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ABSTRACT 

 This paper presents an effective detection method RDUD for 

SQL injection attack. RDUD is an enhanced version of DUD 

[1]. The method comprises a supervised machine learning 

approach using a Support Vector Machine(SVM) to learn and 

to classify a query at runtime. Two web profiles - (i) 

legitimate web profile and (ii) attack web profile are generated 

for each of the web-application software which consists of a 

set of production rules extracted from the dynamic SQL 

queries. Both the web profiles are generated during training 

phase. At runtime a dynamic SQL query is matched with each 

of the web profile and accordingly it classify based on the 

matching distance. RDUD is independent of the developer‟s 

initialization of syntax rules, valid trusted string database, 

static or pre-generated program code checking, etc. Also the 

method is significant in view of its simplicity, efficient and its 

high detection rate in comparison to the earlier method [1].  
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1. INTRODUCTION 
A web-application is application software which includes 

dynamic web-pages such that end users can access the 

software through client modules that run in web browsers. 

The coding of client modules is in browser-supported 

languages such as HTML, Java, ASP, PHP etc. In three-tire 

web-applications, the user provides query specification as 

input in a pre-defined format in the front tire. These inputs are 

used in constructing SQL queries by the application server in 

the middle tire. The back tire contains the database server. 

Web-applications are popular due to the ubiquity of web 

browsers, and the convenience of using a web browser as a 

client, sometimes called as thin client. The ability to update 

and maintain web-applications without distributing and 

installing software on potentially thousands of client 

computers is a key reason for their popularity. Common web-

applications include - web-mail, on-line retail sales, on-line 

auctions, on-line banking, and many other functional 

applications. Mitre‟s  Vulnerability  statistics  reported  in  the  

year 2010-2011[2], points out 25 most common program 

errors or vulnerabilities causing most successful SQL 

injection attack along with other web-application attacks. 

These vulnerabilities are dangerous because it gives chances 

* The department is funded by UGC‟s  DRS-I under the 
SAP 

to the attackers to steal data from the application database. It 

is claimed that the SQL Injection scored highest rank among 

the web-application attacks. It is reported that SQL Injections 

are one of the most common and easiest techniques adopted 

by attackers to attack web servers, data servers and sometimes 

the network. This category of web attack is conducted for 

unauthorized access of web-application, breaking the role 

based accessibility, and violating the integrity of the data 

storage. A significant rise in SQL injection attack is reported 

by CISCO[3] too. The Information Systems Audit Cell 

report[4] recommends review the application control in net-

banking applications by conducting penetration testing 

keeping in view of the prevailing guidelines by Reserve Bank 

of India, IT Act and other applicable regulations in India and 

asked to check the vulnerabilities in the applications like - 

SQL injection, Cross-site scripting etc. In this paper, in 

section 2, we report the background of SQL injection attack 

and its different classes. In this section we also present its 

existing practice of detection. We finally discuss in this 

section 2, the brief idea of the approach called DUD. In 

section 3, the propose detection approach RDUD is described. 

We report our problem formulation along with the detection 

algorithms in section 4. Experimental results and finally the 

concluding remarks are reported in section 5 and 6 

respectively. 

2. BACKGROUND OF SQL INJECTION 

ATTACK(SQLIA) AND ITS CLASSIFIC- 

ATION 
SQLIA is an attack on web-application server. It occurs when 

an attacker changes the intended logic, semantics or syntax of 

an SQL query. The query generated dynamically based on 

user input, maliciously crafted with SQL keywords, operators, 

strings or literals execute in the database server. The structure 

of the query with insertion of such malicious input is different 

from the structure defined in the application code. Let us 

consider that an application database contain two attributes - 

user name and password. The application uses the values of 

the attributes for authentication, consist of the following code, 

written in JSP scripts. 

 

query = “SELECT balance FROM account WHERE 

username=‟ ” +request.getParameter(“name”)+“‟ AND 

PASSWORD=‟ ”+request.getParameter(“pass”)+“ ‟ ”; 

 

If a malicious input entered by a user for username “jimmy” 

and “ „ or „a‟=„a‟ ” for password field, the query string 

becomes: 

 

a_query=select account from users where name=„jimmy‟ and 

password=„ ‟ or „a‟=„a‟ 
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Which will always be evaluated as true, and the user will 

bypass the authentication logic without entering the value of 

password field. Su and Wassermann[5] proposed a context 

free grammar to define syntactic formation of a valid query. 

Thus, a dynamically generated query is defined as legitimate 

if the parse tree Tq is possible based on the proposed 

grammar. Otherwise, the query is considered as illegitimate or 

SQL injected query. According to their definition, a SQL 

query q generated by a web-application P with the input (i1, i2, 

..., in) is a malicious query causing SQL injection attack 

(SQLIA) if the query string q does not have a valid parse tree 

Tq with respect to the pre-defined valid grammar. In CANDID 

[6], a dynamically generated query based on user input 

referred as Candidate Query (CQ), is considered as an attack 

or illegitimate query if its structure does not match with the 

corresponding structure of the valid query. The valid query is 

referred as Benign Query (BQ). BQ is generated with valid 

inputs corresponding to a valid query structure. According to 

their[6] definition: 

 

Definition 1: The structure of the query on any valid user 

input v is the control path defined in the program which is 

generated runtime query with the valid input data v. 

 

Definition 2: The validity of the input can be checked by 

matching the runtime query structure with its respective 

control path and the user input data is considered as invalid if 

it does not match. 

