
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

1

Software Testing for Embedded Systems

Dinesh Kumar Saini
Associate Professor, Faculty of Computing and Information Technology, Sohar University, Sohar, Oman

Research Fellow, Faculty of Engineering and Information Technology, University of Queensland, Australia

ABSTRACT

In the recent years, embedded systems have become so

complex that the development and testing time is becoming

extremely time consuming. As embedded systems include

more and more functions for new services, embedded systems

are presenting challenges with respect to the attributes of

security, scalability availability, and performance with

deterministic behavior. This paper presents the issues that

affect testing process and technologies, which can be

ameliorated by Rational Test Real-Time (RT-RT). Generally

Object Oriented Approach is adopted while designing the

embedded systems so all the architectural specification is

analyzed in the paper.

General Term
Software Systems, Software Engineering, Software Testing,

Embedded Systems

Keywords
Embedded Software System, Software Testing, Rational Test

Real-Time (RT-RT)

1. INTRODUCTION

Embedded systems are in every “intelligent” device that is

infiltrating; they do not provide standard computing services

and normally exist as part of a bigger system. Embedded

systems are usually constructed with least powerful computers

that can meet the functional and performance requirements

[1]. Embedded systems generally use microprocessors that

contain many functions of a computer on a single device.

Linux and windows Embedded are two popular operating

systems for implementing embedded systems [2].

Most, if not all, embedded systems are “real – time”. A real –

time system is one in which the correctness of a computation

not only depends on its logical correctness, but also on the

time at which the result is produced [3, 4].

In the recent years, the functions added to the embedded

systems have grown, which increases the complexity of a

system even more with more the development time and costs

[5, 6]. Even though the embedded systems are real life

applications, and real – time systems often works in an

embedded scenario and are important to our daily life, so the

production is increasing very enormously [7].

In this paper, certain issues are proposed that affect the

embedded world with a large wallop [10]: These issues

greatly affect the testability and quantifiability of an

embedded system. Recent studies show that more than 60

percent of projects involved in embedded systems are late,

even if giving more than 50 percent time in testing [8, 9].

In section 2, related work introduced in brief. And then,

techniques involved in embedded software testing are

presented. Moving one step ahead, we will also examine what

makes embedded systems so difficult to develop and to test.

Finally in section 3, we have given RT – RT [13].

2. DEVELOPMENT LIFE CYCLE OF

EMBEDDED SYSTEMS

Embedded systems are real time applications and are

implemented with an assortment of software and hardware.

Hardware is to carrying out the action and software is to run

the application effectively, depending on the different types of

constraints like time, size, power consumption, reliability, and

costs. [20] Ceremonious methods for contriving embedded

systems start from stipulation. The stipulations are written for

hardware and software. The problems with ceremonious

methods are the lack of unified hardware – software

representation and the immatureness of well – defined design

of hardware and software. The SDLC for embedded systems

is similar to the standard SDLC except the architecture, in

embedded systems, the most suitable architecture is object

oriented [19].

Most of the embedded systems designed are life or safety

critical system. Life or safety critical systems are the systems

where human safety is dependent upon the correct operation

of the system. A system is a safety critical system if a failure

can result in loss of life, injury or illness, serious

environmental damage, significant loss of, or damage to,

property, failure of an important mission. The basic system

safety goal is to eliminate all single-point failures that could

lead to unacceptable consequences and minimize the

probability of accidents caused by multi-point failures [12,

13].

However, safety must always be considered with respect to

the whole system, including software, computer hardware,

other electronic and electrical hardware, mechanical

hardware, and operators or users, not just the software

element [14].

Safety critical software has been traditionally associated with

embedded control systems.

As awareness of how systems can impact safety has

developed, the scope of safety critical software has expanded

into many other types of systems [28, 29].

An obvious example of a safety critical system is an aircraft

fly by wire control system, where the pilot inputs commands

to the control computer using a joystick, and the computer

manipulates the actual aircraft controls. The lives of hundreds

of passengers are totally dependent upon the continued correct

operation of such a system [30].

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

2

Figure 1 - Development Life Cycle of Embedded Systems

 2.1 Scope
This paper focuses mainly on the following issues which gave

rise to many controversial talks in the embedded world:

a. Difference between the development environment

and the execution of development.

b. A wide range of deployment architectures.

c. Lack of clarity in design models.

d. Tight resources on the execution platform.

e. Variety of execution platforms, which increases the

cross – development environments.

