
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

15

Rule based Detection of SQL Injection Attack

Debasish Das

Department of Computer
Science & Engineering

Tezpur University,
Napaam(INDIA)

Utpal Sharma
Department of Computer
Science & Engineering

Tezpur University,
Napaam(INDIA)

D. K. Bhattacharyya
Department of Computer
Science & Engineering

Tezpur University,
Napaam(INDIA)

ABSTRACT

 This paper presents an effective detection method RDUD for

SQL injection attack. RDUD is an enhanced version of DUD

[1]. The method comprises a supervised machine learning

approach using a Support Vector Machine(SVM) to learn and

to classify a query at runtime. Two web profiles - (i)

legitimate web profile and (ii) attack web profile are generated

for each of the web-application software which consists of a

set of production rules extracted from the dynamic SQL

queries. Both the web profiles are generated during training

phase. At runtime a dynamic SQL query is matched with each

of the web profile and accordingly it classify based on the

matching distance. RDUD is independent of the developer‟s

initialization of syntax rules, valid trusted string database,

static or pre-generated program code checking, etc. Also the

method is significant in view of its simplicity, efficient and its

high detection rate in comparison to the earlier method [1].

General Terms

Algorithms, Performance, Design, Reliability,

Experimentation, Security.

Keywords

web-application, SQL injection, classification, production

rules, web profile, RDUD.

1. INTRODUCTION
A web-application is application software which includes

dynamic web-pages such that end users can access the

software through client modules that run in web browsers.

The coding of client modules is in browser-supported

languages such as HTML, Java, ASP, PHP etc. In three-tire

web-applications, the user provides query specification as

input in a pre-defined format in the front tire. These inputs are

used in constructing SQL queries by the application server in

the middle tire. The back tire contains the database server.

Web-applications are popular due to the ubiquity of web

browsers, and the convenience of using a web browser as a

client, sometimes called as thin client. The ability to update

and maintain web-applications without distributing and

installing software on potentially thousands of client

computers is a key reason for their popularity. Common web-

applications include - web-mail, on-line retail sales, on-line

auctions, on-line banking, and many other functional

applications. Mitre‟s Vulnerability statistics reported in the

year 2010-2011[2], points out 25 most common program

errors or vulnerabilities causing most successful SQL

injection attack along with other web-application attacks.

These vulnerabilities are dangerous because it gives chances

* The department is funded by UGC‟s DRS-I under the
SAP

to the attackers to steal data from the application database. It

is claimed that the SQL Injection scored highest rank among

the web-application attacks. It is reported that SQL Injections

are one of the most common and easiest techniques adopted

by attackers to attack web servers, data servers and sometimes

the network. This category of web attack is conducted for

unauthorized access of web-application, breaking the role

based accessibility, and violating the integrity of the data

storage. A significant rise in SQL injection attack is reported

by CISCO[3] too. The Information Systems Audit Cell

report[4] recommends review the application control in net-

banking applications by conducting penetration testing

keeping in view of the prevailing guidelines by Reserve Bank

of India, IT Act and other applicable regulations in India and

asked to check the vulnerabilities in the applications like -

SQL injection, Cross-site scripting etc. In this paper, in

section 2, we report the background of SQL injection attack

and its different classes. In this section we also present its

existing practice of detection. We finally discuss in this

section 2, the brief idea of the approach called DUD. In

section 3, the propose detection approach RDUD is described.

We report our problem formulation along with the detection

algorithms in section 4. Experimental results and finally the

concluding remarks are reported in section 5 and 6

respectively.

2. BACKGROUND OF SQL INJECTION

ATTACK(SQLIA) AND ITS CLASSIFIC-

ATION
SQLIA is an attack on web-application server. It occurs when

an attacker changes the intended logic, semantics or syntax of

an SQL query. The query generated dynamically based on

user input, maliciously crafted with SQL keywords, operators,

strings or literals execute in the database server. The structure

of the query with insertion of such malicious input is different

from the structure defined in the application code. Let us

consider that an application database contain two attributes -

user name and password. The application uses the values of

the attributes for authentication, consist of the following code,

written in JSP scripts.

query = “SELECT balance FROM account WHERE

username=‟ ” +request.getParameter(“name”)+“‟ AND

PASSWORD=‟ ”+request.getParameter(“pass”)+“ ‟ ”;

If a malicious input entered by a user for username “jimmy”

and “ „ or „a‟=„a‟ ” for password field, the query string

becomes:

a_query=select account from users where name=„jimmy‟ and

password=„ ‟ or „a‟=„a‟

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

16

Which will always be evaluated as true, and the user will

bypass the authentication logic without entering the value of

password field. Su and Wassermann[5] proposed a context

free grammar to define syntactic formation of a valid query.

Thus, a dynamically generated query is defined as legitimate

if the parse tree Tq is possible based on the proposed

grammar. Otherwise, the query is considered as illegitimate or

SQL injected query. According to their definition, a SQL

query q generated by a web-application P with the input (i1, i2,

..., in) is a malicious query causing SQL injection attack

(SQLIA) if the query string q does not have a valid parse tree

Tq with respect to the pre-defined valid grammar. In CANDID

[6], a dynamically generated query based on user input

referred as Candidate Query (CQ), is considered as an attack

or illegitimate query if its structure does not match with the

corresponding structure of the valid query. The valid query is

referred as Benign Query (BQ). BQ is generated with valid

inputs corresponding to a valid query structure. According to

their[6] definition:

Definition 1: The structure of the query on any valid user

input v is the control path defined in the program which is

generated runtime query with the valid input data v.

Definition 2: The validity of the input can be checked by

matching the runtime query structure with its respective

control path and the user input data is considered as invalid if

it does not match.

