
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

5

XQuery based Query Processing Architecture in

Wireless Sensor Networks

Manish Kumar

 IIIT, Allahabad
India

Monalisa Panigrahi

IMS College, Ghaziabad
India

Shekhar Verma

 IIIT, Allahabad
India

ABSTRACT

A wireless sensor network (WSN) deployed to sense an

environment should be able to send information as per the

requirements of the sink. For this, the sink needs a query

language to formulate its needs and fire queries to the

network. The queried nodes must be able to process the

multiple queries in their limited memory and computational

capacity in a time bound manner. In this paper, an XQuery

based query processing architecture that satisfies the unique

needs of WSN has been proposed and evaluated. Traditional

SQL does not satisfy the time limitations, source specificity

and node constraints required by a WSN. X-query architecture

allows spatial aware queries that can be processed by resource

constrained nodes. TOSSIM based simulation of X-query

processing is energy efficient and the nodes are able to

process multiple queries within a small time period.

General Terms

Query Processing, Sensor Networks

Keywords

WSN, Query Processing, X-query, SQL

1. INTRODUCTION
A wireless sensor network (WSN) is distributed system of

wireless sensor nodes. These small sensors measure

environmental and physical properties like temperature,

pressure, humidity [1, 2] and organize themselves to deliver

this data to a common data collector sink over the wireless

medium. A sensor node is a low cost small hardware device

suited for large scale deployment and autonomous operations.

The cost, physical size, deployment regions, operational

requirements and wireless communication medium restrict the

memory size, processor capacity, operating platform, energy

and reliability etc. of the nodes and the sensor network.

The sensor network can be considered as a network database

[3]. Such a logical database is a distributed database which

contains a large number of nodes that contain environmental

data and respond to user queries. The data sensed by sensor

nodes have location specific significance. If the location of the

occurrence of an event observed by a sensor node is not

known, the data about the event is meaningless. Moreover, the

data reported by sensor nodes are largely raw. Thus, there is a

need for a query system [4, 5] and distributed query

processing [6, 7] that requires sophisticated processing of data

generation and storage of distributed data. The wired

distributed networks have high capacity storage, continuous

power supply and high end processors required for high

performance data manipulation. A WSN is at the lowest end

of distributed networks with differentiation in terms of power,

communication, storage etc. Hence, alternative ways have to

be devised for querying, data gathering and other unique

requirements.

A middleware [8, 9, 10, 11] is used as an interface between

high-level abstraction and system-level programming concept

in WSN. It can be used in such applications to hide the

heterogeneity and distributed nature of the networks. The

middleware [12, 13] is a software that can be used to fill the

gap between the user applications and low level constructs.

An important middleware used in query processing in WSN is

TinyDB [15]. TinyDB provides a single unified declarative

query (such as SQL) interface for the ease of communication

between user and sensor networks. A user can fire Tiny-SQL

queries (similar to SQL queries) to the base station. These

queries are distributed to all the relevant nodes in the WSN

from the base station that gather the result and send the

response back to the user. Due to limited resources, Tiny-SQL

does not support all type of SQL queries. The traditional

TinySQL has several limitations. It does not give optimized

result in multiple query scenarios. TinyDB uses a distributed

in-network query processing architecture. The components of

the TinyDB are built on top of TinyOS [14]. The user query

should pass through these entire components [15].

Fig. 1 Query Processing Layers

The different layers of the query processing as shown in Fig.

1:

i) Network Management Layer: The function of this layer is to

improve query performance in multihop network. This layer

also supports query dissemination [16] and query sharing. It

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

6

helps in reducing the cost of the network. ii) Catalog

Management Layer: This layer is used to store commands,

events and attributes. It provides TinyDB a single unified

interface to interact with TinyOS components. iii) Power

Management Layer: The main function of this layer is

scheduling. TinyDB uses slotted approach scheduling

technique. iv) Query Processing Layer: After the query

dissemination, the role of query processor starts. It consists of

two phases: Preprocessing phase and Execution phase. The

former is responsible for the testing of validation of the query;

and the latter is responsible for query operation and the result

gathering. The system is in idle state after execution phase

until the next epoch starts.

