
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

45

MSApriori using Total Support Tree Data Structure

Devashree Rai
Department of Electrical

Engineering
National Institute of
Technology, Raipur
Chhattisgarh, India

Kesari Verma
Department of Computer

Application
National Institute of
Technology, Raipur
Chhattisgarh, India

A.S. Thoke
Department of Electrical

Engineering
National Institute of
Technology, Raipur
Chhattisgarh, India

ABSTRACT

Association rule mining is one of the important problems of

data mining. Single minimum support based approaches of

association rule mining suffers from “rare item problem”. An

improved approach MSApriori uses multiple supports to

generate association rules that consider rare item sets.

Necessity to first identify the “large” set of items contained in

the input dataset to generate association rules results in high

storage and processing time requirement. The proposed work

overcomes this drawback by storing items and their support

values as total support tree data structure, resulting in an

algorithm that is more efficient than existing algorithm both in

terms of memory requirement as well as in processing time.

General Terms

MSApriori Algorithm, Total Support Tree Data Structure,

Association Rule mining, Data Mining.

1. INTRODUCTION
 Data mining [1] is extraction of interesting information or

patterns from data in large databases. Association rule mining

[2] [3] is important model in data mining. Association rule

shows relationships among sets of items in a transaction

database. Association rule discovery has been an active

research area since its introduction in 1993[2].

Basic terminology about association rules is as follows: Let

 
m

iiiI ,..,
21

 be a set of items and Let D be a set of

transaction where any transaction DT  is a set of items

such that IT  . An item set containing k number of items is

called k-item set. A transaction, DT  contains a set of items

or an item set, IX  , if TX  . An association rule is an

expression of the form YX  , where IX  , IY 

and YX . The rule YX  holds in D with support,

   YXPYX sup and    XYPYXconf |

confidence. The objective of association rule mining is to

discover all association rules that have support and confidence

value greater than the user-specified minimum support

(minsup) and minimum confidence (minconf) value.

Real world datasets are mostly non-uniform containing

frequently as well as relatively rarely occurring entities. But

most of the data mining approaches ignore rare entities and

discover knowledge by considering only frequently occurring

entities. Since rare entities has useful knowledge patterns [4]

[5], research efforts are going on to find improved approaches

that extracts rare knowledge patterns like rare association

rules and rare class identification[4].

Various algorithms are proposed [2] [3] [6] [7] to mine

association rules. Approaches that are single minimum

support based like Apriori suffers from “rare item problem”

dilemma [8]. Therefore, to extract frequent item sets involving

rare items, an improved approach known as Multiple Support

Apriori (MSApriori) has been proposed in [5]. This approach

uses multiple supports instead of single. In the researches,

efforts are being made to develop improved algorithms based

on multiple supports [9] [10] [11]. In [5] frequent item sets

involving rare items are obtained by assigning minimum item

support (MIS) value to each item. Then item sets has to satisfy

the lowest MIS value among the respective items. The rules

generated are then pruned based on confidence value.

However, for this pruning, the large set of item sets contained

in the input data set need to be identified which in turn

requires an effective storage structure.

In this paper, we proposed an approach that uses total support

tree (T-Tree) data structure to implement MSApriori

algorithm, T-Tree is an efficient data storage mechanism for

item set proposed in [12]. By applying this storage structure,

need to scan database each time for generating set of item sets

is eliminated. This makes the rule generation process faster.

2. LITERATURE REVIEW
In this section we briefly discuss MSApriori algorithm for

mining association rules and total support tree storage

mechanism.

2.1 MSApriori Algorithm
MSApriori is an association rule mining algorithm proposed to

extract frequent item sets involving rare items and to give

better performance in comparison with approaches that

employs single minimum support. Approaches that are based

on single minsup may suffer from “rare item problem”

dilemma. The “rare item problem” is as follows: if minsup is

set to high value, frequent item sets involving rare items are

missed and if set to low value, the number of frequent item

sets explodes. To overcome this drawback MSApriori

algorithm uses multiple support. Frequent item sets involving

rare items are discovered by assigning minimum item support

(MIS) value to each item. The MIS value is calculated

through item support value S (ij) and user specified (β)

proportional value that can vary between 0 and 1. For every

item Ii
j
 ,  

j
iMIS is calculated as per equation 1.

   
jj iSiMIS   , if   LSiS j  (1)

 = LS else

Where, LS corresponds to user-specified least support value.

In MSApriori approach, item set containing rare item or

combination of rare and frequent items has to satisfy

relatively lower value than the item set containing only

frequent items, to be included in frequent item set as MIS

value is calculated as percentage of the item support value.