Turning back to our example given for the query string query,

in the beginning of the section, the candidate input v :

s←“Jimmey OR „a‟ = „a‟ ” is an SQL injection attack, since

it generates a query whose structure is - select ? from ? where

?=? or ?=? while its corresponding benign input VR(v) = v1 :

s←“John” exercises the control path structure - select ? from

? where ?=?. However, in case of multiple dynamic query

structure some of the conditional query structures may be

similar to the attack queries. In such cases, the program

accepts input value and based on condition it generates

queries with different structures. In our paper we address the

formulation in detecting SQL injection attack under such

scenarios also. Let us consider the web program written in

PHP script language shown in figure 1. In it there are three

programmer intended query structures - query1, query2 and

query3. Each of the query executes based on the value of

input data for user type. If the value of user type is ‟G‟ then it

executes query structure query1. If the value of user type is

‟O‟ then it executes query structure query2, otherwise, it

executes query3. Definitions of SQLIA given by [5] and [6],

restrict such type of multiple query structures in applications.

In our approach we propose that execution of such type of

multiple query structure is justified based on the application

requirement.

2.1 SQLIA Classification
SQLIA has been classified into five basic classes[1][10] with

respect to the attacker‟s target and the vulnerabilities in web-

applications. They are - (1) Bypassing Authentication(ByAut)

(2) Unauthorized Knowledge of database(KDb) (3) Injected

UNION Query (IUnion) (4) Injected Additional

Query(AdQry) (5) Unauthorized remote execution of

Procedures (UexRP). To explain the different classes of

SQLIA, let us consider the PHP code written for user

authentication checking shown in figure 2.

A classification of SQLIA and the attacker's achievements are

illustrated in table 1.

Figure 1 An example web program

Figure 2 An example program for authentication checking

2.2 SQLIA Detection and Prevention:

Related Work
Approaches for the detection of SQL injection attack can be

categorized into - pre-generated and post-generated. Post-

generated detection approaches are useful for analysis of

dynamic or runtime SQL query, generated with user input

data by a web application. Detection techniques under this

post-generated category, executes before posting a query to

the back-tire or database server. In pre-generated or static

approaches programmers follow some guidelines for SQLIA

detection during web-application development. An effective

validity checking mechanism for the input variable data is

also a requirement for the pre-generated method of detecting

SQLIA.

(1) $connection=mysql connect();

(2) mysql select db(”test”);

(3) $user=$HTTP GET VARS[‟username‟];

(4) $type=HTTP GET VARS[‟usertype‟];

(5) $pass=$HTTP GET VARS[‟password‟];

(6) if ($type=‟G‟) then

(7) begin

(8) $query1=”select balance from account where

username = ‟$user‟ and usertype=$type” – and password

=‟$pass‟”;

(9) $result1=mysql query($query1);

end;

(10) elsif ($type=‟O‟) then

(11) begin

(12) $query2=”select account from users where

usertype=$type and (username = ‟$user‟ or password

=‟$pass‟”);

(13) $result2=mysql query($query2);

(14) end;

(15) else

(16) $query3=”select account from users where

username=$user and usertype=$type and password=$pass;

(17) end if;

(18) if (mysql num rows($result1)==1)

echo ”Authorized without password”

(16) else echo ”authorization failed”;

(17) if (mysql num rows($result2)==1)

echo ”Authorized with password”

(18) else echo ”authorization failed”;

(1) $connection=mysql connect();

(2) mysql select db(”test”);

(3) $user=$HTTP GET VARS[‟username‟];

(4) $pass=$HTTP GET VARS[‟password‟];

(5) $query=”select balance from account where

username = ‟$user‟ and password =‟$pass‟”;

(6) $result=mysql query($query);

(7) if (mysql num rows($result)==1) echo ”Authorized”

(8) else echo ”authorization failed”;

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

17

Table 1: Classification of SQLIA

Class Attack Query Example Attacker‟s

Achievement

ByAut

[7][9]

Query = “select balance

from account where

username=” or 1=1 --‟ and

password= ' ';

Two dashes,

comment the

remaining text.

Expression 1=1 is

always true. User

will be logged in

with privileges of

the first user stored

in the database.

KDb

[7][8]

[9]

Query = “select balance

from account where

username='prakash' and

password=convert(select

host from host)”;

The error message

consists of the

database description

and the name of the

columns.

Sometimes, it

displays the table

name also.

IUnion

[7][9]

Query=“select balance from

account where username=' '

and password=' ' UNION

select balance from account

where acc_no='10090032'

”;

The actual runtime

query returns null

data. However, the

injected query

generates data from

the database.

Adqry

[7][8]

[9]

Query=“select balance from

account where

username='prakash' and

password=' ' ; drop table

user”;

The database server

executes the second

injected query.

Thus, a harmful

operation may also

be performed on the

database with such

injected query(s).

UexRP

[10][9]

Query=“select account from

user where username=' ' ;

SHUTDOWN; and

password=' ';

The third query

SHUTDOWN, a

stored procedure

executes the scripts

written on it.

[A] Post-Generated Approach

Some of the popular post-generated approach for the detection

of SQLIA is found from [1]. It is found that researchers have

evaluated the dynamic query strings by the - (i) Initialization

of valid and invalid strings (ii) Syntax evaluation and (iii)

Parse-tree grammar based evaluation. A novel approach for

detection of SQLIA proposed in [6], for mining programmer

intended queries with dynamic evaluation of candidate input.

The idea is to construct dynamically the structure of the

programmer-intended query corresponding to the runtime

SQL query with candidate input. According to this approach a

candidate input is considered as legitimate if the following

two conditions hold:

Condition 1: Input must be benign, i.e., the candidate input

must be evidently non-attacking, as envisioned by the

programmer while coding the application. The query

generated from the benign input is considered as a legitimate

query.