 

Turning back to our example given for the query string query, 

in the beginning of the section, the candidate input v : 

s←“Jimmey OR „a‟ = „a‟ ” is an SQL injection attack, since 

it generates a query whose structure is - select ? from ? where 

?=? or ?=? while its corresponding benign input VR(v) = v1 : 

s←“John” exercises the control path structure - select ? from 

? where ?=?. However, in case of multiple dynamic query 

structure some of the conditional query structures may be 

similar to the attack queries. In such cases, the program 

accepts input value and based on condition it generates 

queries with different structures. In our paper we address the 

formulation in detecting SQL injection attack under such 

scenarios also. Let us consider the web program written in 

PHP script language shown in figure 1. In it there are three 

programmer intended query structures - query1, query2 and 

query3. Each of the query executes based on the value of 

input data for user type. If the value of user type is ‟G‟ then it 

executes query structure query1. If the value of user type is 

‟O‟ then it executes query structure query2, otherwise, it 

executes query3. Definitions of SQLIA given by [5] and [6], 

restrict such type of multiple query structures in applications. 

In our approach we propose that execution of such type of 

multiple query structure is justified based on the application 

requirement.  

2.1 SQLIA Classification 
SQLIA has been classified into five basic classes[1][10] with 

respect to the attacker‟s target and the vulnerabilities in web-

applications. They are - (1) Bypassing Authentication(ByAut) 

(2) Unauthorized Knowledge of database(KDb) (3) Injected 

UNION Query (IUnion) (4) Injected Additional 

Query(AdQry) (5) Unauthorized remote execution of 

Procedures (UexRP). To explain the different classes of 

SQLIA, let us consider the PHP code written for user 

authentication checking shown in figure 2. 

A classification of SQLIA and the attacker's achievements are 

illustrated in table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  An example web program 

 

 

 

 

 

Figure 2 An example program for authentication checking 

2.2 SQLIA Detection and Prevention: 

Related Work 
Approaches for the detection of SQL injection attack can be 

categorized into - pre-generated and post-generated. Post-

generated detection approaches are useful for analysis of 

dynamic or runtime SQL query, generated with user input 

data by a web application. Detection techniques under this 

post-generated category, executes before posting a query to 

the back-tire or database server. In pre-generated or static 

approaches programmers follow some guidelines for SQLIA 

detection during web-application development. An effective 

validity checking mechanism for the input variable data is 

also a requirement for the pre-generated method of detecting 

SQLIA.  

 

 

 

 

 

 

(1) $connection=mysql connect(); 

(2) mysql select db(”test”); 

(3) $user=$HTTP GET VARS[‟username‟]; 

(4) $type=HTTP GET VARS[‟usertype‟]; 

(5) $pass=$HTTP GET VARS[‟password‟]; 

(6) if ($type=‟G‟) then 

(7) begin 

(8) $query1=”select balance from account where 

username = ‟$user‟ and usertype=$type” – and password 

=‟$pass‟”; 

(9) $result1=mysql query($query1); 

end; 

(10) elsif ($type=‟O‟) then 

(11) begin 

(12) $query2=”select account from users where 

usertype=$type and (username = ‟$user‟ or password 

=‟$pass‟”); 

(13) $result2=mysql query($query2); 

(14) end; 

(15) else 

(16) $query3=”select account from users where 

username=$user and usertype=$type and password=$pass; 

(17) end if; 

(18) if (mysql num rows($result1)==1) 

echo ”Authorized without password” 

(16) else echo ”authorization failed”; 

(17) if (mysql num rows($result2)==1) 

echo ”Authorized with password” 

(18) else echo ”authorization failed”; 

 

(1) $connection=mysql connect(); 

(2) mysql select db(”test”); 

(3) $user=$HTTP GET VARS[‟username‟]; 

(4) $pass=$HTTP GET VARS[‟password‟]; 

(5) $query=”select balance from account where 

username = ‟$user‟ and password =‟$pass‟”; 

(6) $result=mysql query($query); 

(7) if (mysql num rows($result)==1) echo ”Authorized” 

(8) else echo ”authorization failed”; 



International Journal of Computer Applications (0975 – 8887) 

Volume 43– No.19, April 2012 

17 

Table 1: Classification of SQLIA 

 

Class Attack Query Example Attacker‟s 

Achievement 

ByAut 

[7][9] 

 

Query = “select balance 

from account where 

username=” or 1=1 --‟ and 

password= ' '; 

Two dashes, 

comment the 

remaining text. 

Expression 1=1 is 

always true. User 

will be logged in 

with privileges of 

the first user stored 

in the database. 

KDb 

[7][8] 

[9] 

 

Query = “select balance 

from account where 

username='prakash' and 

password=convert(select 

host from host)”; 

The error message 

consists of the 

database description 

and the name of the 

columns. 

Sometimes, it 

displays the table 

name also. 

IUnion 

[7][9] 

Query=“select balance from 

account where username=' ' 

and password=' ' UNION 

select balance from account 

where acc_no='10090032'  

”; 

The actual runtime 

query returns null 

data. However, the 

injected query 

generates data from 

the database. 

Adqry 

[7][8] 

[9] 

Query=“select balance from 

account where 

username='prakash' and 

password=' ' ; drop table 

user”;  

The database server 

executes the second 

injected query. 

Thus, a harmful 

operation may also 

be performed on the 

database with such 

injected query(s). 

UexRP 

[10][9] 

Query=“select account from 

user where username=' ' ; 

SHUTDOWN;  and 

password=' '; 

The third query 

SHUTDOWN, a 

stored procedure 

executes the scripts 

written on it. 

 

[A] Post-Generated Approach 

Some of the popular post-generated approach for the detection 

of SQLIA is found from [1]. It is found that researchers have 

evaluated the dynamic query strings by the - (i) Initialization 

of valid and invalid strings (ii) Syntax evaluation and (iii) 

Parse-tree grammar based evaluation. A novel approach for 

detection of SQLIA proposed in [6], for mining programmer 

intended queries with dynamic evaluation of candidate input. 