Therefore MSApriori approach has better performance in

comparison with single minimum support based approaches

as it addresses the “rare item problem”. But this approach has

a drawback of scanning database each time to generate large

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

46

item set and their support values which are then compared

with MIS values. The working of MSApriori is illustrated as

follows:

Table 1. Transaction Data Set.

TID Items

1 Item1, item2

2 Item3,item1, item2

3 Item4, item1, item2

4 Item5, item1, item2

5 Item5, item2

6 Item6, item7

7 Item6, item7

8 Item8, item5

9 Item8, item5

10 Item8, item5

Table 1 shows the dataset of 10 transactions. The working of

MSApriori algorithm with β=0.75 and LS=20% is depicted in

figure 1. Items are generated after scanning the dataset and

their respective MIS value is calculated using equation 1.

Items whose support value is greater than their MIS value

included in frequent 1-itemset. Each frequent 1-itemset is

joined with each other and are included in frequent 2-itemset

if their support is greater than or equal to lowest MIS value of

items in it.

Example 1: The working of MSApriori for the transaction

dataset shown in Table I is depicted in Figure 1.

{item4}[S: 10, MIS: 20]

{item3}[S: 10, MIS: 20]

{item6}[S: 20, MIS: 20]

{item7}[S: 20, MIS: 20]

{item8}[S: 40, MIS: 30]

{item1}[S: 40, MIS: 30]

{item5}[S: 50, MIS: 40]

{item2}[S: 50, MIS: 40]

Fig 1: Working of MSApriori algorithm with β=0.75 and

LS=20%.

Support value is assigned to each 8 items in above example

after scanning the data set and their corresponding MIS value

is calculated by equation 1. Items whose support value is less

than MIS value are not included further, for example item3

and item4 are not considered as candidates to be included in

frequent 2-itemset. In the same way algorithm continues to

generate all frequent k-item sets based on multiple minimum

support based criteria.

2.2 Total Support Tree (T-tree)
 In Association rule mining, performance of algorithms

depends on size of input data set as the number of possible

combinations represented by the items scales exponentially

with the size of records resulting in an increase in memory

and time requirement of algorithms. There are various

methods proposed to optimize the performance of algorithms.

One way of doing that is to make use of downward closure

property of item sets which says that that for a frequent item

set, all its subsets are also frequent and thus for an infrequent

item set, all its supersets must also be infrequent. This

property can be used to avoid generation and support

computation for all combinations. But still there is need to

scan data set number of times.

The algorithm Apriori [2] makes use of downward closure

property to generate association rules. It can be implemented

using structures such as set enumeration trees [13]. Set

enumeration tree enumerates item sets in a best first manner.

The top level of the tree will contain the support for 1-

itemsets, the second level for 2-itemsets, and so on.

The T-tree (Total Support Tree) is a compressed set

enumeration tree structure. In T-tree, any sub branch nodes

that are at the same level are organized as 1D-array where

array indexes represents column numbers. This gives us

advantage of direct indexing with the use of column numbers

by building reverse version of tree.

Fig.2. Total support tree structure for data set {1, 3, 4}, {2,

4, 5}, {2, 4, 6}

 The T-tree uses index mechanism which makes traversal fast.

In T-tree there is no need to explicitly store the item set labels

and thus no sibling’s reference variables are required. Total

support tree structure for the data set r1:{1,3,4}, r2:{2,4,5},

r3:{2,4,6} is shown in figure 2, structure contains only

combinations that actually appear in data set and thus

eliminating need to generate each combinations. Level 1

represent single item sets and store support values for each

singleton. Level 2 represents pair of two and soon.

3. PROPOSED WORK
To overcome the drawback of MSApriori algorithm that needs

high storage requirement and processing time, we proposed an

approach that combines the MSApriori algorithm with a total

support tree storage structure resulting in a more efficient

algorithm in terms of storage requirement and processing

time. Implementation has structure of tree as shown in figure

5 with nodes at different level. Each total support tree node

(TtreeNode) will have support value (sup), minimum support

value (MIS) and reference to child nodes array (chdref). Tree

is created level by level. Each level is created and

corresponding support and MIS value is stored in it. The

proposed algorithm (MSApriori-T) is as follows:

Procedure CreateMSApriori-T(){

1) CreateTtreeTopLevel ();

2

2

2

2

2

2

{item6, item7}

{item6, item8}

{item6, item1}

{item6, item5}

{item6, item2}

{item7, item8}

{item7, item1}

{item7, item5}

{item7, item2}

{item8, item1}

{item8, item5}

{item8, item2}

{item1, item5}

{item1, item2}

{item5, item2}

1 2 3 4 6 5

1 1 2 3 4 2 4 2

1 2

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

47

2) Prune (start, 1);

3) GenLevelN (start, 1, 1, null);

4) k=2;

5) While (isnewlevel)

6) Addsupport (k);

7) Prune (start, k);

8) isnewlevel = false;

9) GenLevelN (start, 1, k, {});

10) k++;

11) End

}

In the algorithm start is a reference to the start of the top-level

array, N is the number of attribute in the data set, k is a level

in T-tree, and isnewlevel is a Boolean variable initialized to

false. Main function is CreateMSApriori-T () which calls

other functions to build MSApriori-T tree structure.