Condition 2: Input must dictate the same path i.e., the

structure of the programmer intended query given in the

respective application program. A legitimate input to the

executing program will dictate a control path to a point where

query is issued. To deduce the programmer intended query

structure for this particular path (i.e., control path), the

candidate inputs must also exercise the same control path in

the program. Given such candidate inputs, the method detect

attacks by comparing the query structures of the programmer-

intended query and the possible attack query. The approach

suggests the need for an oracle that, given a control path in a

program, returns a set of benign candidate inputs that

exercises the same control path. This oracle, if constructed,

may actually offer a clean solution to the problem of deducing

the query structure intended by the programmer. Practically,

such an oracle is hard to construct and become possible for

typical application. However, Bisht and Venkatakrishnan

proposes[6] a real scalable automatic solution to dynamically

detect and prevent SQL injection attacks. At a more abstract

level, the idea of computing the symbolic query on sample

inputs seems a powerful idea that probably has more

applications in systems security. Proxy-based detection

method proposed in [11], consists of four different

components: (i) Query selection for evaluation. (ii) Extraction

of input data. (iii) Parse-tree generation and (iv) Input data

evaluation. To implement such a method, a separate proxy,

architecturally residing in the middle tire with the web-

application server, is used for query selection, input data

extraction and parse-tree generation. Based on evaluation of

input data using parse-tree evaluator, if it is found normal, the

query is allowed to execute, otherwise, query is considered as

malicious and is not executed. Unlike, other detection

technique, such technique has added advantage due to its

modularity in implementation. However, detection rate

depends on the algorithms applied for each of the components

of the detection technique.

[B] Pre-Generated Approach

The pre-generated approaches for the detection of SQLIA,

found in [1] consists of various analysis tools used for

identifying the vulnerabilities. The detection approaches are

mainly the mechanisms to identify the vulnerabilities in the

web-application programs. These mechanisms include - (i) the

validity checking and (ii) the integrity checking of web-

programs. Pre-generated approaches are implemented with the

software tools to check the vulnerabilities in web-programs so

that the attackers cannot mis-utilize an application. By giving

an application program as input to such software tools, the

programmer intended SQL queries are analyzed using valid

and tainted data. Based on such analysis, it reports the

vulnerability points in an application program. It is also

proposed the modules or methods used to rectify the

vulnerability points. Detection methods proposed by the

researchers and the category of implementing their

approaches, and the pros and cons of each method are

tabulated in the table 2. Based on our limited survey it is

observed that -

(a) The pre-generated detection techniques for SQLIA depend

on the effectiveness of the validity checking by the web

programmer and the effectiveness of the tools applied to

detect the integrity of the code that causes SQLIA.

(b) The post-generated approaches for detection of SQLIA are

based on the initialization of trusted or untrusted strings,

which are developer-dependent. The parse tree evaluation

approach based on the pre-defined grammatical constraint,

given in [5] and [6] may be considered better than the others.

However, there is the possibility of manipulation of the

initialized strings by the attacker, and pre-defined

grammatical constraint is application dependent and restricts

the variable runtime query structures.

In the next section, we briefly describe DUD, a method for

dynamic SQLIA detection which attempts to overcome the

shortcomings of the above methods.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

18

2.3 DUD
DUD[1] is a post-generated approach for detection of SQLIA.

It generates a master profile of legitimate dynamically

generated queries and stored into a semi-structured form. At

runtime, it converts the dynamic SQL query into semi-

structured or XML form based on the Document Type

Definition(DTD). It then matches the XML form query with

the profile using algorithms for exact matching and

approximate matching. At first, it executes exact matching

algorithm and if it matches it considers the query as legitimate

query and allows the query to transport to database server

from execution. If it does not match, then it computes and

retrieves the minimum distance with respect to all the queries

available in the profile. A dynamic threshold is generated

during training phase and is used for the detection of SQLIA

by comparing with the distance value computed in

approximate matching. A detailed discussion on the design,

uses and its effectiveness is in [1].

3. AN EFFECTIVE RULE BASED

DETECTION METHOD: RDUD

The proposed method RDUD, is an enhanced version of DUD

and is a supervised machine learning classification approach.

The method indexes the strings of the dynamic SQL queries

and employs Support Vector Machine(SVM) to classify a

runtime SQL query into normal or attack. A support vector

machine (SVM) is a concept that maps the input vector into

two or higher dimensional feature space (linear or non-linear

mapping). SVM may be used most popularly in classification

processing by analyzing data and recognizing the patterns[15].

We use standard binary linear SVM which takes a set of input

data and predicts each input into two possible classes - attack

or normal. By giving the computed distance value as input to

SVM, it classifies into either of the two classes which makes

the SVM a probabilistic binary linear classifier. The

architecture of RDUD is shown in figure 3. It is composed of

two major phases - (i) Training and (ii) Runtime detection;

During training phase, it performs the following activities - (i)

Generation of Rule Dictionary; (ii) Generation of two web

profiles(normal and attack) separately for legitimate and

attack queries; The runtime phase, comprises the following

steps -(i) XML-conversion of runtime SQL queries; (ii)

Production rule generation; (iii) Distance computation with

respect to each of the web profiles; (iv) Classification - attack

or normal based on distance value; Pre-processing of dynamic

SQL during training phase, comprises the generation of both

the web profiles. The web profile generation consists of three

basic tasks - (1) Converting a dynamic SQL query into XML

form; (2) Generating production rules; (3) Writing into web

profile. Depending upon the input data values, we consider

that the dynamic SQL query for an application may have

different structures. Also, corresponding to each legitimate

structure of the SQL query, it may have multiple attack

queries whose structures are different(for example see figure

1). To accommodate variable schema of both legitimate and

attack queries, we convert the dynamic SQL query into XML

form. In contrast to the grammar verification context,

rules(production) are generated to construct web profile from

the test input(i.e. dynamic SQL query) during training phase.

Query classification at runtime starts with the extraction of

production rule(PR) from the dynamic SQL query, followed

by the execution of matching process with both the web

profiles (attack web profile and normal web profile). Based on

the matching score a query is classified into normal class or

attack class.