In the present study, an alternative way of processing multiple

queries is proposed using XML based XQuery interface. An

XML based application is efficient for data interchange and

allows ease in search due to its hierarchical representation. An

XQuery engine is implemented for query processing in sensor

network. The rest of the paper is organized as follows. The

problem of query processing in sensor networks is defined in

section 2. The proposed X-query solution is developed in

section 3. This proposed solution is evaluated and the results

are discussed in section 4. The conclusions are given in

section 5 of the paper.

2. PROBLEM DESCRIPTION
The database of the sensor network as a distributed database is

beset by limited by processing and memory limitations of the

nodes, the need of energy efficient database operations, the

nature of data sensed by the sensors and the spatial specificity

of data in the sensor network. Another problem with

traditional middleware like TinyDB is the dependence on one

interface, i.e., declarative SQL interface for query processing.

SQL has its own limitation which limits the performance of a

sensor network. It always depends on relational databases and

hence dependent on the system. It does not give optimized

result in multiple query scenarios, and query interface also

does not support heterogeneity in wireless sensor networks.

3. PROPOSED SOLUTION-XQuery
The traditional query processing in WSN uses SQL query

interface. The user sends Tiny-SQL queries to the server. Due

to limitation in SQL, the query processing system has three

main limitations: i) SQL works well with relational model and

hence SQL query returns only tabular data. The structure of a

sensor network is hierarchical and need a query language that

can traverse in a tree manner; ii) It is dependent on the

underlying components; and iii) This system does not give

optimized performance for multiple queries. The drawbacks

present in the system motivated for alternative way, namely

„XQuery‟ for execution of query which is coming

continuously and also for the multiple query request with

optimization. The advantage of XQuery over SQL is the first

step towards the development of XQuery based query engine

for query processing in sensor network. The limitation listed

above is as addressed by XQuery are as follows.

 XQuery is very flexible in nature. It can query both

tabular and hierarchical data, therefore, it is suitable

for the sensor network.

 Extensibility – Xquery supports user defined tags

depending on the application.

 XQuery is independent of underlying software.

3.1 XQuery based Architecture
A query interface is proposed to the user so that the user can

interact with the WSN with ease. Fig. 2 illustrates the XQuery

query processing architecture for sensor networks. The

proposed approach mainly focuses on efficient execution of

multiple queries in WSN. The user sends the request in the

form of XQuery to the server and gets the response from the

sensor network.

The XQuery engine is divided into three modules as client

side, base station and sensor network. The functionalities of

each module are as follows:

Client Side: This module contains all the clients or users,

named as XQuery Client. The administrator can restrict the

number of clients while running the server or base station.

The client will send the query in XQuery, named as XRequest

to the server, known as base station. The client will get the

result back from the base station in XML format, named as

XResponse.

Base Station: This module acts as an intermediate node

between the client and a WSN. The base station is configured

in a high processing system which will act as server for the

whole system. The main implementation is done on the base

station. A base station is responsible for the following tasks:

 Receive the XRequest from clients

 Convert the XRequest into corresponding temporary

SQL query

 Send the temporary SQL query to the WSN

 Receive the response from WSN

 Convert the response in XResponse.

 Send the XResponse to corresponding clients.

The base station has four sub modules:

i) Request Listener: The function is to listen the entire

client‟s request through sockets which is already

connected to the base station.

ii) XQuery Parser: It takes the XRequest as an input

from the Request Listener. The function of XQuery

parser is to convert the XRequest into

corresponding SQL if required. The parsing is done

using Java programming and the generated

temporary SQL query is injected into the sensor

network.

iii) SQL Server Database: The SQL server is a part of

base station. In sensor network, it is not possible to

store all the data coming for multiple nodes within

the network itself and therefore an intermediate

SQL server is fixed which is placed between the

base station and sensor network in order to provide

buffering for multiple queries coming from multiple

clients. When client sends XRequest, the SQL

server matches request with its stored field, if a

match occurs, then the result is sent to the SQL

parser.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

7

iv) SQL Parser: This component receives the temporary

responses from the sensor network via SQL server

carrying the responsibility of converting the

responses into XQuery, known as XResponse and

forwarding it to the corresponding client.

