
International Journal of Computer Applications (0975 - 8887)
Volume 43- No.21, April 2011

An Improved Byzantine Agreement Algorithm for

Synchronous Systems with Mobile Faults

Nazreen Banu, Samia Souissi, Taisuke Izumi and Koichi Wada
Graduate School of Engineering,

Nagoya Institute of Technology, Gokiso-cho,

Showa-ku, Nagoya, Aichi, 466-8555, Japan.

Phone: +81-52-735-5438, Fax: +81-52-735-5408

Email: nazreentech@yahoo.co.in (or) nazreentech@phaser.elcom.nitech.ac.jp
{souissi.samia,t-izumi,wada}@nitech.ac.jp

ABSTRACT
We study the problem of Byzantine agreement
in synchronous systems where malicious agents
can move from one process to another and try
to corrupt them. This model is known as mobile
Byzantine faults. In a previous result [10], Garay
has shown that n > 6t (n is the total number of
processes, and t is the number of mobile faults)
is sufficient to solve this problem even in the
presence of strong agents. These agents can move
at full speed (in the sense that each agent can
take a movement in every round) and can make
corrupted processes forget that they run the
algorithm (as a result, after recovery a process
must learn the current state of computation
including the code from other processes). Many
following results [3] have improved the above
result but with some additional assumptions such
as a corrupted process must recover and learn
the current state of computation before another
process can fail instead of it. The question,
whether the result of Garay can be improved
without any additional assumption, remains
open. In this paper, we answer this question by
providing an algorithm MBA that works with
n > 4t.

General Terms
Distributed Systems, Fault Tolerance Algorithms

Keywords
Synchronous Systems, Agreement(Consensus)
Problem, Mobile Byzantine Adversary

1. INTRODUCTION
The distributed consensus (agreement) problem

is a fundamental and important problem that has
to be solved in designing fault-tolerant distributed
systems. This problem can be stated informally

as: how to ensure that a set of distributed pro-
cesses achieve agreement on a value or an action
despite a number of faulty processes. This prob-
lem is interesting both in theoretical and practical
aspects. From theoretical point of view, the sig-
nificance of the consensus problem derives from
several other distributed systems problems being
reducible or equivalent to it. Examples are atomic
broadcast [6, 8, 9], non-blocking atomic commit
[11], group membership [11] and state machine
replication[18]. From a system perspective, repli-
cation of components and services is an impor-
tant paradigm that can be employed for informa-
tion protection in critical applications, and con-
sensus plays a fundamental role in many replica-
tion algorithms. Some example solutions based
on these ideas are: Bessani et al. [2] and Yin et
al. [21] use replication to implement fault- and
intrusion-tolerant firewall devices; Cachin et al.
[4] and Castro and Liskvo [5], Chun et al. [7]
and Veronese et al. [20] propose replication algo-
rithms to implement highly resilient services, like
data historians or DNS (essential for the Inter-
net).

Algorithms that solve consensus vary much de-
pending on the assumptions that are made about
the system. This paper considers the systems that
experience Byzantine faults [13], more destructive
faults which do not put any constraints on how
processes fail. Algorithms based on this system
model are expected to work correctly no matter
how faulty processes behave. Byzantine consen-
sus algorithms are highly essential for practical
systems to deal with malicious attacks or situa-
tions where faults are difficult to characterize.

The Byzantine consensus problem can be in-
formally stated in terms of three properties: each
process proposes a value, and the non-faulty pro-
cesses have to decide (Termination property) on a