The PR of a dynamic SQL query, given for classification, can

be any of the following status -(i) It exists in the legitimate

web profile; (ii) It exists in the attack web profile; (iii) It does

not exists in both the profiles; For the first two conditions (1)

and (2), it can be easily sorted out the class of the runtime

query - attack or legitimate. In case the condition (3) holds,

there may be two possibilities either the query itself is a new

legitimate query or a new maliciously crafted attack query. In

such case, the minimum distances (ω1 and ω2), with respect to

both legitimate and attack profiles respectively are calculated.

Using the value of ω1 and ω2, we calculate the nearest plane

value(Pv). Such values are given input to the trained SVM to

identify the class of the query.

At first, it retrieves the PR of runtime SQL query. It is then

computes the two distance values(ω1 and ω2) using the same

steps given in Distance Computation cited in Training Phase

under this section. To execute the steps for computing the

distance PR values of two dynamic SQL queries is given in

algorithm 2. The algorithm is designed based on [13]

calculates the distance by counting the number of unmatched

rules or strings in a particular PR matching process. Let us

consider the following two dynamic SQL queries (i) and (ii)

in which both are considered as legitimate for an application.

(i) select balance from accounts with usertype=„T‟ and

username=„abc‟ and password=„p001‟;

(ii) select balance from accounts with usertype=„O‟ and

username=„xyz‟ -- and password=„p001‟;

Suppose, an attack query (iii) given below is -

(iii) select balance from accounts with usertype=„T‟ and

username=„abc‟-- and password=„p001‟;

In this case the structure of both the queries (ii) and (iii) are

similar. However, the query (iii) given above is an illegitimate

or attack query. If we execute the matching process in which

the dynamic structure of the SQL query includes the structure

and the values then only the query can be identified as

different from the legitimate query. Because in this particular

application only for the usertype „O‟, the password portion is

not required. Thus, we get the minimum computed distance

value is 2 when we include value portion in case of runtime

query structure. To classify the above two SQL queries, we

use the equation ωx ± b = 0. The plane of SVM, shown in

figure 6, has two sides(+1 and -1). The value of two roots x1

and x2 are calculated and are plotted the points (x1,x2) in a two

dimensions (X,Y) plane. During training phase we

experimented separately with a list of legitimate and attack

queries. A separating plane is drawn which separates the

support vector planes into both the sides of it. The value of

Pv(nearest plane value) is calculated using the equation Pv(x)

= x1+x2 of each SQL query. For a given off-set value, we get

the value of x lying between +1 and -1. The support vectors,

guide in classifying the positive value of x, nearest to the

value +1 as normal class while negative value of x nearest to

the value -1 as attack class. Support Vector Machine(SVM)

used in detecting SQLIA uses a two dimensional space(X,Y)

to find a separating plane for binary classification, in which

the error rate is minimal. The SVM uses a portion of the data

to train the system, finding several support vectors that

represent the training data and guides at runtime to identify a

dynamic SQL query into either of the class - attack or normal.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

19

Table 2: Detection approaches and their pros and cons

Name of

the

method

Approach Imple

menta

tion

Pros Cons

String

Evaluation

based on

initialized

trusted list

Query

analysis

to check

initialized

unsafe

literals

Post

Gene-

rated

Remove all

unsafe

literals

before

execution

of runtime

query

Developer‟s

dependent

and may

affect

applications

functionality

String

Evaluation

based on

initialized

untrusted

strings

Syntax

evalua-

tion for

runtime

query

based on

untrusted

initialize-

tion

Post

Gene-

rated

Removes

tainted

strings from

runtime

query based

on

initialized

trusted

strings

Developer‟s

dependent

and may

affect

applications

functionality

Parse-Tree

Evaluation

based on

grammar

[4]

User

origina-

ted data

is parsed

based on

predefi-

ned

grammar

Post

Gene-

rated

Formula-

ted

successf-

ully the

structure of

a legitimate

query

Scope of

manipulation

of user origi-

nated data

and may

affect

applications

functionality

Evaluation

of Cand-

idate input

based on

Benign

input[5]

The stru-

cture of

runtime

query is

analyzed

with sys-

tem gene-

rated

structure

Post

Gene-

rated

Elaborat-ed

the for-

mulation of

SQLIA. A

novel

approach of

guaran-

teed solu-

tion.

Not explored

the solution

in which it

generates mu

ltiple runtime

stru- cture for

one program-

mmer inten-

ded query

Proxy

based

parse tree

evaluation

[11]

Separate

proxy is

used in

the appli-

cation

site to

parse and

analyze

runtime

query

Post

Gene-

rated

Proxy

based data

evaluation

approach,

improves

the effici-

ency of

evaluation

Performance

also depends

on each

component

of their

system

architecture

and the algo-

rithm for

analysis

Program

Analysis

tool

Taint

generat-

ion tool

Pre

Gene-

rated

Identify the

vulne- rable

mo-dules

Possibility of

manipulation

Query

language

Retrieval

of vulner-

abilities

Pre

Gene-

rated

Reports

vulnerable

applications

Not always

effective

Figure 3: The Architecture of RDUD

For n number of queries, the basic input data format and

output data domains in SVM are as follows:

(xi, yi), ..., (xn, yn), xi  R, yi  {+1,−1} where, xi is a two

dimensional real inputs vector, R is a set of all real numbers.

The goal is to find out the margin of the plane that divides the

points having yi = 1 from those having yi = −1. A plane drawn

on the set of points (x1, x2, .., xr) satisfying maximum-margin

plane and a margin for an SVM trained with samples for a

particular class. Samples on the margin are called the support

vectors. To identify the class a runtime SQL query is given

input to the proposed method of matching process. If it is

matched then declared the dynamic SQL query as

legitimate(i.e., computed distance ω1=0). If the PR does not

matched with any of the Production Rule exists in the

legitimate web profile then the module generates the

unmatched legitimate rules (LR) as output. If the output of

execution is the unmatched rules, the algorithm 3 also

executed with the attack web profile and input for these

modules are - PR of the dynamic SQL query and the attack

web profile. If it is matched then it declared the dynamic SQL

query as attack query(i.e., computed distance ω2=0).