As the Embedded software developer reaches higher and

higher levels of productiveness, software testing must be

applied to each and every step to deliver correct and validated

software and if these issues eradicated during the whole

testing process, the system will be a “lineament”.

3. GENERIC TESTING TECHNOLOGY

(GTT)
After the implementation, the most important activity which is

carried out is testing phase. Effective software testing before

release is crucial for product success. Based on the new

metrics and an associated methodology for in – process

validation of test case effectiveness, GTT is much more

important.

 Embedded systems need exhaustive testing, and these

complex systems, test cases are critical for effective

testing. However, the mere fact that testers use test-case

specifications does not guarantee that systems are

sufficiently tested. Numerous other factors also

determine whether testers have performed well and whether

testing was effective.

Software testing for the embedded systems is little difficult

task then the traditional software testing because in embedded

systems programming is very near to the hardware. Most of

the systems are written either in assembly or machine

language which are very difficult to test and debug.

4. DECIDING HOW LONG TO TEST AN

EMBEDDED SOFTWARE
Considering the safety criticality of the system under test, the

testing can be stopped based on subjective criteria and a

reactive assessment of “Quality”, for embedded systems the

quality remains very high. But here we can take probability

and utility model for software testing [3, 4, and 5]. This model

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

3

describes the number of bugs that are discovered by an

arbitrary time or equivalently, the number of times between

failures of the software.

Let the software fails stochastically under the process of

testing.

Let {N (T), T≥0}

Where, N = Number of time the software fails

 T= Time taken for execution

Thus,

E {N (T+∆T)} – E {N (T)} = b [a – E {N (T)}] ∆T +O (∆T)

…. ……. (1)

Where a = bug

And the equation,

 ∏ (a, b|T, N, n, s ֽ ,……sn)

 ∏ (a, b) P {N (T) = n, s ֽ ,….sn|a, b}

=

 ∫∏ (a, b) P {N (T) = n, n, s ֽ ,……sn|a, b} da db

 n

 an+τ - 1 bn+α-1 exp {- (1+λ+µ+ ∑ Si) b + a exp (- Tb)}

 i=1

=

∞

Ѓ (τ +n) ∫ g (b) db

 0

where,

 n

 bn+α-1 exp {- (µ + ∑ Si) b}

 i=1

 g (b) = {λ + 1 – exp (-Tb)}τ+n

2.1. A Utility Function for Testing and Release

 The main functionality of this function is to describe

the costs and benefits to the tester of the testing process

F (T) = (S + M + R) T

 = FT ………. (2)

Where „S‟ is the staff cost, „M‟ the machine cost and „R‟ the

lost revenue per unit of time.

Logically „S‟ means Architects, Designer, Developers,

Testing team and implementers where as „M‟ denotes cost of

licensed software, hardware cost, network protocols, and

infrastructure cost and „R‟denotes old versions, beta release

and new up gradations.

 So, the utility function [6] for testing software in time T, in

which N (T) bugs are discovered and corrected, followed by

release: [6]

µ {T, N (T), Ŋ (T)} = A – C N (T) – D Ŋ (T) – F (T).

……………….. (3)

5. REQUIREMENTS FOR A GTT
a. Provide a test case notation.

b. Provide alternative ways to implement to implement

test cases.

c. Support test case deployment and execution.

d. Report observation.

e. Auditing security, success, and analyze failure.

6. ARCHITECTURE AND STRUCTURE

OF COMPLEX EMBEDDED SYSTEMS
Embedded Systems are made up of extremely diverse

architectures. Most of them work on a Real Time Operating

System (RTOS) [7, 8]. Embedded software is a little bit

different from the application software i.e. running on a

computer such as in local machine. The target processor of an

embedded system is typically minimal in function and size

because its main goal is to reduce the manufacturing and

production cost. Therefore the program is developed first on

the local machine and then cross compilers are used to

generate the targeted cipher. Some of the examples in

embedded systems are consumer electronics,

telecommunications, automobiles and controlling of industrial

plants. Different domains have common structure in

functional configuration.

 Fig. 2. A typical embedded software system.
RTOS and device drivers are closely coupled with hardware

platform. In an instance for a particular application, a

processor must meet a minimum speed, and the memory

system must meet a minimum size.

To ensure high confidence in these systems, rigorous analysis

is required before deployment. However, it is often infeasible

to perform analysis on the actual system due to its scale and

complexity.