CreateTtreeTopLevel () creates top level of tree and add

support (assuming count as support value) and MIS value to

each node. Number of nodes created in first level will be

equal to number of attributes N in the data set.

CreateTtreeTopLevel (){

//create top level of Ttree

start[i] = new TtreeNode ();

//where 0< i < N

//Support and MIS value is added to nodes

start [sj].sup++;

start [sj].MIS = beta * start[sj].sup;

if (start [sj].MIS < LS)

start [sj].MIS = LS;

}

The method TtreeNode is a constructor to build a new

TtreeNode object. After the level is created prune() is called to

prune the nodes which does not satisfy minimum support

criteria.

Prune(ref,k){

If (k=1) //level =1

 If (ref[t]! = null & ref[t].sup < ref[t].MIS)

 ref[t] = null; //nodes pruned

else

//other levels

 if (ref[t] != null & ref[t].chdref !=null)

 Prune (ref[t].chdref, k-1);

}

Similarly, other levels are generated by GenLevelN (). Their

corresponding support and MIS value is added by Addsupport

() function. Then nodes are pruned according to condition

given in algorithm. Pseudo code for other methods is as

follows:

AddSupport (k){

 Addsup (start,k,|ri|,ri);

}

Addsup (ref, k, end, r){

if (k==1)

 if (ref[si] != null)

 ref [si].sup++;

 ref [si].MIS= ref[si].sup * beta;

 if (ref[sj].MIS < LS){

 ref [sj].MIS= LS;

 }

 If (parentof ref[si].MIS < ref[si].MIS){

 ref [si].MIS = parentofref[si].MIS

 }

Else

If (ref[si] != null)

 Addsup (ref[si].chdref,k-1,I,r);

}

GenLevelN (ref, k, newk ,I){

if (k= newK)

 if(ref[i] != null) genLevel(ref,I,append({i},I);

else

if(ref[i] != null)

 GenLevelN (ref[i].chdref, k-1, newK, append({i},I));

}

GenLevelN (ref, end, I){

// create new array of t-tree nodes

Ref [end].chdref = new TtreeNode[end];

//Initialise elements where appropriate

If (ref[i] != null)

 newI= append ({i}, I);

 if (testcombinations(newI))

 ref [end].chdref[i] = new TtreeNode ();

 isNewLevel = true;

 else

ref [end].chdref[i]= null;

}

Testcombinations (I) {

If (|I| < 3) return (true);

 I1= {I [1], I[0]}

 I2=delN (I, 2);

 Return(combinations(null,0,2,I1 I2));

}

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

48

Combinations (I, start, end, I1, I2) {

If (end > | I2|)

 Testset = append (I, I1);

 Return (FindInTtree (testset));

Else

 Tempset= append (I2[i], I);

 If (~combinations (tempSet, i+1, end+1, I1, I2))

 Return (false);

 Return (true);

}

 Figure 5 Shows the structure of the tree that is built by the

proposed method for the data set r1:{1,3,4}, r2:{2,4,5},

r3:{2,4,6}, taking β=0.75. Level 1 in tree contains nodes for

each single attribute, where each node have corresponding

support and MIS value calculated by Equation 1. This level is

pruned by method prune(start,1) ,it prunes the node which

does not satisfy minimum support criteria. The method

genLevelN () creates other levels of the tree. Nodes in level 1

has link to level 2 nodes indicating frequent 2-itemset. Level 2

nodes store support and MIS value of this pair. In our example

itemset {1, 3} has support value 1 and 0.75 as its MIS value.

4. OBSERVATION AND RESULTS
 The proposed algorithm is implemented in java 1.7.0, i5 core

processor, windows 7 operating system. Figures are obtained

by experimenting with different real data sets taken from UCI

repository [14]. Table 1 shows the memory requirement of

both the algorithms in bytes and Table 2 shows the running

time of both the algorithms in seconds for different real data

sets.

Table 2. Memory required by algorithms for different

datasets.