1

International Journal of Computer Applications (0975 - 8887)
Volume 43- No.21, April 2011

common output value (Agreement property) that
has to be related to the set of input values (Va-
lidity property). However, in many situations,
reaching a common agreement among the cor-
rect processes in the presence of moving mali-
cious agents, such as mobile viruses, is highly re-
quired. This problem is referred to as the mobile
Byzantine agreement(consensus) problem. Reis-
chuk [15] worked on a model with malicious faults
covering a fraction of the network, and designed
a Byzantine agreement protocol which tolerates
them as long as they remain immobile for a given
interval of time. However, the model which we fo-
cus in this paper was initiated by Ostrovsky and
Yung [14]. They used randomization and infor-
mation theoretic security methods to provide mo-
bile virus protection at run time. They worked
on means to tolerate mobile viruses which can
be viewed as transient faults. They used the no-
tion of a mobile adversary. In the static adver-
sary model, a constant fraction of processes may
be faulty and the static adversary is not allowed
to move faults once it has chosen a set of faulty
processes. However, in the case of mobile adver-
sary, the adversary is said to be infinitely powerful
and can inject and distribute faults into the sys-
tem at a constant rate in every round. Unlike its
static counterpart the mobile adversary is allowed
to change the position of the faults. We can as-
sume that only a constant fraction of processes
may be infected in a round. But, we also allow
every process to be infected in some round. We
also need the capacity to reboot the infected ma-
chine on detection of fault. Another requirement
is the property that fault detection can proceed at
the same rate as infection. This can be justified
for a general setting by the results of Kepphart
and White [12] . Ostrovsky et al. [14] were able
to show that a weak fault detection capacity is
sufficient to make computation robust in this sce-
nario.

Garay [10] investigated the mobile fault envi-
ronment for solutions to the problem of Byzan-
tine agreement. He studied the power of disrup-
tion of malicious agents as a function of the speed
with which they can traverse the network (called
roaming pace). Specifically, the roaming pace ρ
denotes the minimal amount of time (i.e., the
number of rounds) that has to elapse between the
time at which an agent leaves a process, and the
time at which it starts to corrupt another process.
For example, ρ = 3 means that an agent takes at
least 3 rounds to hop from one process to another.
In particular, Garay [10] proposed two protocols
for solving Byzantine agreement problem in syn-
chronous systems with mobile adversary. He as-
sumed that at least one process remains uncor-

rupted for O(n) rounds, since a discouraging im-
possibility result [16] proved that consensus is not
solvable without restrictions even with a single
mobile failure. The first protocol is for agents
that move at full speed (i.e., ρ = 1). It requires
n > 6t. The second protocol assumes n > 4t, but
it deals with agents that move at half-speed (i.e.,
ρ = 2). These protocols run in O(n) communica-
tion rounds.

Later on, Burhman et al. [3] proposed an opti-
mal Byzantine consensus algorithm with n > 3t
for full speed agents. However, they added the
assumptions that agents can move from one pro-
cess to another only through messages (i.e., the
migration of the agents is possible only during
the send operations), and a faulty process must
recover and learn the current state of computa-
tion before another process can fail instead of it.
In a recent work, Biely et al. [1] proposed a mo-
bile Byzantine agreement algorithm for partially
synchronous systems for n > 3t, with the same as-
sumption that a faulty process must recover and
learn the current state of computation before an-
other process can fail instead of it. However, this
algorithm guarantees termination only when all
faulty processes have recovered. In a different
work, Schmid et al. [17] presented impossibility
results and lower bounds on the required number
of processes and rounds for synchronous systems
under mobile link failure model.

The question that remains open is, can the
result of Garay [10](n > 6t) be improved with-
out adding any additional assumptions? In other
words, what is the required number of processes
to solve mobile Byzantine agreement problem
in synchronous systems where malicious agents
move at full speed and corrupt new processes be-
fore the previously corrupted processes recover?

This paper answers this question by providing
an algorithm MBA that solves mobile Byzantine
agreement problem in Garay’s model with n > 4t.

The remainder of this paper is structured as
follows. Section 2., introduces the system model
and the mobile Byzantine agreement problem we
are interested in. Section 3., provides our algo-
rithm MBA that solves this problem under the
requirement of n > 4t and proves its correctness.
Section 4. presents the discussion, and the con-
clusion is given in Section 5..

