
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

28

Comparative Analysis of Job Grouping based

Scheduling Strategies in Grid Computing

Simrat Kaur

University Institute of Engineering & Technology
Panjab University, Chandigarh

Sarbjeet Singh

University Institute of Engineering & Technology
Panjab University, Chandigarh

ABSTRACT

Grid computing is a form of distributed computing that

provides a platform for executing large-scale resource

intensive applications on a number of heterogeneous

computing systems across multiple administrative domains.

Therefore, Grid platforms enable sharing, exchange,

discovery, selection, and aggregation of distributed

heterogeneous resources such as computers, databases and

visualization devices. Job and resource scheduling is one of

the key research area in grid computing. In a grid computing

environment, a scheduler is responsible for selecting the best

suitable computing resources in the grid for processing jobs to

achieve high system throughput. Further, grouping the fine

grained jobs according to the processing capability of

available resources results in better throughput, resource

utilization and low communication time. Motivation of this

study is to encourage and help the amateur researcher in the

field of grid computing, so that they can understand easily the

concept of scheduling, job grouping and can contribute in

developing more efficient and practical scheduling algorithm.

In this paper, we compared three job grouping based

scheduling algorithms that will benefit interested researchers

to carry out further work in this thrust area of research.

Keywords

Grid Computing, Job scheduling, Job grouping

1. INTRODUCTION
The emergence of high speed networks has made it possible to

share geographically distributed resources such as

supercomputers, storage systems, databases and scientific

instruments in order to gather, process and transfer data

smoothly across different administrative domains.

Aggregations of such distributed resources, called

computational grids [1][2] provide computing power that has

made it possible to solve large scale problems in science,

engineering and commerce.

In a Grid computing environment, a scheduler is responsible

for selecting the best suitable machines or computing

resources in the grid for processing jobs to achieve high

system throughput [3][4]. Typically, an application requires

an execution set that consists of several jobs, where each job

is considered as the atomic unit of computation .In the case of

an application with a large number of jobs with small scale

processing requirements, the total communication time

between each job and the resource seems to be more than the

total computation time of each job at the resource. However,

coarse-grained jobs can be created by aggregating a suitable

number of jobs at the user-level, and submitted the aggregated

jobs to the scheduler for deployment. This, however, creates a

programming burden on the application developer as he/she

will have to be aware of the complexities of Grid

environment. Alternatively, the small scaled jobs can be

submitted individually. This option leads to high

communication time and cost, since each small job is

associated with transmitting and processing overhead time

and cost. Therefore, there is a need for a scheduling strategy

to group the jobs at the scheduling level according to the

processing capabilities of the available resources, and proceed

with the job scheduling and deployment activities [5]. In

recent years, the researchers have proposed several efficient

scheduling algorithms that are used in grid computing to

allocate grid resources with a special emphasis on job

grouping based scheduling.

This paper is organized as follows: Section II describes the

concept of a basic job grouping framework in brief. Section

III presents a literature review of job grouping based

scheduling algorithms in grid computing. Section IV presents

a detailed study of three job grouping based scheduling

algorithms proposed by researchers in grid computing and

Section V provides a comparison and simulation result among

the three surveyed papers. Section VI presents conclusion of

this paper and future work and lastly the references.

2. BASIC JOB GROUPING

FRAMEWORK
When the user creates a list of jobs in the user machine, these

jobs are sent to the job scheduler for scheduling arrangement.

The information collector gathers resource information from

the Grid information service (GIS). The grid information

service (GIS) is a facility that provides information about all

the registered resources in a grid. Based on the information,

the job scheduling algorithm is used to determine the job

grouping and resource selection for grouped jobs. Once all the

jobs are put into groups with selected resources, the grouped

jobs are dispatched to their corresponding resources for

computation[6].

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

29

 Figure 1. Framework for job Scheduling [6]

The scheduling framework illustrated in figure 1 depicts the

design of the job scheduler and its interactions with other

entities.

The grouping and selection service serves as a site where

matching of jobs is conducted. The strategy for matching jobs

is based on the information gathered from the information

collector. There are two steps involved during the matching of

jobs. They are job grouping and job selection. In the job

grouping process, jobs submitted by the user to the scheduler

are collected and they are grouped together based on the

information of resources. The size of a grouped job depends

on the processing requirement length expressed in Million

Instructions (MI). At the same time, job selection is also being

conducted where a grouped job corresponds to the resource in

question. The process is performed iteratively until all the jobs

are grouped according to their respective resources. The

dispatcher functions as a sender that transmits the grouped

jobs to their respective resources. The dispatcher forwards the

grouped jobs based on the schedule made during the matching

of jobs with resources. The dispatcher also collects the results

of the processed jobs from the resources through input ports.