Datasets MSApriori

Memory(in

bytes)

MSApriori-T

Memory(in

bytes)

Car 7578128 2973376

Ecoli 5612984 1982296

Iris 2994456 1651960

Heart 3895584 2312688

Horsecolic 3214456 2312736

Pima 7356080 2651224

Glass 6611736 1652024

Tictactoe 14087936 2643040

Table 3. Time required by algorithms for different

datasets.

Datasets MSApriori

Time(in sec)

MSApriori-T

Time(in sec)

Car 0.187 0.05

Ecoli 0.141 0.06

Iris 0.078 0.01

Heart 0.234 0.08

Horsecolic 0.203 0.05

Pima 0.297 0.08

Glass 0.078 0.02

Tictactoe 0.161 0.03

Fig 3. Comparison of Memory allocation between

MSApriori and MSApriori-T algorithm

Fig 4. Comparison of running time between MSApriori

and MSApriori-T algorithm.

4.1 Analysis
Above graphs (Figure 3 and Figure 4) shows the comparison

of memory requirement (in bytes) and running time (in sec) of

MSApriori and MSApriori-T algorithms. In our experiment

we found that memory and time required by MSApriori-T

algorithm is significantly reduced compared to MSApriori

algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

49

Fig 5: Tree structure for MSApriori-T algorithm

5. CONCLUSION
In Association rule mining MSApriori algorithm plays

important role as it considers rare item sets. In this paper we

proposed a novel approach MSApriori-T algorithm which

uses total support tree structure to make MSApriori algorithm

more efficient. T-tree stores each items in a tree as nodes and

links are available to its child nodes. In the experiment it is

found that proposed algorithm is faster and requires less

memory comparatively. In future this approach could be used

to enhance other association rule mining algorithms to make

them more efficient.

6. REFERENCES
[1] M.S. Chen, J. Han, P.S. Yu, “Data mining: an overview

from a database perspective”, IEEE Transactions on

Knowledge and Data Engineering, 1996, 8, pp. 866-883.

[2] Agrawal, R., Imielinski, T., and Swami, A. “Mining

association rules between sets of items in large

databases.” SIGMOD, 1993, pp. 207-216.

[3] Agrawal, R., and Srikanth, R. “Fast algorithms for

mining association rules.” VLDB, 1994.

[4] Weiss, G. M. “Mining With Rarity: A Unifying

Framework.” SIGKDD Explorations, 2004, Vol. 6, Issue

1, pp. 7 – 19.

[5] Liu, B., Hsu, W., and Ma, Y. “Mining Association Rules

with Multiple Minimum Supports.” SIGKDD

Explorations, 1999.

[6] J.Han, Y. Fu, “Discovery of multiple-level association

rules from large database”, in the twenty-first

international conference on very large data bases, Zurich,

Switzerland, 1995, pp. 420-431.W.-K. Chen, Linear

Networks and Systems, Belmont, CA Wadsworth, 1993,

pp. 123–135.

[7] Zaki, Mohammed J.; Scalable algorithms for association

mining, IEEE Transactions on Knowledge and Data

Engineering, vol. 12,no. 3, pp. 372-390, May/June 2000.

[8] Mannila, H. “Methods and Problems in Data Mining.”

ICDT, 1997.

[9] R. Kiran and P. Reddy “An Improved Multiple

Minimum Support Based Approach to Mine Rare

Association Rules” IEEE 2009.

[10] I. Kouris, C. Makris, A. Tsakalidis”An improved

algorithm for mining association rules using multiple

support values” FLAIRS 2003.

[11] Lee, Hong and Lin “Mining association rules with

multiple minimum supports using maximum constraints”

Elsevier Science, Nov 2004.

[12] Coenen and Leng (2004). Data Structures for

Association Rule Mining: T-trees and P-trees To appear

in IEEE Transaction in Knowledge and Data

Engineering.

[13] R. Rymon, “Search Through Systematic Set

Enumeration,” Proc. Third Int’l Conf. Principles of

Knowledge and Reasoning, pp. 539-550, 1992.

[14] Uci: Blake, c.l., & Merz, C.J (1998) UCI repository of

machine leaning data bases from

www.ics.uci.edu/~mlearn/MLrepository.html.

1 0.75

1 0.75 Null 2 1.5 1 0.75 3 2.25 1 0.75

1 0.75

1 0.75

2 1.5 1 0.75

1 0.75 Null

Null Null Null 2 1.5 Null

Null Null

Null Null

Null

Null 1 0.75

1 0.75

Null Null

Null

Null

Null

Null 1 0.75 Null

Null Null 1 0.75

Null Null 1 0.75

Null

0 1 2 3 4 5 6

0 1 2 3 4 5

0 1 2

0 1 2 3 4

Null

 0 1 2 3

 0 1 2 3

 0 1 2 0 1 2 3
Null

Null Null

Null