2. PRELIMINARIES

2.1 System Model
We consider a distributed system that consists

of n processes numbered from 1 to n. Each pro-
cess communicates with each other process by
sending messages over a reliable link where nei-
ther message loss, duplication nor corruption oc-

2

2.3 Notations
International Journal of Computer Applications (0975 - 8887)

Volume 43- No.21, April 2011

curs. Our system is synchronous. This means
that its execution is organized by a sequence of
rounds during which each process can send mes-
sages to other processes, receive messages, and
perform some local computation. Also, a message
that is sent in some round is necessarily received
within in the same round.
We assume that the system is interfered by a

powerful computationally unbounded adversary
which can inject up to t malicious agents into the
system. These agents can move from processes to
processes at full speed (means, it takes an agent
at least one round to migrate from one process to
another) and corrupt them in a dynamic fashion.
In the worst case, they do erase the local mem-
ories of the processes. Because of the mobility
of agents, any process can be corrupted during
the course of the algorithm. However, we assume
that at least one process remains uncorrupted for
O(n) rounds. Since each agent can corrupt one
process at a round, the total number of corrupted
processes in any round is at most t. A corrupted
process may behave arbitrarily, which means that
even it is allowed not to follow the deployed algo-
rithm. In addition, we assume that a corrupted
process can recover and rejoin the on-going exe-
cution after the corrupting agent left it. The se-
mantics of rejoining is as follows: Let us assume
that an agent leaves a process p in round r; Pro-
cess p recovers in round r + 1; After recovery, it
learns the code and the current state of compu-
tation from other processes by receiving messages
that were sent in round r+1; Then, p starts par-
ticipating in the on-going execution from round
r + 2.
We refer the processes that are corrupted in the

current round as faulty or infected, and the pro-
cesses that were faulty in the previous round, but
no longer as cured. Also, we use the term correct
to refer the processes that are neither faulty nor
cured in the current round.

2.2 Problem Definition
In mobile Byzantine agreement problem, each

correct process p has an initial value vp from the
set V of all possible initial values, and decides a
value v according to the following rules.

• Termination: Each non-faulty process
eventually irreversibly decides a value v.

• Agreement: The non-faulty processes de-
cide on the same value.

• Unanimity: If all non-faulty processes have
the same initial value v, then no non-faulty
process decides a value different from v.

• Consistency maintenance: Once agree-
ment is reached among currently noninfected

processes, it must be maintained among the
(possibly different) noninfected processes.

Note that, any algorithm that solves the above
problem is responsible not only for reaching
the agreement, but for preserving the agreement
among all correct processes forever. This is re-
quired, since even if agreement is reached at some
point, the mobile agents can move to corrupt the
correct processes and make the agreement disap-
pear.

2.3 Notations
Let V be an ordered set of all possible proposal

values. We introduce the default value ⊥ such
that ⊥/∈ V and ⊥< min(V). Let I be an vector
in (V ∪ {⊥})n. The number of occurrences of a
value v in I is denoted by #v(I).

3. AN IMPROVED MOBILE
BYZANTINE AGREEMENT
ALGORITHM

3.1 Algorithm MBA
In this subsection, we present a mobile Byzan-

tine agreement algorithm MBA for synchronous
systems. The algorithm is described in Fig. 1.
It requires n > 4t and at least one process re-
mains uncorrupted for at least 3n rounds. This
algorithm consists of phases, each phase is made
of three rounds, namely, Proposal round, Voting
round, and Coordinator round during which the
processes exchange messages. Each message con-
sists of values and a message tag (such as PROP,
VOTE and ECHO) that indicates the name of
the round in which it is sent. These messages
also include the algorithmic code and the current
state of computation, etc., that help the recov-
ering processes to correctly reintegrate into the
on-going execution, but they are omitted for the
sake of clarity. Remember that, in our model the
cured processes do not send messages but they
can receive messages. The three rounds are de-
tailed as follows, where in the description, just
’process’ means correct or cured one.