The idea is to construct dynamically the structure of the 

programmer-intended query corresponding to the runtime 

SQL query with candidate input. According to this approach a 

candidate input is considered as legitimate if the following 

two conditions hold: 

Condition 1: Input must be benign, i.e., the candidate input 

must be evidently non-attacking, as envisioned by the 

programmer while coding the application. The query 

generated from the benign input is considered as a legitimate 

query. 

Condition 2: Input must dictate the same path i.e., the 

structure of the programmer intended query given in the 

respective application program. A legitimate input to the 

executing program will dictate a control path to a point where 

query is issued. To deduce the programmer intended query 

structure for this particular path (i.e., control path), the 

candidate inputs must also exercise the same control path in 

the program. Given such candidate inputs, the method detect 

attacks by comparing the query structures of the programmer-

intended query and the possible attack query. The approach 

suggests the need for an oracle that, given a control path in a 

program, returns a set of benign candidate inputs that 

exercises the same control path. This oracle, if constructed, 

may actually offer a clean solution to the problem of deducing 

the query structure intended by the programmer. Practically, 

such an oracle is hard to construct and become possible for 

typical application. However, Bisht and Venkatakrishnan 

proposes[6] a real scalable automatic solution to dynamically 

detect and prevent SQL injection attacks. At a more abstract 

level, the idea of computing the symbolic query on sample 

inputs seems a powerful idea that probably has more 

applications in systems security. Proxy-based detection 

method proposed in [11], consists of four different 

components: (i) Query selection for evaluation. (ii) Extraction 

of input data. (iii) Parse-tree generation and (iv) Input data 

evaluation. To implement such a method, a separate proxy, 

architecturally residing in the middle tire with the web-

application server, is used for query selection, input data 

extraction and parse-tree generation. Based on evaluation of 

input data using parse-tree evaluator, if it is found normal, the 

query is allowed to execute, otherwise, query is considered as 

malicious and is not executed. Unlike, other detection 

technique, such technique has added advantage due to its 

modularity in implementation. However, detection rate 

depends on the algorithms applied for each of the components 

of the detection technique. 

 

[B] Pre-Generated Approach 

The pre-generated approaches for the detection of SQLIA, 

found in [1] consists of various analysis tools used for 

identifying the vulnerabilities. The detection approaches are 

mainly the mechanisms to identify the vulnerabilities in the 

web-application programs. These mechanisms include - (i) the 

validity checking and (ii) the integrity checking of web-

programs. Pre-generated approaches are implemented with the 

software tools to check the vulnerabilities in web-programs so 

that the attackers cannot mis-utilize an application. By giving 

an application program as input to such software tools, the 

programmer intended SQL queries are analyzed using valid 

and tainted data. Based on such analysis, it reports the 

vulnerability points in an application program. It is also 

proposed the modules or methods used to rectify the 

vulnerability points. Detection methods proposed by the 

researchers and the category of implementing their 

approaches, and the pros and cons of each method are 

tabulated in the table 2. Based on our limited survey it is 

observed that - 

(a) The pre-generated detection techniques for SQLIA depend 

on the effectiveness of the validity checking by the web 

programmer and the effectiveness of the tools applied to 

detect the integrity of the code that causes SQLIA. 

(b) The post-generated approaches for detection of SQLIA are 

based on the initialization of trusted or untrusted strings, 

which are developer-dependent. The parse tree evaluation 

approach based on the pre-defined grammatical constraint, 

given in [5] and [6] may be considered better than the others. 

However, there is the possibility of manipulation of the 

initialized strings by the attacker, and pre-defined 

grammatical constraint is application dependent and restricts 

the variable runtime query structures. 

In the next section, we briefly describe DUD, a method for 

dynamic SQLIA detection which attempts to overcome the 

shortcomings of the above methods. 
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2.3 DUD 
DUD[1] is a post-generated approach for detection of SQLIA. 

It generates a master profile of legitimate dynamically 

generated queries and stored into a semi-structured form. At 

runtime, it converts the dynamic SQL query into semi-

structured or XML form based on the Document Type 

Definition(DTD). It then matches the XML form query with 

the profile using algorithms for exact matching and 

approximate matching. At first, it executes exact matching 

algorithm and if it matches it considers the query as legitimate 

query and allows the query to transport to database server 

from execution. If it does not match, then it computes and 

retrieves the minimum distance with respect to all the queries 

available in the profile. A dynamic threshold is generated 

during training phase and is used for the detection of SQLIA 

by comparing with the distance value computed in 

approximate matching. A detailed discussion on the design, 

uses and its effectiveness is in [1].  

3. AN EFFECTIVE RULE BASED 

DETECTION METHOD: RDUD 

The proposed method RDUD, is an enhanced version of DUD 

and is a supervised machine learning classification approach. 

The method indexes the strings of the dynamic SQL queries 

and employs Support Vector Machine(SVM) to classify a 

runtime SQL query into normal or attack. A support vector 

machine (SVM) is a concept that maps the input vector into 

two or higher dimensional feature space (linear or non-linear 

mapping). SVM may be used most popularly in classification 

processing by analyzing data and recognizing the patterns[15]. 