XQuery Client 1

XQuery Client 2

XQuery Client 3

XQuery Client n

XRequest

1

2

5

3

4

7

6

Temp SQL

Query

XResponse

Client Side Base Station Wireless Sensor

Network

SQL

SERVER

TempSQL

Query

Response

Request Listener

XRequest

XQuery Parser

SQL Parser

Fig.2 XQuery Query Processing Architecture

Sensor Networks: The whole WSN is organized as

hierarchical network with multiple layers and each layer is

having one or more parent nodes. One node elected as root

node responsible for taking the temporary SQL query as input

and passing the same to each and every child nodes. Each

node creates a data packet containing node ID and sensed

data. The node ID of root node is „0‟ and other nodes have

node IDs 1, 2, 3, … etc.

3.2 Design and Development

The design of XQuery engine is divided into three phases:

Phase I: The first phase includes XQuery client-server

program generation. The client-server communication (Fig. 3)

is established using socket programming and multithreading.

How many XQuery clients will be connected will be decided

by the server or base station. Each XQuery client is

considered as a separate thread in the program. More than one

client can connect to the server simultaneously. The server

listen the client request through sockets and once the

connection is established, the XQuery client sends the

XRequest to the server to get the data from the sensor

network.

Phase II: It implements RequestListener in ServerThread

class which listens all the XRequests from XQuery clients.

The XRequest is passed to the XQuery parser. Then, the SQL

parser converts back to the result from the sensor network into

XResponse and sends back to the respective client. In the

server-side implementation, all main threads are stated to

initiate the server. Whenever a client connects to the server,

the corresponding client thread is started. One special thread

for Cygwin is started as well for TOSSIM simulator [90, 91].

The overall implementation is shown in Fig. 4.

Fig. 3 Implementation of XQuery Client

Example of Parsing XQuery into SQL:

The HandleClient class of the server package handles the

parsing. Suppose the Client sends the XQuery as

for $x in db(“sensor”)/mica2 return $x/nodeid,

$x/light SIM

The above query is converted to the SQL as:

select node_id, light from sensor

where sensor is the relation name for sensed data. If client

wishes to submit multiple queries simultaneously, then

XQueries must be separated by $#$.

Phase III: This phase deals with the communication between

the base station and the WSN. Basically the communication is

done through TinyDB API. To simulate the above scenario,

TOSSIM [17] simulator is used and need to integrate the java

code to run in the Cygwin environment with the simulator and

therefore added as separate threads and as a result

automatically the TOSSIM simulator is started on the Cygwin

console in the background.

Manage Communication with Handle Client GUI

server interface

and Socket Connection

Client Thread Client Class

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

8

Fig. 4 Implementation of XQuery Server

4. SIMULATION AND RESULTS

A client can submit multiple queries at base station.

Moreover, multiple clients can send request for data of

interest to the WSN. A socket program is executed to

establish the client-server communication. A client sends

multiple queries in form of XRequest to sever. A server sends

back the results in form of ordered set of values as XResponse

to clients. The simulation starts with motes configuration

connecting to base station for data transfer. We have

considered eight motes that are capable of sensing

temperature and light and arranged in hierarchical WSN.

Since the setup has been created on simulator, the temperature

and light reading are recorded in uninteger 16 format. A user

query is parsed and transformed at server and then directed to

WSN. This process reduces energy consumption of sensor

network significantly.

In Table 1, the output of client‟s queries is tabulated with

node_id, light readings, temperature readings and timestamp

of the nodes. It can be observed that not all nodes responding

to all queries. However nodes are sending data based on client

region of interest. We have injected multiple XQueries for

different clients and gathered individual node responses.