• Proposal round: The aim of this round is
to end up in a situation where there is
a single value v (v ̸=⊥), such that each
process adopts either v or ⊥. To attain
this goal, each process sends a message <
PROP, val > to provide the other processes
with its value val and stores the received val-
ues in vector PV . Note that, since cured
processes (if any) are silent, the entries that
correspond to them in PV contain ⊥. A pro-
cess p adopts a value v if only if it appears at
least n− 2t times in PVp and the sum of the
number of occurrences of v and ⊥ in PVp is

3

3.2 Correctness
International Journal of Computer Applications (0975 - 8887)

Volume 43- No.21, April 2011
Algorithm MBA

1 : val← v
2 : Begin
3 : for all s from 1 to ∞ do
4 : coord-accept ← True

Proposal round of phase s
5 : PV ← [⊥,⊥, ...,⊥]
6 : Send (PROP, val) to all
7 : for all i do: if a message (PROP, v) is received from process i then PV [i]← v
8 : if (∃v ̸=⊥: #v(PV) ≥ n− 2t and #v(PV) + #⊥(PV) ≥ n− t) then
9 : val← v
10 : else
11 : val← ⊥
12 : end if

Voting round of phase s
13 : SV ← [⊥,⊥, ...,⊥]
14 : Send (VOTE, val) to all
15 : for all i do: if a message (VOTE, v) is received from process i then SV [i]← v
16 : if (∃v ̸=⊥: #v(SV) > 2t) then
17 : val← v
18 : coord-accept ← False
19 : else if (∃v ̸=⊥: #v(SV) > t) then
20 : val← v
21 : else
22 : val← ⊥
23 : end if

Coordinator round of phase s
24 : EV ← [⊥,⊥, ...,⊥][⊥,⊥, ...,⊥]
25 : Send (ECHO, SV) to all
26 : for all i do: if a message (ECHO, sv) is received from process i then EV [i]← sv
27 : if I am cured then
28 : Reconstruct()
29 : coord← s mod n;
30 : if (∃v ̸=⊥: #v(EV [coord]) > t) then coord-val← v else coord-val←⊥ end if
31 : if coord-accept = True then
32 : val← max{coord-val, min{V}}
33 : end for
34 : End

Figure 1: Algorithm MBA

at least n− t. Since any two sets of n− t val-
ues will intersect at a correct process’s value,
it is ensured that there exists a single value
v and all processes that do not adopt ⊥ will
adopt the same value v.

• Voting round: In this round, each process
checks for the existence of a unique value
v. If such a value v exists, it adopts v and
chooses not to adopt the coordinator value
in the next round. To do this, each pro-
cess sends its value val in a VOTE message
< V OTE, val > to all processes and stores
the received values in a vector SV . If more
than 2t of the votes are for some value v,
then it adopts v and chooses not to accept
the coordinator value by setting its variable
coord-accept as ”False”. Otherwise, if more
than t of the votes are for v, it adopts v, else
it adopts ⊥. In these cases, it chooses to ac-
cept the coordinator value in the following
round.

• Coordinator round: The aim of this round is
to try to make all processes have the same
value. In this round, each process echoes
the votes that it has received in the vot-
ing round through an ECHO message <

ECHO,SV > in order to help the cured pro-
cesses to reconstruct their variables. Since
all correct processes send their vectors, each
cured process can compute the correct val-
ues of its variables by reconstructing the pre-
vious voting round using the procedure Re-
construct, given in Fig. 2, and each process
correctly computes the current coordinator
value. Then, only the processes that chose to
accept the coordinator value adopt the coor-
dinator value, the remaining processes omit
that value . The secret hidden here is, when
the coordinator is correct, all processes adopt
the same value v regardless of whether they
accept or ignore the coordinator value.

3.2 Correctness
In the following, for a given phase l, let Nv

c (l)
and Nv

cu(l) respectively be the number of correct
processes and the number of cured processes that
adopt v (v ̸=⊥) at the end of the phase l.

Lemma 1 (Agreement) The non-faulty pro-
cesses decide on the same value.