We use standard binary linear SVM which takes a set of input 

data and predicts each input into two possible classes - attack 

or normal. By giving the computed distance value as input to 

SVM, it classifies into either of the two classes which makes 

the SVM a probabilistic binary linear classifier. The 

architecture of RDUD is shown in figure 3. It is composed of 

two major phases - (i) Training and (ii) Runtime detection; 

During training phase, it performs the following activities - (i) 

Generation of Rule Dictionary; (ii) Generation of two web 

profiles(normal and attack) separately for legitimate and 

attack queries; The runtime phase, comprises the following 

steps -(i) XML-conversion of runtime SQL queries; (ii) 

Production rule generation; (iii) Distance computation with 

respect to each of the web profiles; (iv) Classification - attack 

or normal based on distance value; Pre-processing of dynamic 

SQL during training phase, comprises the generation of both 

the web profiles. The web profile generation consists of three 

basic tasks - (1) Converting a dynamic SQL query into XML 

form; (2) Generating production rules; (3) Writing into web 

profile. Depending upon the input data values, we consider 

that the dynamic SQL query for an application may have 

different structures. Also, corresponding to each legitimate 

structure of the SQL query, it may have multiple attack 

queries whose structures are different(for example see figure 

1). To accommodate variable schema of both legitimate and 

attack queries, we convert the dynamic SQL query into XML 

form. In contrast to the grammar verification context, 

rules(production) are generated to construct web profile from 

the test input(i.e. dynamic SQL query) during training phase. 

Query classification at runtime starts with the extraction of 

production rule(PR) from the dynamic SQL query, followed 

by the execution of matching process with both the web 

profiles (attack web profile and normal web profile). Based on 

the matching score a query is classified into normal class or 

attack class.  

The PR of a dynamic SQL query, given for classification, can 

be any of the following status -(i) It exists in the legitimate 

web profile; (ii) It exists in the attack web profile; (iii) It does 

not exists in both the profiles; For the first two conditions (1) 

and (2), it can be easily sorted out the class of the runtime 

query - attack or legitimate. In case the condition (3) holds, 

there may be two possibilities either the query itself is a new 

legitimate query or a new maliciously crafted attack query. In 

such case, the minimum distances (ω1 and ω2), with respect to 

both legitimate and attack profiles respectively are calculated. 

Using the value of ω1 and ω2, we calculate the nearest plane 

value(Pv). Such values are given input to the trained SVM to 

identify the class of the query. 

At first, it retrieves the PR of runtime SQL query. It is then 

computes the two distance values(ω1 and ω2) using the same 

steps given in Distance Computation cited in Training Phase 

under this section. To execute the steps for computing the 

distance PR values of two dynamic SQL queries is given in 

algorithm 2. The algorithm is designed based on [13] 

calculates the distance by counting the number of unmatched 

rules or strings in a particular PR matching process. Let us 

consider the following two dynamic SQL queries (i) and (ii) 

in which both are considered as legitimate for an application. 

(i) select balance from accounts with usertype=„T‟ and 

username=„abc‟ and password=„p001‟; 

(ii) select balance from accounts with usertype=„O‟ and 

username=„xyz‟ -- and password=„p001‟; 

Suppose, an attack query (iii) given below is - 

(iii) select balance from accounts with usertype=„T‟ and 

username=„abc‟-- and password=„p001‟; 

In this case the structure of both the queries (ii) and (iii) are 

similar. However, the query (iii) given above is an illegitimate 

or attack query. If we execute the matching process in which 

the dynamic structure of the SQL query includes the structure 

and the values then only the query can be identified as 

different from the legitimate query. Because in this particular 

application only for the usertype „O‟, the password portion is 

not required. Thus, we get the minimum computed distance 

value is 2 when we include value portion in case of runtime 

query structure. To classify the above two SQL queries, we 

use the equation ωx ± b = 0. The plane of SVM, shown in 

figure 6, has two sides(+1 and -1). The value of two roots x1 

and x2 are calculated and are plotted the points (x1,x2) in a two 

dimensions (X,Y) plane. During training phase we 

experimented separately with a list of legitimate and attack 

queries. A separating plane is drawn which separates the 

support vector planes into both the sides of it. The value of 

Pv(nearest plane value) is calculated using the equation Pv(x) 

= x1+x2 of each SQL query. For a given off-set value, we get 

the value of x lying between +1 and -1. The support vectors, 

guide in classifying the positive value of x, nearest to the 

value +1 as normal class while negative value of x nearest to 

the value -1 as attack class. Support Vector Machine(SVM) 

used in detecting SQLIA uses a two dimensional space(X,Y) 

to find a separating plane for binary classification, in which 

the error rate is minimal. The SVM uses a portion of the data 

to train the system, finding several support vectors that 

represent the training data and guides at runtime to identify a 

dynamic SQL query into either of the class - attack or normal. 
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Table 2: Detection approaches and their pros and cons 

 
Name of 

the 

method 

Approach Imple

menta

tion 

Pros Cons 

String 

Evaluation 

based on 

initialized 

trusted list 

Query 

analysis 

to check 

initialized 

unsafe 

literals 

Post 

Gene- 

rated 

Remove all 

unsafe 

literals 

before 

execution 

of runtime 

query 

Developer‟s 

dependent 

and may 

affect 

applications 

functionality 

String 

Evaluation 

based on 

initialized 

untrusted 

strings 

Syntax 

evalua-

tion for 

runtime 

query 

based on 

untrusted 

initialize-

tion 

Post 

Gene-

rated 

Removes 

tainted 

strings from 

runtime 

query based 

on 

initialized 

trusted 

strings 

Developer‟s 

dependent 

and may 

affect 

applications 

functionality 

Parse-Tree 

Evaluation 

based on 

grammar 

[4] 

User 

origina-

ted data 

is parsed 

based on 

predefi-

ned 

grammar 

Post 

Gene-

rated 

Formula-

ted 

successf-

ully the 

structure of 

a legitimate 

query 

Scope of 

manipulation 

of user origi- 

nated data 

and may 

affect 

applications 

functionality 

Evaluation 

of  Cand-

idate input 

based on 

Benign 

input[5] 

The stru-

cture of  

runtime 

query is 

analyzed 

with sys-

tem gene-

rated 

structure 

Post 

Gene-

rated 

Elaborat-ed 

the for-

mulation of 

SQLIA. A 

novel 

approach of 

guaran- 

teed solu- 

tion. 