Table 1 is a snapshot example of the gathered data. The

timestamp difference has been generated for the multiple

clients for their multiple XQuery request. It is clearly sited in

Table 2 that XQuery is capable of executing the multiple

queries for multiple clients in a fast manner. The time interval

between different XQuery clients shown in table is found

suitable for querying in WSN. In Table 3, the time interval

between different clients has been gathered to investigate the

suitability of query processor. The results are generated and

forwarded to clients in few milliseconds that show the

suitability of XQuery for WSN. The time interval between

client 1 and client 3 is noted (00.00.01.06). This may be due

to the traffic density or delay in data sensing. Analyzing the

performance, we observed that XQuery query processor

reduces energy consumption and optimizes the multiple query

scenarios in WSN.

5. CONCLUSION
A different approach for query processing in wireless sensor

networks known as XQuery Engine was developed. The XML

based XQuery Engine provides a unique query interface

which suits the resource constrained wireless sensor network

environment. In contrast to the other the traditional SQL

query interface, XQuery Engine provides the client with the

facility to fire multiple queries to the base-station. It also

allows multiple clients to be connected to the server

simultaneously. The results are obtained as an ordered set of

values, known as XResponse. The performance analysis

shows that the proposed XQuery Engine is lightweight and

allows multiple query handling in an energy efficient manner.

6. REFERENCES
[1] Akyildiz I.F., Su W., Sankarasubramaniam Y., and

Cayirci E., “A survey on sensor networks”, IEEE

Communications Magazine, vol. 40, no. 8, pp. 102-114,

2002

[2] Heidemann J., Fabio Silva F., Intanagonwiwat_C.,

Govindan R., Estrin D. and Ganesan D., “Building

Efficient Wireless Sensor Networks with Low-Level

Naming”, In Proceedings of 18th ACM Symposium on

Operating Systems Principles, 2001.

[3] Govindan R., Hellerstein M., Hong W., Madden S.,

Franklin M. and Shenker S., “The sensor network as a

database”, Technical Report-No. 02-771, 2002.

[4] Yao Y. and Gehrke J., “Query processing in sensor

networks”, In Proceedings of International Conference

on Innovative Data Systems Research, 2003.

[5] Krishnakumar T., “Integrated Routing and Query

Processing in Wireless Sensor Networks.” International

Journal of Applied engg. Research,Vol. 1, No. 1, 2010.

[6] Da Silva R.I., Del Duca Almeida, V., Poersch A.M.,

Nogueira J.M.S., “Spatial query processing in wireless

sensor network for disaster management” Wireless Days

(WD), 2nd IFIP, pp. 1-5, 2010.

[7] Yoon S. H. and Shahabi C., “Distributed Spatial Skyline

Query Processing in Wireless Sensor Networks” In

IPSN, 2009

[8] Fok C., Roman G. and Lu C., “Mobile agent middleware

for sensor networks: An application case study”, In

Proceedings of 4th International Conference on

Information Processing in Sensor Networks , pp. 382-

387, 2005.

[9] Heinzelman B.W., Murphy A., Carvalho H., and Perillo

M., “Middleware to support sensor network

applications”, IEEE Network, vol. 18, no. 1, pp. 6-14,

2004.

[10] Souto E., Guimaraes G., Vasconcelos G., Vieira M.,

Rosa N. and Ferraz C.,“ A message-oriented middleware

for sensor networks”, In Proceedings of 2nd ACM

International Workshop on Middleware for Pervasive

and Ad-Hoc Computing (MPAC), pp. 127-134, 2004.

[11] Ville St. L. and Dickman P., “ Garnet: A Middleware

architecture for distributing data streams originating in

wireless sensor networks”, In Proceedings of 23rd IEEE

International Conference on Distributed Computing

Systems Workshops (ICDCSW), pp. 235-241, 2003.

http://portal.acm.org/author_page.cfm?id=81336489393&coll=GUIDE&dl=GUIDE&trk=0&CFID=85843229&CFTOKEN=51142822
http://portal.acm.org/author_page.cfm?id=81309489513&coll=GUIDE&dl=GUIDE&trk=0&CFID=85843229&CFTOKEN=51142822
http://portal.acm.org/author_page.cfm?id=81343507868&coll=GUIDE&dl=GUIDE&trk=0&CFID=85843229&CFTOKEN=51142822
http://portal.acm.org/author_page.cfm?id=81332524175&coll=GUIDE&dl=GUIDE&trk=0&CFID=85843229&CFTOKEN=51142822
http://portal.acm.org/author_page.cfm?id=81320489522&coll=GUIDE&dl=GUIDE&trk=0&CFID=85843229&CFTOKEN=51142822

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

9

[12] Hadim S. and Mohamed N., “Middleware challenges and

approaches for wireless sensor networks”, IEEE

Distributed Systems Online, vol. 7, no. 3, pp. 1-23, 2006.