Proof We have to show that there exists a phase
l in which all correct and cured processes adopt

4

3.2 Correctness
International Journal of Computer Applications (0975 - 8887)

Volume 43- No.21, April 2011
Procedure Reconstruct()

35 : Begin
36 : for all i do
37 : if ∃v ̸=⊥ such that |{j|EV [j][i] = v}| ≥ n− 2t then
38 : SV [i]← v
39 : else
40 : SV [i]← ⊥
41 : end if
42 : end for
43 : if (∃v ̸=⊥: #v(SV) > 2t) then
44 : val← v
45 : coord-accept ← False
46 : else if (∃v ̸=⊥: #v(SV) > t) then
47 : val← v
48 : else
49 : val← ⊥
50 : end if
51 : End

Figure 2: Procedure Reconstruct

the same value v, i.e., the condition Nv
c (l) +

Nv
cu(l) ≥ n− t holds.
Remember that, we have assumed that at least

one process, say k, remains uncorrupted for at
least 3n rounds. Let l be the phase in which pro-
cess k is the coordinator. Since, k is correct, it will
send the same vector SVk to all processes. There
are two cases to consider at line 31 of algorithm
MBA:

• (Case 1) coord-accept is True for each pro-
cess p (it means p chooses to adopt the co-
ordinator value). Since all processes get the
same vector SVk from k, they compute the
same value v at line 32 and adopt it. Hence,
Nv

c (l) + Nv
cu(l) ≥ n − t holds. The lemma

follows.

• (Case 2) coord-accept is False for some pro-
cess p (it means that p does not adopt the co-
ordinator value while other processes adopt
that value). Since coord-accept is False at
p, it follows that there exists some value v
such that #v(SVp) > 2t, and hence p adopts
v. Note that, in voting round, if two correct
processes vote for v /∈⊥ and v′ /∈⊥ respec-
tively, then v = v′. Also, since there are at
most t Byzantine processes, and cured pro-
cesses do not cast vote, it is guaranteed that
at the coordinator process k, #v(SVk) > t
and #v′(SVk) ≤ t holds for any value v′

(v′ /∈ {v,⊥}). Hence, at each process, the
coordinator value is v. Consequently, all
processes (correct and cured) have the same
value v regardless of whether they accept or
ignore the coordinator value. The lemma fol-
lows.

2

Lemma 2 (Consistency maintenance)
Let n ≥ 4t + 1. If at the end phase l,
Nv

c (l) + Nv
cu(l) ≥ n − t holds for some value v,

then Nv
c (m)+Nv

cu(m) ≥ n− t holds at all phases
m (m > l).

Proof Assume that at the end of phase l,
Nv

c (l) + Nv
cu(l) ≥ n − t holds for some value v.

In the proposal round of phase l + 1, at most
t new faults can occur. Hence, at least n − 2t
processes certainly send v. Note that, for each
new fault there is a cured process, and cured pro-
cesses do not send any messages (by definition).
Hence, at any process p, the entries that corre-
spond to cured processes in PVp contain ⊥. As
a result, the condition #v(PVp) ≥ n − 2t and
#v(PVp) + #⊥(PVp) ≥ n − t holds. Also, since
there are at most t faulty processes, #v′(PVp) ≤ t
for any value v′ (v′ /∈ {v,⊥}). Hence, all cor-
rect and cured processes (at least n− t processes)
adopt v.

In the voting round, since at most t new faults
can occur, at least n − 2t ≥ 2t + 1 processes can
vote for v. Hence, p can collect at least n − 2t
votes for v (i.e., #v(SVp) > 2t). Since there are at
most t Byzantine faults, p can get at most t votes
for any value v′(v′ /∈ {v,⊥}). As a result, each
correct and cured process (at least n−t) adopts v
and choose not to adopt coordinator value in the
next round.