Not explored 

the solution 

in which it 

generates mu 

ltiple runtime 

stru- cture for 

one program-

mmer inten-

ded query 

Proxy 

based 

parse tree 

evaluation

[11] 

 

Separate 

proxy is 

used in 

the appli-

cation 

site to 

parse and 

analyze 

runtime 

query 

Post 

Gene- 

rated 

Proxy 

based data 

evaluation 

approach, 

improves 

the effici-

ency of 

evaluation 

Performance 

also depends 

on each 

component 

of their 

system 

architecture 

and the algo- 

rithm for 

analysis 

Program 

Analysis 

tool 

Taint 

generat-

ion tool  

Pre 

Gene- 

rated 

Identify the 

vulne- rable 

mo-dules 

Possibility of 

manipulation 

Query 

language 

Retrieval 

of vulner- 

abilities 

Pre 

Gene- 

rated 

Reports 

vulnerable 

applications 

Not always 

effective 

 
Figure 3: The Architecture of RDUD 

For n number of queries, the basic input data format and 

output data domains in SVM are as follows: 

(xi, yi), ..., (xn, yn), xi  R, yi  {+1,−1} where, xi is a two 

dimensional real inputs vector, R is a set of all real numbers. 

The goal is to find out the margin of the plane that divides the 

points having yi = 1 from those having yi = −1. A plane drawn 

on the set of points (x1, x2, .., xr) satisfying maximum-margin 

plane and a margin for an SVM trained with samples for a 

particular class. Samples on the margin are called the support 

vectors. To identify the class a runtime SQL query is given 

input to the proposed method of matching process. If it is 

matched then declared the dynamic SQL query as 

legitimate(i.e., computed distance ω1=0). If the PR does not 

matched with any of the Production Rule exists in the 

legitimate web profile then the module generates the 

unmatched legitimate rules (LR) as output. If the output of 

execution is the unmatched rules, the algorithm 3 also 

executed with the attack web profile and input for these 

modules are - PR of the dynamic SQL query and the attack 

web profile. If it is matched then it declared the dynamic SQL 

query as attack query(i.e., computed distance ω2=0). 

Otherwise, the output of such execution are unmatched attack 

rules(AR). If the values of both LR and AR are not empty 

string then we execute the module called Distance 

Computation. The output of such execution is the number of 

unmatched rules in LR gives the distance (ω1) with respect to 

the legitimate web profile(WP1). Then, we execute the module 

Distance Computation by giving input - unmatched rules AR. 

The output of such execution is the number of unmatched 

rules in AR, gives the values of (ω2) with respect to the attack 

web profile WP2. Next, we compute nearest plane value(x) 

for a given value of b and classify the runtime SQL query 

based on the value of x. The output of the detection approach 

RDUD may be interpreted with the following cases: 

(1) If ω1 = 0 then it lies in the normal plane and declared as a 

normal query; 

(2) If ω2 = 0 then it lies in the attack plane and declared as an 

attack query; 

(3) If the value of both ω1 and ω2 are non-zero then it 

computes the value of x and plot the 

value the two dimensional plane(X,Y), as shown in figure 6 

and using trained support vectors it identifies the class. RDUD 

is significant in view of the following observations: 

(a) Initialization of trusted/untrusted strings are avoided; 

(b) The matching logic is easy to implement; 

(c) Web profile file is adaptively updated; 

(d) No restriction is imposed on input strings/ characters; 

(e) No restriction of defining syntactical constraint for query 

structure; 

We would like to mention that the structure of the 

dynamically generated SQL query, may not always be 
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constant depending on the application. To accommodate the 

variable schema of runtime queries, we convert dynamic SQL 

queries into semi-structured document (i.e., XML) before 

generation of web profile. Each rule in PR of the runtime SQL 

query is matched with all the PR of the web profile. Thus, the 

time complexity of such matching of PR extracted from XSQL 

and each PR of the web profile is n×m;  n ← number of rules 

available in the XSQL and m ← number of rules available in 

a PR of the web profile. If T is a set of tags of an XML 

document, then σ = T  {$}, where ”$” stands for the space 

and carriage return characters. The algorithm generates a 

context free grammar G=(V,σ,R,S); V is a finite set of string 

tags, R is a finite set of Production Rules and S is the initial 

string tag of G. A sample generated sequence of PR is shown 

in Table 4. The “Input” column shows the next input string 

tag, and the “Rules Generated” column shows the production 

rules. The empty production rule i.e., the start string tag, 

“r0→” and the next input symbol “< item >” are provided as 

initial state. In step i and i+1, the non-terminal tagged string, 

in the form of production rule r 1, r 2, r 3 etc. are generated. The 

proposed approach is a semi-supervised classification method 

in which it is not considered the pre-defined parameters to 

categorize the SQL query strings. It is assumed that the 

attackers may conduct SQLIA, crafted with malicious strings 

having variable SQL query structure. The programmer 

intended SQL query also can have variable structures and are 

varying with application to application. For a dynamic SQL 

query the two numeric values - (i) computed distance with 

respect to the legitimate web profile and (ii) computed 

distance with respect to the attack web profile are given input 

to the SVM. The classification at runtime is done based on the 

plotted distance within the range of values learned during 

training phase. 

 

4. PROBLEM FORMULATION 
A web-application is an application program coded in web-

language, executed using web-browser. We define a web-

application program as P = ({S},{F}), where S={s1, s2, .., sn} 

is a set of finite string tags and F={f1, f2, .., fm} is a set of 

finite web-functions or url (static or dynamic). The input 

vector (i1,i2,...,in), originated from the user input of web-

application P, transports into web-application server and may 

generate dynamic SQL query q. The query q then transports 

into the database server, where executing it and performs 

DBMS operation, such as - data insertion, data updating, data 

deletion and retrieving information. The output information 

converted into web-application program and sends to the 

client‟s point, executes by the web-browser. The problem is to 

form a basis to identify the dynamic SQL query q into a 2-

class problem(legitimate or attack) with reference to two web 

profiles - attack web profile and normal web profile. 