Otherwise, the output of such execution are unmatched attack

rules(AR). If the values of both LR and AR are not empty

string then we execute the module called Distance

Computation. The output of such execution is the number of

unmatched rules in LR gives the distance (ω1) with respect to

the legitimate web profile(WP1). Then, we execute the module

Distance Computation by giving input - unmatched rules AR.

The output of such execution is the number of unmatched

rules in AR, gives the values of (ω2) with respect to the attack

web profile WP2. Next, we compute nearest plane value(x)

for a given value of b and classify the runtime SQL query

based on the value of x. The output of the detection approach

RDUD may be interpreted with the following cases:

(1) If ω1 = 0 then it lies in the normal plane and declared as a

normal query;

(2) If ω2 = 0 then it lies in the attack plane and declared as an

attack query;

(3) If the value of both ω1 and ω2 are non-zero then it

computes the value of x and plot the

value the two dimensional plane(X,Y), as shown in figure 6

and using trained support vectors it identifies the class. RDUD

is significant in view of the following observations:

(a) Initialization of trusted/untrusted strings are avoided;

(b) The matching logic is easy to implement;

(c) Web profile file is adaptively updated;

(d) No restriction is imposed on input strings/ characters;

(e) No restriction of defining syntactical constraint for query

structure;

We would like to mention that the structure of the

dynamically generated SQL query, may not always be

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

20

constant depending on the application. To accommodate the

variable schema of runtime queries, we convert dynamic SQL

queries into semi-structured document (i.e., XML) before

generation of web profile. Each rule in PR of the runtime SQL

query is matched with all the PR of the web profile. Thus, the

time complexity of such matching of PR extracted from XSQL

and each PR of the web profile is n×m; n ← number of rules

available in the XSQL and m ← number of rules available in

a PR of the web profile. If T is a set of tags of an XML

document, then σ = T  {$}, where ”$” stands for the space

and carriage return characters. The algorithm generates a

context free grammar G=(V,σ,R,S); V is a finite set of string

tags, R is a finite set of Production Rules and S is the initial

string tag of G. A sample generated sequence of PR is shown

in Table 4. The “Input” column shows the next input string

tag, and the “Rules Generated” column shows the production

rules. The empty production rule i.e., the start string tag,

“r0→” and the next input symbol “< item >” are provided as

initial state. In step i and i+1, the non-terminal tagged string,

in the form of production rule r 1, r 2, r 3 etc. are generated. The

proposed approach is a semi-supervised classification method

in which it is not considered the pre-defined parameters to

categorize the SQL query strings. It is assumed that the

attackers may conduct SQLIA, crafted with malicious strings

having variable SQL query structure. The programmer

intended SQL query also can have variable structures and are

varying with application to application. For a dynamic SQL

query the two numeric values - (i) computed distance with

respect to the legitimate web profile and (ii) computed

distance with respect to the attack web profile are given input

to the SVM. The classification at runtime is done based on the

plotted distance within the range of values learned during

training phase.

4. PROBLEM FORMULATION
A web-application is an application program coded in web-

language, executed using web-browser. We define a web-

application program as P = ({S},{F}), where S={s1, s2, .., sn}

is a set of finite string tags and F={f1, f2, .., fm} is a set of

finite web-functions or url (static or dynamic). The input

vector (i1,i2,...,in), originated from the user input of web-

application P, transports into web-application server and may

generate dynamic SQL query q. The query q then transports

into the database server, where executing it and performs

DBMS operation, such as - data insertion, data updating, data

deletion and retrieving information. The output information

converted into web-application program and sends to the

client‟s point, executes by the web-browser. The problem is to

form a basis to identify the dynamic SQL query q into a 2-

class problem(legitimate or attack) with reference to two web

profiles - attack web profile and normal web profile.

Definition 3(Rule-Segmented Query): The structure of a

dynamic SQL query can be expressed into a set of rules(R),

retrieved from the Rule Dictionary(RD). Again, each rule is

expressed by a tuple (rule name, rule type, rule value). Rule-

Segmented Query(RS) can be defined as a function fRS(q)

which returns a set of rule name such that each sub-string of q

has one rulename. Thus, we can write,

RS(q) : RS(q) → R; R = {r1, r2, .., rn} and ri = {rni, rti, rvi}.

Let us consider the query string query, cited in PHP code

given in figure 2, the value of RS(query) can be written as -

RS(query)←(K1$A1$K2$T1$K3$Id1$Op1$V1Lop1$Id2

$Lop2$V2)

The function RS(q) returns the sequence of rule name from

RD corresponding to the sub-strings of the query, such that

each rule is separated by the literals „$‟; A sample shot of RD

is given in the table 3. In this table it is shown the different

columns of RD such as - Rule name, Rule type and Rule value.

Definition 4(Rule Dictionary): Rule Dictionary(RD) is a rule

data-store, in which each rule is stored as a tuple (Rule Name,

Rule Type, Rule Value). Executing a policy or method for

generating RD, such that it creates an auto-generated unique

rule name(Rn), which is one of the attribute of RD and stores

the unique rule value into it. Let, the rule name stored in RD

with respect to an web-application, Rn = (rn1, rn2, .., rnk).

Corresponding to each rule name, rni, the policy or method

retrieves the string from a dynamic SQL query as a rule

value(rvi) and its rule type i.e., Keyword, Attribute etc. Thus, a

rule is stored in RD in the form of a tuple (rni, rti, rvi). A

method, (RD), implements the policy, generates the unique

value of rule name

Table 3: Rule Dictionary in Tabular form

 Rule name

 [1]

 Rule Type

 [2]

 Value

 [3]

K1 Keyword select

K2 Keyword from

K3 Keyword where

A1 Attribute account

A2 Attribute users

Id1 Identifier username

Id2 Identifier password

Rop1 Relational Operator =

V1 Value ddas

Lop1 Logical Operator and

V1 Value dd123

and retrieves the values for the other two attributes of RD -

rule value(Rv) and rule type(Rt) from a dynamic SQL query.