Among these processes, at most t processes can
become faulty in the coordinator round and the
remaining (at least n − 2t) processes have v and
do not adopt the coordinator value. Again, for
each new fault there is a cured process. Since,
all correct processes broadcast their vote vec-
tor SV , each cured process p correctly recon-
structs the previous voting round using procedure
Reconstruct, and finds #v(SVp) > 2t. There-
fore, it adopts v and and ignores the coordina-
tor value. As a result, at the end of phase l + 1,
Nv

c (l+1)+Nv
cu(l+1) ≥ n−t holds. The situation

repeats itself, and the lemma holds. 2

5

REFERENCES
International Journal of Computer Applications (0975 - 8887)

Volume 43- No.21, April 2011

Lemma 3 (Unanimity) If all non-faulty pro-
cesses have the same initial value v, then no non-
faulty process decides a value different from v.

Proof All non-faulty processes (at least n-t)
have the same initial value v at the beginning of
phase1. This statement can be interpreted as at
least n-t processes have the same value v at the
end of phase0. By using the same arguments as in
lemma 2, we can show that at the end of phase1,
Nv

c (1) + Nv
cu(1) ≥ n − t holds and this situation

continues in all the following phases. Hence, the
lemma holds. 2

Lemma 4 (Termination) Each non-faulty
process eventually irreversibly decides a value.

Proof From lemma 1, we can prove that all pro-
cesses (correct and cured) certainly decide on the
same value v (v ∈ V) at the end of the correct
coordinator phase l (l ≤ n). Then, from lemma
2, we can show that the decision value will not
change after phase l. Hence, the lemma holds. 2

Theorem 1 Let n > 4t. The algorithm MBA
described in Fig. 1 solves the mobile Byzantine
agreement problem.

Proof The proof follows from lemmas 1, 2, 3,
and 4. 2

4. DISCUSSION
We conjecture that we can not improve the

resilience more than n > 4t, since in a previ-
ous result [19], Thambidurai et al. have proved
that, even in static failure models (strong mod-
els), n > 4t is the necessary assumption to solve
consensus with t benign failures and t Byzantine
failures. Note that, benign failures are less se-
vere than Byzantine failures. An example for be-
nign failures is omission failure. When a process
fails by omission, it forgets to send or receive mes-
sages. In our model, we may consider the cured
processes as omission failures since they do not
send any messages. Hence, we can say that our
model also suffers from t benign and t Byzantine
failures. Moreover, our model is a weak model the
sense that the set of faulty processes dynamically
changes in every round.

5. CONCLUSION
In this paper, we studied the Byzantine agree-

ment problem with mobile faults. We have pre-
sented an algorithm MBA for synchronous sys-
tems where there are tmalicious agents that move
at full speed to corrupt and destroy the memory
of processes. Our algorithm improves the result

Table 1: Performance comparison of Algorithm
MBA with previous works.

Garay’s Weaker model
model (message moving agent)

Garay et al.[10] n > 6t –
Burhman et al.[3] – n > 3t
Algorithm MBA n > 4t –

of Garay[10], namely it requires n > 4t in stead
of n > 6t[10].

Table 1 compares our algorithm MBA with pre-
vious ones. One drawback of our algorithm is, it
requires 3n communication rounds while the al-
gorithm of Garay[10] requires 2n rounds.

REFERENCES
[1] M. Biely and M. Hulte: ”Consensus When

All Processes may be Byzantine for Some
Time”, In Proc. 11th International Sympo-
sium on Stabilization, Safety, and Security
of Distributed Systems (SSS ’09), vol.5873,
pp.120–132, 2009.

[2] A.N Bessani and P. Sousa and M. Correia
and N.F. Neves and P. Verissimo: ”The
CRUTIAL way of critical infrastructure pro-
tection”, IEEE Security and Privacy, vol.
6(6), pp. 44-51, 2008.

[3] H. Buhrman, J. A. Garay and J.Hoepman:
”Optimal Resiliency Against Mobile Faults”,
In Proc. 25th International Symposium on
Fault-Tolerant Computing (FTCS’95), 1995.