 

Definition 3(Rule-Segmented Query): The structure of a 

dynamic SQL query can be expressed into a set of rules(R), 

retrieved from the Rule Dictionary(RD). Again, each rule is 

expressed by a tuple (rule name, rule type, rule value). Rule-

Segmented Query(RS) can be defined as a function fRS(q) 

which returns a set of rule name such that each sub-string of q 

has one rulename. Thus, we can write, 

RS(q) : RS(q) → R; R = {r1, r2, .., rn} and ri = {rni, rti, rvi}. 

Let us consider the query string query, cited in PHP code 

given in figure 2, the value of RS(query) can be written as - 

RS(query)←(K1$A1$K2$T1$K3$Id1$Op1$V1Lop1$Id2 

$Lop2$V2) 

The function RS(q) returns the sequence of rule name from 

RD corresponding to the sub-strings of the query, such that 

each rule is separated by the literals „$‟; A sample shot of RD 

is given in the table 3. In this table it is shown the different 

columns of RD such as - Rule name, Rule type and Rule value. 

 

Definition 4(Rule Dictionary): Rule Dictionary(RD) is a rule 

data-store, in which each rule is stored as a tuple (Rule Name, 

Rule Type, Rule Value). Executing a policy or method for 

generating RD, such that it creates an auto-generated unique 

rule name(Rn), which is one of the attribute of RD and stores 

the unique rule value into it. Let, the rule name stored in RD 

with respect to an web-application, Rn = (rn1, rn2, .., rnk). 

Corresponding to each rule name, rni, the policy or method 

retrieves the string from a dynamic SQL query as a rule 

value(rvi) and its rule type i.e., Keyword, Attribute etc. Thus, a 

rule is stored in RD in the form of a tuple (rni, rti, rvi). A 

method, (RD), implements the policy, generates the unique 

value of rule name 

 

Table 3: Rule Dictionary in Tabular form 

    Rule name 

          [1] 

         Rule Type 

                [2] 

        Value 

           [3] 

K1 Keyword select 

K2 Keyword from 

K3 Keyword where 

A1 Attribute account 

A2 Attribute users 

Id1 Identifier username 

Id2 Identifier password 

Rop1 Relational Operator = 

V1 Value ddas 

Lop1 Logical Operator and 

V1 Value dd123 

 

and retrieves the values for the other two attributes of RD - 

rule value(Rv) and rule type(Rt) from a dynamic SQL query. 

The input to the algorithm of policy or method f(RD) is a 

dynamic SQL query, qa and output to the algorithm of policy 

or method (RD) retrieves a set of rule tuples. Thus, the data-

store of RD consists of a set of rows, {R1,R2, ..,Rp}, p ≥ 1 and 

we can express a dynamic SQL query, qa = Ri = {(rn1, rt1, rv1), 

(rn2, rt2, rv2), .., (rnk, rtk, rvk)}; Ri  RD. 

 

Definition 5(Production Rule): A Production Rule(PR) is a 

sequence of rule names, PR=[r1,r2,..,rn], retrieved from RD 

with respect to a sequence of strings available in the structure 

of a dynamic SQL query. Thus, for each dynamic SQL 

query(qa), we have one corresponding production rule(PRa). r i 

 N; PRa  N; N← set of all rule names in RD; We consider 

the example of query string query given in the section 2. The 

value of PR extracted from RD for query can be written as - 

K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id2$Rop1$V2 

 

Definition 6(web profile): A web profile is a summary of 

dynamic or runtime SQL queries generated for a web-

application software. The content of the web profile is a set of 

finite numbers of unique Production Rules(PR), such as 

WP=[PR1, PR2, .., PRm]. According to our approach every 

web-application software is executed with two web profiles - 

(i) legitimate web profile(WP1) and (ii) attack web 

profile(WP2). Let us consider the example given in figure 1. 

The query string query1 and query2 are considered as 

legitimate. However, the query string a_query given in section 

2 is an attack query. Thus, the legitimate web profile contains 

the set of PR, generated for query1 and query2 can be 

expressed as - 
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PR1=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id3$Rop1$V3 

$Lop2 $Id2$Rop1$V2 

PR2=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id3$Rop1$V4 

$Lop2$Id2$Rop1$V2 

The content of the attack web profile for the query string a 

query can be written as - 

PR1 = K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id3$Rop1$ 

V3$ Lop2$Id2$Rop1$V2$Lop2$Id4$Rop1$V4 

 

Definition 7 (Nearest Plane Value(Pv)): For a given off-set 

value(b), the plane values(x1 and x2) are computed with the 

values of ω1 and ω2 using the equation (x1×ω1+b) = 0 and 

(x2×ω2−b) = 0. The values of the parameters ω(ω1 and ω2) 

and b are constrained to solve the 2-class problem[12]. Thus, 

the Nearest Plane value(Pv) can be calculated as Pv = x1+x2. 

The constraint parameter b called offset parameter and should 

be chosen such that the range of support vectors, Pv can be 

projected on the decision surface. Nearest Plane Value(Pv) is 

the value plotted in (X,Y) plane which gives a measure of the 

nearest or closest distance from the separating plane. The 

value of Pv(q) gives a measure of the dynamic query belongs 

to the class - attack(illegitimate) or normal(legitimate). 