Panoramas of Issues in Complex Embedded Systems

which Affect Testing Process and the proceedings to

exterminate them:

7. SEPARATION BETWEEN THE

APPLICATION DEVELOPMENT

AND EXECUTION PLATFORMS
An embedded system is any software system that must be

designed on a platform different from the platform on which

the application is intended to be deployed and targeted. By

platform, on the development side, one typically means an

operating system such as Windows, Solaris, HP-UX, or

Linux. It should be noted that the percentage of UNIX and

Linux users is much higher in the embedded systems domain

as compared to other IT systems domains.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

4

To cope up with this dual platform issue, the testing tool must

provide access to the execution platform from the

development platform in the most transparent but efficient

way possible. In fact, the complexity of such access must be

hidden to the user.

7.1 A wide range of Deployment

Architectures
The first phase of designing embedded software is the

software architecture design. Software architecture is the

overall system structure as described by the components and

connections among components [9]. Software architectural

styles categorize architectures based on characteristics

specific to a structural composition, such as shared data,

abstract data type, implicit invocation, and pipe and filter.

 The software team understands the target system at this

phase and reviews it with the proposed hardware architecture.

To compose target system architecture, the user selects the

optional features desired for the target system. Once all the

features have been selected for a target system, the target

system architecture is composed from the corresponding

architecture patterns [9].

7.2. Lack of clarity in Design Models
 Model based approach has been advocated for

design and analysis of these complex systems in order

to produce confidence in the design and reduce development

costs. In this approach, representative models of the system

are judiciously used to predict its behavior and analyze

various properties. Hybrid automaton [10, 11, 12] has been

used to model and analyze embedded systems in which

discrete and continuous components are tightly coupled.

In order to automate the analysis of hybrid automata,

algorithmic approach has been developed. Algorithmic

approach can be classified into two categories: reductionism

methods and symbolic methods [13].

The former reduces the infinite hybrid (discrete and

continuous) state space to an equivalent finite

bisimulation and then explores the resulting finite quotient

space, while the latter per- forms direct exploration of this

infinite state space.

 Even though the reductionism method based algorithms are

guaranteed to terminate, the classes of systems to which they

can be applied are very limited. Therefore, symbolic method

based algorithms are generally used. Various computation

tools with vastly different implementations have been

developed for symbolic method based analysis. For example,

d/dt [14] computes reachable sets by approximating

reachable states based on numerical integration and

polyhedral approximation; whereas the Level Set toolbox

[15], which applies the level set methods [16], computes

the evolution of a continuous set by solving the associated

partial differential equation on grid structure.

Due to these implementation differences in computation

method, data structure as well as analysis purpose, designing

new analysis algorithms by using or modifying existing tools

becomes infeasible or inefficient. Furthermore, designing a

common interchange format [17] for these tools is difficult.

In order to resolve the analysis problem, the

computation platform called Reach Lab is designed to

enable

a. Separating the concern of algorithm design for

analysis of hybrid automaton model from any

specific computation implementation.

b. Separating the design of algorithm from specific

hybrid automata- ton model so that the same

algorithm can be reused for other system models.

Reach Lab is developed based on the Model

Integrated Computing (MIC) [18, 19] approach.

MIC approach is based on models and automatic

generation of useful artifacts. In this approach, models are

used not only to design and represent the system, but also

to synthesize and implement the system using a modeling

language tailored to the needs of a particular domain. These

modeling languages, termed as Domain Specific Modeling

Languages (DSML), have necessary constructs to allow the

capture of useful information of a system as model particular

to that domain. One can perform system analysis on this

model. When this modeling capability is augmented with the

capability of model transformation, even automated synthesis

of other design models, and generation of executable system

can be performed [19].

Keeping in view the safety of Hybrid Automation Model, we

need to design its hybrid automata model in the system aspect

and design the algorithm in the programming aspect.

The entire process can be summarized into three basic

designing steps:

a. Obtaining system model and algorithm

specification.

b. Design phase of the system model:

i. A hybrid automaton is drawn in the system

 aspect with discrete transitions connecting

discrete modes.

ii. The designing of analyzing the algorithm

which is hierarchical in nature, is

modeled in the programming aspect.

iii. Stipulations of the computation input

parameters to the algorithm and computational

parameters have to be specified before

translation.

c. Implementation phase:

Translators are used to convert the designed models

into implementation for a certain computational

kernel

7.3. Tight resources on the execution

platform
Embedded system has limited resources. The technology used

by Rational Test Real-Time involves embedding the test

harness onto the target system.