[13] Hadim S. and Mohamed N., “Middleware for wireless

sensor networks: A survey”, In Proceedings of 1st

IEEE International Conference on Communication

System Software and Middleware (Comsware), 2006.

[14] www.csl.stanford.edu/~pal/pubs/tinyos-programming

[15] Madden S., Hellerstein J. and Hong W., “TinyDB: In-

network query processing in TinyOS”, Version 0.4,

2003.

[16] Kulik J., Rabiner W. and Balakrishnana H., “Adaptive

protocols for information dissemination in wireless

sensor networks”, In Proceedings of ACM/IEEE

International Conference on Mobile Computing and

Networking (MobiCom), 1999.

[17] Levis P., Lee N., Welsh M. and Culler D., “TOSSIM:

Accurate and scalable simulation of entire tiny os

application.” In Proceedings of the 1st ACM

International Conference on Embedded Networked

Sensor Systems, pp. 126-137, 2003.

Table 1 Query Results from Sensor Network

XQuery

Client 1

Node Id

(uint16)

Light

(uint16)

Temp

(uint16)

Timestamp

(hr:min:sec:

ms)

XQuery

Client 2

Node Id

(uint16)

Light

(uint16)

Temp

(uint16)

Timestamp

(hr:min:sec:

ms)

XQuery1

1 347 831 19:50:33.25

XQuery1

6 19 135 19:50:32.5

8 578 919 19:50:33.11 7 21 950 19:50:32.423

5 684 609 19:50:32.907 3 808 581 19:50:32.343

6 19 135 19:50:32.5 5 1012 947 19:50:32.267

XQuery2

2 893 19:50:33.657

XQuery2

8 919 19:50:33.11

3 442 19:50:33.58 5 609 19:50:32.907

1 831 19:50:33.25 6 135 19:50:32.5

8 919 19:50:33.11 7 950 19:50:32.423

XQuery3

4 705 19:50:33.953

XQuery3

1 347 19:50:33.25

2 980 19:50:33.657 8 578 19:50:33.11

3 221 19:50:33.58 5 684 19:50:32.907

1 347 19:50:33.25 3 808 19:50:32.343

XQuery4

1 943 19:50:34.08

XQuery4

3 26 19:50:33.58

4 698 19:50:33.953 1 993 19:50:33.25

2 740 19:50:33.657 8 522 19:50:33.11

3 31 19:50:33.58 5 548 19:50:32.907

1 730 19:50:33.25 6 773 19:50:32.5

XQuery5

1 417 19:50:34.08

XQuery5

2 980 19:50:33.657

4 705 19:50:33.953 3 221 19:50:33.58

2 980 19:50:33.657 1 347 19:50:33.25

3 221 19:50:33.58 8 578 19:50:33.11

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

10

Table 2 Time Interval for Client’s Queries

Table 3 Time Interval between Client’s Query Results

XQuery Clients

Time Interval between

Query Results

(hr:min:sec:ms)

XQueryClient1 &

XQueryClient2
00:00:00.75

XQueryClient2 &

XQueryClient3
00:00:00.31

XQueryClient1&

XQueryClien3
00:00:01.06

XQuery Clients
Time Interval b/w

XQuery2 & XQuery1

Time Interval b/w

XQuery3 & XQuery2

Time Interval b/w

XQuery4 & XQuery3

Time Interval b/w

XQuery5 & XQuery4

XQueryClient1 00:00:00.407 00:00:00.296 00:00:00.127 00:00:00.00

XQueryClient2 00:00:00.61 00:00:00.14 00:00:00.33 00:00:00.077

XQueryClient3 00:00:00.233 00:00:00.080 00:00:00.564 00:00:00.203

