time(in sec) 

Car 0.187 0.05 

Ecoli 0.141 0.06 

Iris 0.078 0.01 

Heart 0.234 0.08 

Horsecolic 0.203 0.05 

Pima 0.297 0.08 

Glass 0.078 0.02 

Tictactoe 0.161 0.03 

 

 

Fig 3. Comparison of Memory allocation between 

MSApriori and MSApriori-T algorithm 

 

Fig 4. Comparison of running time between MSApriori 

and MSApriori-T algorithm. 

4.1 Analysis 
Above graphs (Figure 3 and Figure 4) shows the comparison 

of memory requirement (in bytes) and running time (in sec) of 

MSApriori and MSApriori-T algorithms. In our experiment 

we found that memory and time required by MSApriori-T 

algorithm is significantly reduced compared to MSApriori 

algorithm. 
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Fig 5: Tree structure for MSApriori-T algorithm 

5. CONCLUSION 
In Association rule mining MSApriori algorithm plays 

important role as it considers rare item sets. In this paper we 

proposed a novel approach MSApriori-T algorithm which 

uses total support tree structure to make MSApriori algorithm 

more efficient.  T-tree stores each items in a tree as nodes and 

links are available to its child nodes. In the experiment it is 

found that proposed algorithm is faster and requires less 

memory comparatively. In future this approach could be used 

to enhance other association rule mining algorithms to make 

them more efficient. 
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