This is done by compiling test data previously translated into

the application programming language (C, C++ or Ada)

within the test harness, using the available cross-compiler, and

then linking this test harness object file to the rest of the

application. This building chain is made transparent to the

user by using the Rational Test Real-Time command line

interface in make files.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

5

8. VARIETY OF EXECUTION

PLATFORMS, WHICH INCREASES THE

CROSS – DEVELOPMENT

ENVIRONMENTS
The Cross-platform development means that the development

is done on a different platform (called the source or host

platform) than the one on which the system will actually be

run (called target platform). For example, a system is

developed on Windows NT and it is then downloaded onto a

custom hardware running a separate. RTOS, for the purpose

of testing.

Cross-platform development brings issues related to

differences in the source and target environment. The

developers should develop the system as per the facilities

available on the target environment and not what is available

on the host. For example, the target RTOS may not provide all

standard C/C++ libraries, which are otherwise available on a

typical Windows/Unix setup, so such libraries cannot be used.

Further, the code has to be built (compiled and linked) for the

target environment.

Fig.3. Cross Platform Development: [10]

In other words we can say that the execution application can

range from a small micro-controller to a large distributed and

networked system. It is increasingly common that multiple

platforms are used within the same embedded system. From a

development perspective, this kind of environment is referred

to as a “cross-development environment”.

The large variety of execution platforms implies the

availability of a correspondingly large set of development

tools such as compilers, linkers, loaders, and debuggers. A

Rational Test Real-Time Target deployment for a new target

platform is usually achieved in less than a week, often within

two days [10].

9. CONCLUSION
More the functions in the embedded systems more will be the

complexity, which increases the development costs and

duration. This gave us grounds to have a passable design and

techniques to test embedded software. Embedded systems are

difficult to test, because embedded systems are usually

developed on custom hardware configurations, tools that is

applicable to one may not be applicable to another

application. So to exterminate the issues in the embedded

world, I have canvassed these issues to develop high quality

embedded software.

10. REFERENCES

[1] Testing embedded systems: Paul Szymkowiak,

www.embeddedsystem.com

[2] Dinesh Kumar Saini and Nirmal Gupta “Fault Detection

Effectiveness in GUI Components of Java Environment

through Smoke Test”, Journal of Information

Technology, ISSN 0973-2896 Vol.3, issue3, 7-17

September 2007.

[3] Kevin Laoghaire and Simon P. Wilson “Deciding how

long to test software” The Statistician (2001) 50, Part 2,

pp. 117 – 134.

[4] Singpurwalla and Wilson, Software reliability modeling:

Statistical methods in Software Engineering.

[5] Goel and Okumoto: Singpurwalla, to determine an

optimal time interval for testing and debugging software.

IEEE Trans. Software Engineering, 17, 313 – 319.

[6] Goel, A.L. and Okumoto, K. time dependent error

detection rate model for software reliability and other

performance measures.

[7] Dinesh Kumar Saini “Testing Polymorphism in Object

Oriented Systems for improving software Quality” ACM

SIGSOFT Volume 34 Number 2 March 2009, ISSN:

0163-5948, USA

[8] Mary Shaw and David Garlan, Software Architecture:

Perspectives on an Emerging Discipline, Prentice Hall,

2010.

[9] Dinesh K Saini, Mustafa Hasan “Architecture and

Classification algorithms for large P2P Digital Library”

The Second International Conference on Networked

Digital Technologies OpenConf system, Crez Republic

Europe 2010.

[10] Albert Sangiovanni-Vincentelli and Grant Martin,

“Platform-based Design and Software design

methodology for Embedded Systems”.IEEE Design &

Test of Computers, April-June, 2000, p.2-15.

[11] Testing Embedded Systems Rational Unified process

(RUP): Paul Szymkowiak.

[12] Dinesh Kumar Saini, Wail M Omar and Sanad Al

Maskari “Healthcare Collaborative Framework for

Chronic Disease Management in Oman” proceedings of

International Conference on Multidisciplinary

Approaches to Diabetes Research and Health

(ICMADRH-2010), India, pp 46-52.

[13] T. Henzinger. The theory of hybrid automata. In

Proceedings of the 11th Annual IEEE Symposium on

Logic in Computer Science, (1996), pp. 278–292.

