On the Convergence of Logistic Map in NOOR Orbit

Renu Chugh
Department of Mathematics
M. D. University, Rohtak
124001, INDIA

Mamta Rani
Department of MCA
Krishna Engg. College
Ghaziabad, INDIA

Ashish
Department of Mathematics
M. D. University, Rohtak
124001, INDIA

ABSTRACT
The logistic map $rx(1−x)$ was given by the Belgian mathematician Pierre François Verhulst around 1845 and worked as basic model to study the discrete dynamical system. The behavior of logistic map has been already studied in orbits of one-step, two-step and three-step iterative procedures and it has been established that the logistic map is convergent for larger values of ‘r’ for two-step and three-step iteration methods. In this paper, an attempt have been made to study the convergence of logistic map in Noor orbit, which is a four-step iterative procedure.

Keywords
Logistic map, Picard orbit, Noor orbit.

1. INTRODUCTION
On November 30, 1844, at the age of 40, when Pierre François Verhulst presented his contribution to the “Memoires de L’Academie” of the young Belgian nation, which was published in “tome XVIII” with the title “mathematical investigation of the law of population growth”, he did certainly not know that his work would be the starting point for further research in the field of mathematical biology, biometry, and demography. It was in these Memories that he introduced a growth model for a closed population facing a living environment with limited resources for the subsistence of its members. The purpose was to predict the demographic evolution of the young Belgian society and to answer the question about the maximum population size sustainable with these limited resources. He certainly did not expect that more than one century later, the study of a discrete version of this model would give rise to a new field in science: chaos theory (see [21]).

The logistic equation (some times called the Verhulst Model or logistic growth curve) $x_{n+1} = rx_n(1−x_n)$ is a model of population growth first published by P.F. Verhulst (1845,1847). The model is continuous in time, but a modification of the continuous equation to a discrete quadratic recurrence equation known as the logistic map. Logistic map is obtained by removing the first term from logistic equation. In its more usual form logistic map is written as $x_{n+1} = rx_n - bx_n^2$, where x lies between zero and one and ‘r’ is a positive real number. Logistic map plays an important role in the applications of pure and applied mathematics. For a detailed study on logistic map one may refer to Aiden [1], Devaney [3], Holmren [4], M.S.EL Naschie [9–12], Peitgen, Jurgens and Saupe [15] etc. Recently, cryptography has emerged as a major application of logistic map (see for instance [5], [7], [14] and [24]). A comparative study of the logistic map in Picard orbit and that of Norlund orbit is giving by Kumar and Rani [6]. Nowadays the logistic map is studied intensively as an archetypal one dimensional dynamical system.

The one-dimensional logistic map has been extensively studied in the past years. This map describes the typical behavior of many dissipative dynamical systems and has application in Physics, biology, electronics and many other different subjects. Wackerbaur et al [23] detected behavior of logistic map on the basis of different measures of complexity. Salarich and Alasfy [21] utilized the entropy control technique for chaos elimination and presented the logistic map as a case study for the same. Song and Meng [22] proved synchronization in logistic mapping is studied using absolute value feedback control. Molina et al [8] gave embedding dimensions of time series in logistic map and other chaotic maps. Rani and Agarwal [17] generated Julia set by logistic map and studied their distortion under the effect of Noise.

In 2005, Rani and Kumar [20] studied logistic map via new approach. They introduced the superior orbit as an example of two-step iterative procedure and showed that the logistic map is convergent for the large value of ‘r’ as compared to Picard orbit. Recently, Rani and Goel studied the convergent behavior [18] and stability [19] of the logistic map via Ishikawa iterates. They found that the map is more stable in Ishikawa orbit than that of Picard orbit.

In this paper, the main tool is Noor iterative procedure. Here, N–orbit stands for the orbit generated by Noor iterative procedure [13]. It is proposed to study the convergent behavior of logistic map in N–orbit. In Section 2 basic definitions and a few parameters that have been taken into account during our study have been described. In Section 3 main result have been presented, followed by concluding remarks in Section 4.

2. PREMILANIRIES
Logistic map have been studied using Picard iterative procedure. Following is the definition of Picard orbit:

Let us consider (X, d) be a linear metric space and T is a self mapping from X into X.

Definition 2.1[16]. Let X be a non-empty set and $f : X \to X$. For a point x_0 in X, the Picard orbit (generally called orbit of f) is the set of all iterates of a point x_0, i.e.,
O(f, x₀) = {x₀ : xₙ = f(xₙ₋₁), n = 1, 2, …}.
where the O(f, x₀) of f at the initial point x₀ is the sequence {fⁿx₀}.