The input to the algorithm of policy or method f(RD) is a

dynamic SQL query, qa and output to the algorithm of policy

or method (RD) retrieves a set of rule tuples. Thus, the data-

store of RD consists of a set of rows, {R1,R2, ..,Rp}, p ≥ 1 and

we can express a dynamic SQL query, qa = Ri = {(rn1, rt1, rv1),

(rn2, rt2, rv2), .., (rnk, rtk, rvk)}; Ri  RD.

Definition 5(Production Rule): A Production Rule(PR) is a

sequence of rule names, PR=[r1,r2,..,rn], retrieved from RD

with respect to a sequence of strings available in the structure

of a dynamic SQL query. Thus, for each dynamic SQL

query(qa), we have one corresponding production rule(PRa). r i

 N; PRa  N; N← set of all rule names in RD; We consider

the example of query string query given in the section 2. The

value of PR extracted from RD for query can be written as -

K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id2$Rop1$V2

Definition 6(web profile): A web profile is a summary of

dynamic or runtime SQL queries generated for a web-

application software. The content of the web profile is a set of

finite numbers of unique Production Rules(PR), such as

WP=[PR1, PR2, .., PRm]. According to our approach every

web-application software is executed with two web profiles -

(i) legitimate web profile(WP1) and (ii) attack web

profile(WP2). Let us consider the example given in figure 1.

The query string query1 and query2 are considered as

legitimate. However, the query string a_query given in section

2 is an attack query. Thus, the legitimate web profile contains

the set of PR, generated for query1 and query2 can be

expressed as -

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

21

PR1=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id3$Rop1$V3

$Lop2 $Id2$Rop1$V2

PR2=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id3$Rop1$V4

$Lop2$Id2$Rop1$V2

The content of the attack web profile for the query string a

query can be written as -

PR1 = K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id3$Rop1$

V3$ Lop2$Id2$Rop1$V2$Lop2$Id4$Rop1$V4

Definition 7 (Nearest Plane Value(Pv)): For a given off-set

value(b), the plane values(x1 and x2) are computed with the

values of ω1 and ω2 using the equation (x1×ω1+b) = 0 and

(x2×ω2−b) = 0. The values of the parameters ω(ω1 and ω2)

and b are constrained to solve the 2-class problem[12]. Thus,

the Nearest Plane value(Pv) can be calculated as Pv = x1+x2.

The constraint parameter b called offset parameter and should

be chosen such that the range of support vectors, Pv can be

projected on the decision surface. Nearest Plane Value(Pv) is

the value plotted in (X,Y) plane which gives a measure of the

nearest or closest distance from the separating plane. The

value of Pv(q) gives a measure of the dynamic query belongs

to the class - attack(illegitimate) or normal(legitimate).

Definition 8(Malicious Query): The dynamic SQL query q

generated with the input data (i1, i2, ..., in) is a malicious query

causing SQL injection attack (SQLIA) if any of the following

conditions hold:

• The PR generated from the structure of the dynamic query q

belongs to the attack web profile WP2, i.e., PR(q) : PR(q) ←

PRq  WP2;

• The PR generated from the structure and the computed

nearest plane value(Pv) are such that all the following three

conditions hold -

(i) [PR(q) : PR(q) ← PRq  WP1];

(ii) [PR(q) : PR(q) ← PRq  WP2];

(iii) For a given value of b, the value of Pv is such that (−1 ≤

Pv(q) < 0).

Definition 9(Legitimate Query): The dynamic SQL query q

generated with the input data (i1, i2, ...,in) is a legitimate query

if any of the following conditions hold:

• The PR generates from the structure of the dynamic SQL

query q belongs to the legitimate web profile WP1, i.e., PR(q)

 WP1;

• The PR generated from the structure of the dynamic SQL

query q and the computed value of Pv are such that it holds all

the following three conditions -

(i) [PR(q) : PR(q) ← PRq  WP1];

(ii) [PR(q) : PR(q) ← PRq  WP2];

(iii) For a given value of b, the value of Pv is such that (0 ≤

Pv(q) ≤ 1).

4.1 Algorithm
In this section we present the steps to implement our

approach.

A. Training Phase

Generation of Rule Dictionary(RD): Let us, consider the

example query string shown in figure 2. The XML equivalent

of the query is shown in figure 4. The Document Type

Definition for the conversion of such query string into XML

form is shown in figure 5. The rule value <select> is

identified by rule name - K1 and rule type - Keyword.

Similarly, the rule value <from> is identified by rule name K2

and rule type Keyword etc. Thus, using these string values of

each dynamic query, the Rule Dictionary(RD) is generated.

To generate RD, the following steps are executed –

 Read each item - element, attribute, identifier,

value, relational operator and logical operator from

the XML form of dynamic SQL query(XSQL);

 Check whether the rule value of the

corresponding item already exists in the RD;

 If the rule value of the corresponding item does

not exist in RD then execute (i) to (iv) given

below:

(i) Generate unique rule name(n) for each of the item;

(ii) Retrieve each string of the dynamic SQL query as a rule

value(v);

(iii) Identify the corresponding rule type(t);

(iv) Insert the tuple (n,t,v) into RD;

Generation of web profile: To generate web profile from a

dynamic SQL query the following steps are to be executed -

 Read dynamic SQL query ;

 Convert the dynamic SQL query into XML form called

XSQL;

 Read each item of XSQL - element, attribute and

identifiers;

 Retrieve corresponding rule name from RD for each item

of XSQL;

 Generate Production Rule (PR) of the corresponding

dynamic SQL query by constructing the sequence of rule

name retrieved in the previous steps;

 Check whether the value of PR already exists in the web

profile(WP);

 If does not exists, insert PR into web profile(WP);

The web profiles generated during training phase will be

incrementally updated based on the detection at runtime

phase.