[4] C. Cachin and K. Kursawe and F. Pet-
zold and V. Shoup: ”Secure and efficient
asynchronous broadcast protocols (extended
abstract)”, Kilian, J., editor, Advances in
Cryptology: CRYPTO 2001, vol.2139 of
LNCS, pp. 524-541, 2001.

[5] M. Castro and B. Liskov: ”Practical Byzan-
tine fault tolerance and proactive recovery”,
ACM Transactions on Computer Systems,
vol.20(4), pp. 398-461, 2002.CMS07,

[6] T. Chandra and S. Toueg: ”Unreliable fail-
ure detectors for reliable distributed sys-
tems”, Journal of the ACM, vol.43(2),
pp.225-267, 1996.

[7] B.G. Chun and P. Maniatis and S. Shenker
and J. Kubiatowicz: ”Attested append-only
memory: making adversaries stick to their
word”, In Proc. of the 21st ACM Symposium
on Operating Systems Principles, pp. 189-
204, 2007.

6

REFERENCES
International Journal of Computer Applications (0975 - 8887)

Volume 43- No.21, April 2011

[8] M. Correia and N.F. Neves and P. Veris-
simo: ”From consensus to atomic broad-
cast: Time-free Byzantine-resistant proto-
cols without signatures”, ”Computer Jour-
nal, vol. 41(1), pp. 82-96, 2006.

[9] V. Hadzilacos and S. Toueg: ”A modular ap-
proach to fault-tolerant broadcasts and re-
lated problems”, Technical Report TR94-
1425, Cornell University, Department of
Computer Science, 1994.

[10] J.A. Garay: ”Reaching (and Maintaining)
Agreement in the Presence of Mobile Faults”,
In Proc. 8th International Workshop on Dis-
tributed Algorithms, LNCS. No.857, pp.253–
264, 1994.

[11] R. Guerraoui and A. Schiper: ”The generic
consensus service”, IEEE Transactions on
Software Engineering, vol. 27(1),pp. 29-41,
2001.

[12] Kepphart and White: ”Directed graph epi-
demiological models of computer viruses”,
IEEE symposium on Security and Privacy,
1991.

[13] L. Lamport and R. E. Shostak and M. C.
Pease: ”The Byzantine Generals Problem”,
ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), vol.4(3), pp.
382–401, 1982.

[14] R. Ostrovsky and M. Yung: ”How to with-
stand mobile attacks” In Proc. of tenth an-
nual ACM symposium on Principles of dis-
tributed computing(PODC’91), 1991.

[15] R. Reischuk: ”A new solution for Byzantine
generals problem”, Information and Control,
vol. 64, 1985.

[16] N.Santoro and P.Widmayer: ”Time is not
a healer”, In Proc. 6th Annual Sympo-
sium on Theor. Aspects of Computer Sci-
ence(STACS89), LNCS.No.349, pp.304-313,
1989.

[17] U. Schmid, B. Weiss and I. Keidar: ”Impos-
sibility Results and Lower Bounds for Con-
sensus under Link Failures”, SIAM Journal
on Computing”, vol.38, pp. 1912–1951, 2009.

[18] F.B. Schneider: ”Implementing faul-tolerant
services using the state machine approach:
A tutorial”, ACM Computing Surveys,
vol.22(4), pp. 299-319, 1990.

[19] P. Thambidurai and You-Keun Park: ”In-
teractive Consistency with Multiple Failure
Modes”, In Proc. Reliable Distributed Sys-
tems, pp.93–100, 1988.

[20] G.S. Veronese and M. Correia and A.N.
Bessani and L.C. Lung: ”Highly-resilient ser-
vices for critical infrastructures”, In Proc.
of the Embedded Systems and Communica-
tions Security Workshop, 2009.

[21] J. Yin and J. Martin and A. Venkatara-
mani and L. Alvisi and M. Dahlin: ”Sepa-
rating agreement from execution for Byzan-
tine fault-tolerant services”, In Proc. of the
19th ACM Symposium on Operating Sys-
tems Principles, pp. 253-267, 2003.

7