Definition 2.2. Let us consider a sequence {xₙ} of iterates for initial point x₀ ∈ X such that,

\[NO(T, x₀, β, α, γ) = \{xₙ+1 : xₙ+1 = (1−αₙ)xₙ + βₙTzₙ ; \]
\[yₙ = (1−αₙ)xₙ + αₙTzₙ ; \]
\[zₙ = (1−γₙ)xₙ + γₙTyₙ ; n = 0, 1, 2, \ldots \]

where αₙ, βₙ, γₙ ∈ [0, 1] and {αₙ}, {βₙ}, {γₙ} are sequences of positive numbers, which is called as N–orbit (NO). The above sequence of iterates is called as Noor iterates [15]. Also when γₙ = βₙ = 0 and αₙ = 1 then it behaves as Picard orbit. In the computations, αₙ = α, βₙ = β, γₙ = γ; n = 0, 1, 2... have been taken.

3. A COMPUTATIONAL APPROACH TO THE STUDY OF LOGISTIC MAP IN NO (N–ORBIT)

In the computational study, a program have been generated in Mathematica for α = β = γ chosen between zero and one (i.e. α = β = γ ∈ [0, 1]). Let x₀ be the point in [0, 1], we attempt to find the maximum value of ‘r’ correctable up to two decimal places, for which the logistic map shows the convergent behavior to a fixed point.

Now, we present some graphical representations of NO using time series representation, which shows the optimum value of ‘r’ for the specific choices of α = β = γ.

(i)

Table 1

<table>
<thead>
<tr>
<th>x₀</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>3.11</td>
</tr>
<tr>
<td>0.25</td>
<td>3.11</td>
</tr>
<tr>
<td>0.35</td>
<td>3.11</td>
</tr>
<tr>
<td>0.50</td>
<td>3.11</td>
</tr>
</tbody>
</table>

Table 1 shows that the logistic map is convergent at α = β = γ = 0.9 for 0<r<3.11, for all x ∈ [0, 1]. See the convergent behavior of map in NO in time series diagram given in Fig. 1. For r>3.11 the logistic map shows the non-convergent behavior in NO. Since the non – convergent behavior at r = 3.12 is negligible (not observable). So, the Fig. 2 shows the non-convergent behavior for r = 3.70 at α = β = γ = 0.9.

![Convergent behavior of logistic map at (α, β, γ, r, x₀) = (0.9, 0.9, 0.9, 3.11, 0.15)](image1)

![Non-Convergent behavior of logistic map at (α, β, γ, r, x₀) = (0.9, 0.9, 0.9, 3.70, 0.15)](image2)

![Convergent behavior of logistic map at (α, β, γ, r, x₀) = (0.44, 0.44, 0.44, 3.00, 0.35)](image3)
Further, we studied the relationship between the parameters $\alpha = \beta = \gamma$ either shows the cyclic behavior or undefined behavior.

In Table 3 the logistic map shows the convergent behavior for $0 < r \leq 15.00$ at $\alpha = \beta = \gamma = 0.1$. For $r > 15.00$ at $x_0 = 0.15$, logistic map either shows the cyclic behavior or undefined behavior.

In Table 4, for $\alpha = \beta = \gamma = 0.05$ and $0 < r \leq 27.52$, for all $x_0 \in [0, 1]$ the logistic map is convergent to a fixed point. Fig. 4 shows the convergent behavior to a fixed point when the given map is iterated in NO at $r = 27.52$ and $\alpha = \beta = \gamma = 0.05$. For $r > 27.52$ it shows the undefined behavior of the iterated function in NO.

In Table 4 the logistic map shows the convergent behavior for $0 < r \leq 15.00$ at $\alpha = \beta = \gamma = 0.1$. For $r > 15.00$ at $x_0 = 0.15$, logistic map either shows the cyclic behavior or undefined behavior.

In Table 4, for $\alpha = \beta = \gamma = 0.05$ and $0 < r \leq 27.52$, for all $x_0 \in [0, 1]$ the logistic map is convergent to a fixed point. Fig. 4 shows the convergent behavior to a fixed point when the given map is iterated in NO at $r = 27.52$ and $\alpha = \beta = \gamma = 0.05$. For $r > 27.52$ it shows the undefined behavior of the iterated function in NO.

In Table 4, for $\alpha = \beta = \gamma = 0.05$ and $0 < r \leq 27.52$, for all $x_0 \in [0, 1]$ the logistic map is convergent to a fixed point. Fig. 4 shows the convergent behavior to a fixed point when the given map is iterated in NO at $r = 27.52$ and $\alpha = \beta = \gamma = 0.05$. For $r > 27.52$ it shows the undefined behavior of the iterated function in NO.

In Table 4, for $\alpha = \beta = \gamma = 0.05$ and $0 < r \leq 27.52$, for all $x_0 \in [0, 1]$ the logistic map is convergent to a fixed point. Fig. 4 shows the convergent behavior to a fixed point when the given map is iterated in NO at $r = 27.52$ and $\alpha = \beta = \gamma = 0.05$. For $r > 27.52$ it shows the undefined behavior of the iterated function in NO.

4. CONCLUSION

In this paper using computational study, it is concluded that the logistic map is convergent in NO for larger values of r for all $x \in [0, 1]$ than PO. Following table gives the comparison of convergence of logistic map in PO and NO.

5. ACKNOWLEDGMENTS

This research is supported by the University Grant Commission of India (Grant No. 39-29/2010(SR))

6. REFERENCES