Distance Computation: The distance between two SQL

queries can be calculated by computing the minimum number

of operations required to convert the PR of one query into the

other. Let, us consider the two PR values PR1 and PR2 of two

different dynamic queries Q1 and Q2 as given below :

PR1=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id2$Rop1$V2

PR2=K1$A1$K2$A2$K3$Id1$Rop1$V1$Lop1$Id2$Rop1$V2$Lo

p1$Id3$Rop1$V3

The number of unmatched rule between two PR, gives the

distance value ω. Thus, the value of ω in the above case

between PR1 and PR2 becomes 2 due to the unmatched rule -

Id3 and V3. For a dynamic SQL query the value of ω1 and ω2

can be computed at runtime with respect to normal and attack

web profiles. If the value of ω1 is zero, then it declares as

„Normal‟ query. If the value of ω2 is zero, then it declares as

„Attack‟ query. In case, the values both ω1 and ω2 are non-

zero, we execute the process for query classification by SVM

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

22

Figure 4: XML record based on DTD given in figure 5

Figure 5: Document Type Definition (DTD) of XML

equivalent of SQL query

During training phase, we perform tests with dynamic SQL

queries (both legitimate and attack). For each matching

process we compute the value of x1 and x2 and finally, the

nearest plane value NPV(x) = x1+x2. We experimented with

both normal and attack queries and plotted the value of x in a

two dimensional plane(X,Y). A separating plane which

separates both the dimensional planes(X and Y) equally is

drawn, shown in figure 6. We also draw support vector plane

by joining the plotted points, parallel to the separating plane.

The plotted points below the separating plane and towards the

X-axis are identified as normal class, and the plotted points

above the separating plane towards the Y-axis are identified

as attack class. The following steps are executed for the

computation of distance value(ω) between PR of two queries.

• For all the m numbers of PR of a web profile(WP1) do {

• For all the rules of PR for dynamic runtime SQL query do {

• Calculate the number of unmatched rules to each PR of WP1,

{C1,C2,C3, ..Cm} } }

• Retrieve the minimum value Ck from {C1,C2, ..,Cm} which is

the distance between the runtime SQL query with respect to

the web profile WP1

Thus, the distance value may be computed at runtime between

the PR value of dynamic SQL query with each PR value of

both attack and normal web profile separately.

Figure 6: The plane of SVM

B. Runtime Phase(Query Classification):

To convert XSQL(XML form of runtime query) into sequence

of rules called PR, we use the algorithm based on the

SEQUITUR algorithm proposed by Nevill-Manning [14]. The

algorithm for PR generation from a runtime SQL query is

given in the algorithm 1. The algorithms for distance

computation and the final classification based on PR matching

are given in algorithm 2 and 3 respectively. A sample of the

steps in generating PR is given in the table 5.

Algorithm 1: PR Generation

<select>

<attribute attribute name=balance </attribute>

<from>

<table table name=account </table>

</from>

<where>

<expression>

<identifier identifier name = username </identifier>

<relational operator relational operator == </relational

operator>

<value value = prakash </value> </expression>

<logical operator logical operator = AND </logical

operator>

<expression>

<identifier identifier name=password </identifier>

<relational operator relational operator == </relational

operator>

<value value = p123 </value>

</expression>

</where>

</select>

<!Element Select (attribute)*

<!Element From (table)*

<!Element Where (expression, (Logical Operator,

Expression)*)

<!Element Expression(Identifier, Relational Operator, Value)

<!Element Logical Operator(AND|OR|NOT)

<!Element Identifier(#pcdata)

<!Element Relational Operator (= | != | < | > | <= | >= |)

<!Element Value (#cdata)

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

23

Algorithm 2: Distance Computation between PR of two

Queries

Algorithm 3: PR Matching of two dynamic SQL queries

Table 4: Steps in generating Production Rules(PR)

Step

Input

 Rules Generated

1 <item> r0 

2 $ r0 <select>

3 <item> r0 <select>$

4 $ r0 <select>$<attribute>

5 <item> r0 <select>$<attribute>$

6 $ r0 <select>$<attribute>$<name=balance>

7

….

<item> r0 <select>$<attribute>

$<name=balance>$

i

<item> r0 <select>$<attribute>$name=balance$

>$</attribute>$<from>…</from>$

i+1 $ <select>r1r2 … </from>$

r0$</attribute>r3 … </where>

r1$<attribute> r2$<name=balance>

5. EXPERIMENTAL RESULTS
In our experimental setup the detection modules of RDUD are

installed in a web-application server of a three-tire application

architecture. The web-application server is connected with a

database server and is accessible to web clients. We generate

two master files for each application. The first file consists of

the legitimate dynamic SQL queries generated with legitimate

access during training phase. The other file consists of the

attack queries generated, corresponding to each intended

structure of SQL queries defined in web-application program.

Using the master file having legitimate SQL queries we

generate the legitimate web profile(WP1). Similarly, we

generate attack web profile(WP2) with master file having the

attack SQL queries. Both the profiles WP1 and WP2 are stored

in the web-application server. The server also contains the

modules for - (i) Rule Dictionary generation; (ii) Production

Rules generation; (iii) Distance Computation and (iv) Query

Classification. We used MySQL in the database server. To

test the detection rate using our approach, we simulate the

runtime environment using two different files - file 1 and file

2. The file 1 consistS of legitimate dynamic SQL queries and

file 2 consistS of attack or illegitimate dynamic SQL queries.