[14] J. Lygeros. Lecture Notes on Hybrid Systems.

Cambridge, 2003.

[15] Dinesh Kumar Saini “Sense the Future” Campus Volume

1- Issue 11, Page No14-17, February 2011.

[16] T.A. Henzinger, R. Majumdar. A classification of

symbolic transition systems. In Proceedings of the

17th International Conference on Theoretical Aspects

of Computer Science (2000), pp. 13–34.

[17] E. Asarin, T. Dang, O. Maler. The d/dt tool for

verification of hybrid systems. In Computer Aided

Verification, (2002), vol. 2404 of LNCS, Springer-

Verlag, pp. 365–370.

[18] Dinesh Kumar Saini and Hemraj Saini "Achieving

Quality Through Testing Polymorphism in Object

Oriented Systems,"3rd International Conference on

Quality, Reliability and INFOCOM Technology (Trends

and Future Directions), 2-4 December, 2006, Indian

http://www.embeddedsystem.com/

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

6

National Sciences and Academics, New Delhi (India).

Conference proceeding.

[19] I. Mitchell, J. A. Templeton. A toolbox of Hamilton-

Jacobi solvers for analysis of nondeterministic

continuous and hybrid systems. In Hybrid Systems:

Computation and Control, (2005), pp. 480–494.

[20] Dinesh Kumar Saini and Hemraj Saini "Issues and

Problems in Generation of Automated Test Data for

Object Oriented Systems," 3rd International Conference

on Quality, Reliability and INFOCOM Technology

(Trends and Future Directions), 2-4 December, 2006,

Indian National Sciences and Academics, New Delhi

(India) Conference proceeding.

[21] S. Osher, R. Fedkiw. Level Set Methods and

Dynamic Implicit Surfaces. Springer, 2003.

[22] A. Pinto, A.L. Sangiovanni-Vincentelli, L.P Carloni, R.

Passerone. Interchange formats for hybrid systems:

Review and proposal. In Hybrid Systems: computation

and Control, (2005), pp. 526 – 541.

[23] G. Karsai, A. Aggarwal, A. Ledeczi. A metamodel-

driven MDA process and its tools. Workshop in

Software Model Engineering, (2003).

[24] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty.

Model-integrated development of embedded software.

In Proceedings of the IEEE, (2003), pp. 145–164

[25] “Fault Detection System Based on Embedded Platform”

ETTANDGRS08 Volume2 ,2008

[26] R. Alur, D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126, (1994), pp. 183–

235.

[27] Dinesh Kumar Saini and Nirmal Gupta “Class Level Test

Case Generation in Object Oriented Software Testing,

International Journal of Information Technology and

Web Engineering, (IJITWE) Vol. 3, Issue 2, pp. 19-26

pages, march 2008. USA

[28] Lakshmi Sunil Prakash, Dinesh Kumar Saini and Kutti

N.S. “Integrating EduLearn Learning Content

Management System (LCMS) with Cooperating

Learning Object Repositories (LORs) in a Peer to Peer

(P2P) architectural Framework” ACM SIGSOFT

Volume 34 Number 3 May 2009, ISSN: 0163-5948,

USA.

[29] Wail M.Omar, Dinesh K. Saini and Mustafa Hassan

“Credibility Of Digital Content in a Healthcare

Collaborative Community” Software Tools and

Algorithms for Biological Systems in book series

"Advances in Experimental Medicine and Biology,

AEMB" Springer, Page No, 2010

[30] Dinesh Kumar Saini, Sanad Al Maskari and Lingraj

Hadimani “Mathematical Modeling of Software

Reusability” 3rd IEEE International Conference on

Machine Learning Singapore, February 26-28, 2011.

[31] Dinesh Kumar Saini, Wail M. Omar “Software Testing

For Semantic Service Oriented Architecture for E-Health

Software Services” SERP'10 - 9th international

Conference on Software Engineering Research and

Practice (USA) http://www.world-academy-of-

science.org/, P.No. 240-246.

[32] Hemraj Saini and Dinesh Kumar Saini “AN Automated

Test framework for Java Application” ICIT (IEEE

Sponsored) Rourkella-200

http://portal.acm.org.ezproxy.library.uq.edu.au/citation.cfm?id=1581381.1581869&coll=DL&dl=GUIDE&CFID=8971996&CFTOKEN=10904193
http://www.world-academy-of-science.org/
http://www.world-academy-of-science.org/