 

Definition 8(Malicious Query): The dynamic SQL query q 

generated with the input data (i1, i2, ..., in) is a malicious query 

causing SQL injection attack (SQLIA) if any of the following 

conditions hold: 

• The PR generated from the structure of the dynamic query q 

belongs to the attack web profile WP2, i.e., PR(q) : PR(q) ← 

PRq  WP2; 

• The PR generated from the structure and the computed 

nearest plane value(Pv) are such that all the following three 

conditions hold - 

(i) [PR(q) : PR(q) ← PRq  WP1]; 

(ii) [PR(q) : PR(q) ← PRq  WP2]; 

(iii) For a given value of b, the value of Pv is such that (−1 ≤ 

Pv(q) < 0). 

 

Definition 9(Legitimate Query): The dynamic SQL query q 

generated with the input data (i1, i2, ...,in) is a legitimate query 

if any of the following conditions hold: 

• The PR generates from the structure of the dynamic SQL 

query q belongs to the legitimate web profile WP1, i.e., PR(q) 

 WP1; 

• The PR generated from the structure of the dynamic SQL 

query q and the computed value of Pv are such that it holds all 

the following three conditions - 

(i) [PR(q) : PR(q) ← PRq  WP1]; 

(ii) [PR(q) : PR(q) ← PRq  WP2]; 

(iii) For a given value of b, the value of Pv is such that (0 ≤ 

Pv(q) ≤ 1). 

4.1 Algorithm 
In this section we present the steps to implement our 

approach. 

A. Training Phase 

Generation of Rule Dictionary(RD): Let us, consider the 

example query string shown in figure 2. The XML equivalent 

of the query is shown in figure 4. The Document Type 

Definition for the conversion of such query string into XML 

form is shown in figure 5. The rule value <select> is 

identified by rule name - K1 and rule type - Keyword. 

Similarly, the rule value <from> is identified by rule name K2 

and rule type Keyword etc. Thus, using these string values of 

each dynamic query, the Rule Dictionary(RD) is generated. 

To generate RD, the following steps are executed – 

 Read each item - element, attribute, identifier, 

value, relational operator and logical operator from 

the XML form of dynamic SQL query(XSQL); 

  Check whether the rule value of the 

corresponding item already exists in the RD; 

 If the rule value of the corresponding item does 

not exist in RD then execute (i) to (iv) given 

below: 

(i) Generate unique rule name(n) for each of the item; 

(ii) Retrieve each string of the dynamic SQL query as a rule 

value(v); 

(iii) Identify the corresponding rule type(t); 

(iv) Insert the tuple (n,t,v) into RD; 

 

Generation of web profile: To generate web profile from a 

dynamic SQL query the following steps are to be executed - 

 Read dynamic SQL query ; 

 Convert the dynamic SQL query into XML form called 

XSQL; 

 Read each item of XSQL - element, attribute and 

identifiers; 

 Retrieve corresponding rule name from RD for each item 

of XSQL; 

 Generate Production Rule (PR) of the corresponding 

dynamic SQL query by constructing the sequence of rule 

name retrieved in the previous steps; 

 Check whether the value of PR already exists in the web 

profile(WP); 

 If does not exists, insert PR into web profile(WP); 

The web profiles generated during training phase will be 

incrementally updated based on the detection at runtime 

phase. 

 

Distance Computation: The distance between two SQL 

queries can be calculated by computing the minimum number 

of operations required to convert the PR of one query into the 

other. Let, us consider the two PR values PR1 and PR2 of two 

different dynamic queries Q1 and Q2 as given below : 

PR1=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id2$Rop1$V2 

PR2=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id2$Rop1$V2$Lo

p1$Id3$Rop1$V3 

The number of unmatched rule between two PR, gives the 

distance value ω. Thus, the value of ω in the above case 

between PR1 and PR2 becomes 2 due to the unmatched rule - 

Id3 and V3. For a dynamic SQL query the value of ω1 and ω2 

can be computed at runtime with respect to normal and attack 

web profiles. If the value of ω1 is zero, then it declares as 

„Normal‟ query. If the value of ω2 is zero, then it declares as 

„Attack‟ query. In case, the values both ω1 and ω2 are non-

zero, we execute the process for query classification by SVM 
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Figure 4: XML record based on DTD given in figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Document Type Definition (DTD) of XML 

equivalent of SQL query 

During training phase, we perform tests with dynamic SQL 

queries (both legitimate and attack). For each matching 

process we compute the value of x1 and x2 and finally, the 

nearest plane value NPV(x) = x1+x2. We experimented with 

both normal and attack queries and plotted the value of x in a 

two dimensional plane(X,Y). A separating plane which 

separates both the dimensional planes(X and Y) equally is 

drawn, shown in figure 6. We also draw support vector plane 

by joining the plotted points, parallel to the separating plane. 

The plotted points below the separating plane and towards the 

X-axis are identified as normal class, and the plotted points 

above the separating plane towards the Y-axis are identified 

as attack class. The following steps are executed for the 

computation of distance value(ω) between PR of two queries. 

 

• For all the m numbers of PR of a web profile(WP1) do { 

• For all the rules of PR for dynamic runtime SQL query do { 

• Calculate the number of unmatched rules to each PR of WP1, 

{C1,C2,C3, ..Cm} } } 

• Retrieve the minimum value Ck from {C1,C2, ..,Cm} which is 

the distance between the runtime SQL query with respect to 

the web profile WP1 

Thus, the distance value may be computed at runtime between 

the PR value of dynamic SQL query with each PR value of 

both attack and normal web profile separately. 

 

 

 

 
 

Figure 6: The plane of SVM 

B. Runtime Phase(Query Classification): 

 

To convert XSQL(XML form of runtime query) into sequence 

of rules called PR, we use the algorithm based on the 

SEQUITUR algorithm proposed by Nevill-Manning [14]. The 

algorithm for PR generation from a runtime SQL query is 

given in the algorithm 1. The algorithms for distance 

computation and the final classification based on PR matching 

are given in algorithm 2 and 3 respectively. A sample of the 

steps in generating PR is given in the table 5.  