While generating the file 1 and file 2 we include dynamic

SQL queries in it such that the corresponding PR of some of

the queries exist in the respective web profiles, while other

does not exists. To generate the web profiles, at first we

construct the Rule Dictionary table and executed the module

for generation of Production Rule(PR) using algorithm 1,

from both the master files - legitimate master file and attack

master file. Then the values of PR are stored in WP1 and WP2

respectively. The web-application is considered for our

experiment, consists of three programmer intended SQL

queries. The web profile(WP1) consists of 50 numbers of PR

values of dynamic SQL queries, which are considered as

legitimate. Similarly, the web profile(WP2) consists of 60

numbers of PR values of attack SQL queries such that for

each class of SQL injection attack, we considered 12 numbers

of attack SQL queries. While computing the distance value

(ω1 and ω2), if we avoid the value portion of an unmatched

expression, we do not get 100% detection rate for some of the

attack classes of SQLIA such as - ByAut, IUnion, Adqry,

UexRP. This is due to the fact that the structure of some of the

attack queries available in the attack web profile may be same

with the structure of the legitimate queries. According to our

concept, depending upon application requirement, the

structure of the attack SQL queries may be same with the

structure of the application generated variable dynamic query.

We finally experimented with the runtime query structure

which includes the value portion. We changed the Distance

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012

24

value computed for an unmatched value in an expression of a

runtime SQL query. Thus, for each unmatched value we

considered the Distance value as 1. In this experiment we got

100% detection rate We also experimented by considering the

character wise edit distance method instead of considering the

Distance value for unmatched rule value as 1. In this case also

we got 100% detection rate for all the attack classes except

the attack class ByAut. This is due to the fact that any new

dynamic SQL queries consist of new value, can increase the

distance. Thus, according to our experimental analysis, we

should apply our detection approach including the character

wise distance computation for all the attack classes of SQLIA

except the attack class ByAut. For the detection of this

particular attack class ByAut we should apply structure

matching excluding the value of a dynamic SQL query. We

tabulated the value of x1, x2 and the corresponding value of x

in table 5. The accuracy of the detection of query class is also

cited in the table 5.

6. CONCLUSIONS AND FUTURE

WORK
Our detection method RDUD has been found to perform

satisfactorily over a test data-set. The method is also found

capable of handling the variable structure of dynamically

generated SQL query based on user input. The effectiveness

of updating mechanism of the web profile can be increased

with additional checking module. However, special care needs

to be taken for maintaining the integrity of the web profile

files to avoid poisoning of web profiles. Also, the use of

appropriate encoding technique can help to avoid stolen key

attack.

Table 5: Values of x1, x2, x and query class detection

7. REFERENCES
[1] Debasish das, Utpal Sharma & D.K. Bhattacharyya. An

approach to detection of SQL injection attack based on

dynamic query matching. International Journal of

Computer Applications, 1(25), 2010.

[2] Common Weakness Enumeration. 2011 cwe/sans top 25

most dangerous software errors. MITRE Corporation,

http://cwe.mitre.org/top25/#Listing, 2011.

[3] SPAM fighter products 2003-2011, CISCO Worldwide.

A growing menace. http://spamfighter.com/News-15078-

Sql-Injection-Attacks-A-Growing-Menace.htm, 2010.

reports Forman, G. 2003. An extensive empirical study.

[4] Reports from Information System and Audit Cell(Indian

Bank), Chennai(INDIA). Audit report for Core

banking/net banking/ mobile banking/ atm/ data center/ d

r site/ networking infrastructure and other integrated

systems.

[5] Z. Su and G. Wassermann. The essence of command

injection attacks in web application. In the 33rd Annual

Symposium on Principlas of Programming Languages,

pages 372-382, January 2006.

[6] P. Madhusudan, Prithvi Bisht and V.N. Venkatakrishnan.

Dynamic candidate evaluation for automatic prevention

of SQL injection attacks. ACM Transactions on

Information and System Security, 13, 2(14), 2010.

[7] C. Anley. Advanced SQL injection in SQL server

applications. White Paper, Next Generation Security

Software, http:/wwwgenss.com/papers/advanced sql

injection.pdf, 2002.

[8] D. Litchfield, Director of Security Architecture. Web

application dissembly with odbc error message, a report.

http://www.atstake.com.

[9] M. Howard and D Le Blane. Writing Secure Code,

volume II. Microsoft Press, Redmond, Washington,

2003.

[10] Jeremy Viegas William G.J. Halfond and Alessandro

Orso. A classification of SQL injection attacks and

countermeasures. In Proceedings of the IEEE

International Symposium on Secure Software

Engineering, Arlington, VA, USA, 2006.

[11] Yi Yuan Anyi Liu and Duminda Wijesekera. Sqlprob: a

proxy based architecture towards preventing sql injection

attacks. ACM Digital Library, 2009.

[12] Vladimir Vapnik Cornna Cortes. Machine Learning, 20,

273-297(1995).

[13] K. Krithivasan and R. Sitalakshmi. Efficient two

dimensional pattern matching in presence of errors.

Information Sciences, 43, 1987.

[14] James Law. Path based dynamic impact analysis. In

IEEE Explore, Computer Science Department, Oregon

State University, 2003.

[15] Steve R. Gunn. Support Vector machines for

classification and regression. Technical report, Faculty of

engineering, science and mathematics. School of

Electronics and Computer Science.

ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf, 1998.

[16] F. Bouma. Stored Procedures are Bad, O‟Kay, Technical

Report. Asp.Net/Weblogs, http://weblogs.asp.net/fbouma

/archieve/2003/11/18/38178.aspx, November 2003.

[17] E.M. Fayo. Advanced sql injection databases, technical

report. Agencies Information Security, Black hat

Briefings, Black Hat U.S.A, 2005.

[18] S. McDoland. SQL Injection, modes of attack, defence

and why it matters. GovernmentSecurity.org, April 2006.

[19] F. Finigan. SQL injection and Oracle – part 1 and part 2.

Security Focus, November 2002.