 

 

Algorithm 1: PR Generation 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

<select> 

<attribute attribute name=balance </attribute> 

<from> 

<table table name=account </table> 

</from> 

<where> 

<expression> 

<identifier identifier name = username </identifier> 

<relational operator relational operator == </relational 

operator> 

<value value = prakash </value> </expression> 

<logical operator logical operator = AND </logical 

operator> 

<expression> 

<identifier identifier name=password </identifier> 

<relational operator relational operator == </relational 

operator> 

<value value = p123 </value> 

</expression> 

</where> 

</select> 

<!Element Select (attribute)* 

<!Element From (table)* 

<!Element Where (expression, (Logical Operator, 

Expression)*) 

<!Element Expression(Identifier, Relational Operator, Value) 

<!Element Logical Operator(AND|OR|NOT) 

<!Element Identifier(#pcdata) 

<!Element Relational Operator (= | != | < | > | <= | >= |) 

<!Element Value (#cdata) 
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Algorithm 2: Distance Computation between PR of two 

Queries 

 

 
Algorithm 3: PR Matching of two dynamic SQL queries 

 

 

 

 
 

Table 4: Steps in generating Production Rules(PR) 

    

Step 

         

Input 

       Rules Generated 

1 <item> r0  

2 $ r0 <select> 

3 <item> r0 <select>$ 

4 $ r0 <select>$<attribute> 

5 <item> r0 <select>$<attribute>$ 

6 $ r0 <select>$<attribute>$<name=balance> 

7 

…. 

<item> r0 <select>$<attribute> 

$<name=balance>$ 

i 

 

<item> r0 <select>$<attribute>$name=balance$ 

>$</attribute>$<from>…</from>$ 

i+1 $ <select>r1r2 … </from>$ 

r0$</attribute>r3 … </where> 

r1$<attribute>  r2$<name=balance> 

5. EXPERIMENTAL RESULTS  
In our experimental setup the detection modules of RDUD are 

installed in a web-application server of a three-tire application 

architecture. The web-application server is connected with a 

database server and is accessible to web clients. We generate 

two master files for each application. The first file consists of 

the legitimate dynamic SQL queries generated with legitimate 

access during training phase. The other file consists of the 

attack queries generated, corresponding to each intended 

structure of SQL queries defined in web-application program. 

Using the master file having legitimate SQL queries we 

generate the legitimate web profile(WP1). Similarly, we 

generate attack web profile(WP2) with master file having the 

attack SQL queries. Both the profiles WP1 and WP2 are stored 

in the web-application server. The server also contains the 

modules for - (i) Rule Dictionary generation; (ii) Production 

Rules generation; (iii) Distance Computation and (iv) Query 

Classification. We used MySQL in the database server. To 

test the detection rate using our approach, we simulate the 

runtime environment using two different files - file 1 and file 

2. The file 1 consistS of legitimate dynamic SQL queries and 

file 2 consistS of attack or illegitimate dynamic SQL queries. 

While generating the file 1 and file 2 we include dynamic 

SQL queries in it such that the corresponding PR of some of 

the queries exist in the respective web profiles, while other 

does not exists. To generate the web profiles, at first we 

construct the Rule Dictionary table and executed the module 

for generation of Production Rule(PR) using algorithm 1, 

from both the master files - legitimate master file and attack 

master file. Then the values of PR are stored in WP1 and WP2 

respectively. The web-application is considered for our 

experiment, consists of three programmer intended SQL 

queries. The web profile(WP1) consists of 50 numbers of PR 

values of dynamic SQL queries, which are considered as 

legitimate. Similarly, the web profile(WP2) consists of 60 

numbers of PR values of attack SQL queries such that for 

each class of SQL injection attack, we considered 12 numbers 

of attack SQL queries. While computing the distance value 

(ω1 and ω2), if we avoid the value portion of an unmatched 

expression, we do not get 100% detection rate for some of the 

attack classes of SQLIA such as - ByAut, IUnion, Adqry, 

UexRP. This is due to the fact that the structure of some of the 

attack queries available in the attack web profile may be same 

with the structure of the legitimate queries. According to our 

concept, depending upon application requirement, the 

structure of the attack SQL queries may be same with the 

structure of the application generated variable dynamic query. 

We finally experimented with the runtime query structure 

which includes the value portion. We changed the Distance 
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value computed for an unmatched value in an expression of a 

runtime SQL query. Thus, for each unmatched value we 

considered the Distance value as 1. In this experiment we got 

100% detection rate We also experimented by considering the 

character wise edit distance method instead of considering the 

Distance value for unmatched rule value as 1. In this case also 

we got 100% detection rate for all the attack classes except 

the attack class ByAut. This is due to the fact that any new 

dynamic SQL queries consist of new value, can increase the 

distance. Thus, according to our experimental analysis, we 

should apply our detection approach including the character 

wise distance computation for all the attack classes of SQLIA 

except the attack class ByAut. For the detection of this 

particular attack class ByAut we should apply structure  

matching excluding the value of a dynamic SQL query. We 

tabulated the value of x1, x2 and the corresponding value of x 

in table 5. The accuracy of the detection of query class is also 

cited in the table 5. 

6. CONCLUSIONS AND FUTURE 

WORK  
Our detection method RDUD has been found to perform 

satisfactorily over a test data-set. The method is also found 

capable of handling the variable structure of dynamically 

generated SQL query based on user input. The effectiveness 

of updating mechanism of the web profile can be increased 

with additional checking module. However, special care needs 

to be taken for maintaining the integrity of the web profile 

files to avoid poisoning of web profiles. Also, the use of 

appropriate encoding technique can help to avoid stolen key 

attack. 

Table 5: Values of x1, x2, x and query class detection 
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