3. RELATED WORK
In this section, the various job grouping algorithms proposed

in literature for job scheduling in grid environment are

discussed. As stated by Buyya, Date, et. al. [5], the need for a

job grouping method became an imperative research area after

the emergence of distributed analysis of brain activity data.

The Magneto encephalography (MEG) helmet is used for

recording information about brain activities. A 64-sensored

MEG instrument produces 0.9 GB of data in an hour and the

data is used to generate 7257600 analysis jobs which take

about 102 days on a commodity computer. Global grids

enable the partnering doctors to share the MEG instrument

and allow the analysis jobs to be computed among the

distributed computing resources. Large amount of

computation power reduces the total time taken for

completing the analysis jobs. The main issue is the expense

caused from the overhead communication time. This

necessitates grouping of jobs.

A dynamic job grouping-based scheduling algorithm [7],

groups the jobs according to MIPS (Million Instructions per

Second) of the available resources. The proposed job

scheduling strategy takes into account: (i) the processing

requirements for each job, (ii) the grouping mechanism of

these jobs, known as job grouping, according to the

processing capabilities of available resources, and (iii) the

transmitting of the job grouping to the appropriate resource.

This model reduces the processing time and communication

time of jobs, but the algorithm doesn't take the dynamic

resource characteristics into account and the grouping strategy

can't utilize resource sufficiently.

Scheduling framework for Bandwidth-Aware Job Grouping

Based strategy [8] groups the jobs according to MIPS and

bandwidth of the resource. The principle behind the

bandwidth-aware scheduling is the scheduling priorities

taking into consideration not only their computational

capabilities but also the communication capabilities of the

resources. The bandwidth-aware scheduling approach uses the

network bottleneck bandwidth of resources to determine the

priority of each resource. But the deficiencies of the algorithm

are first, grouping strategies does not utilize resource

sufficiently, and second, consideration of bandwidth strategy

is not efficient to transfer the job.

A Bandwidth-Aware Job Grouping-Based scheduling strategy

[9], that groups the jobs according to the MIPS and bandwidth

of resources, but shortcomings of the algorithm is first, the

model sends group jobs to the resource whose network

bandwidth has highest communication or transmission rate,

but the algorithm does not ensure that resource having a

sufficient bandwidth will be able to transfer the group jobs

within required time.

Grouping-based fine-grained job scheduling algorithm [10]

presents job scheduling algorithm that schedule the group jobs

according to resource MIPS and Bandwidth. Greedy

algorithm is used to cluster lightweight jobs. The job will join

the first job group that still meet the constraint conditions after

the job joins in. And if the job is a coarse-grained job, it will

be allocated to an appropriate resource without grouping. But

the problem of the algorithm is preprocessing scheduling time

Grouping

and

selection

Service

Information

Collector

Dispatcher

Job Scheduler

Jobs

1

4

Res info

Send grouped

jobs

5

 GIS

Resource Information

Table

 Resource 1

 Resource 2

Dispatch grouped jobs

6

Request

resource

info

2

Available resources

3

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

30

of the job is high, time complexity of the scheduling

algorithm is high and finally, it does not give any attention to

the memory requirement of file-size.

In Constraint-Based Job and Resource scheduling (CBJRS)

algorithm [11] grouping is done based on processing

capability (in MIPS), bandwidth (in Mb/s), and memory-size

(in Mb) of the available resources. The resources are arranged

in hierarchical manner where Heap Sort Tree (HST) is used to

obtain the highest computational power resource or root node,

so as to make balanced and effective job scheduling.

Memory aware job scheduling Model [12] presents and

evaluates an extension to Computational-Communication

Memory size based job grouping scheduling strategy that tries

to maximize the utilization of Grid resources and their

processing capabilities, and also reduces processing time and

network delay to schedule and execute the jobs on the Grid.

The proposed job scheduling is based on job grouping concept

taking into account memory constraint together with other

constraints such as processing power, bandwidth, expected

execution and transfer time requirements of each job.

An Improved Resource Scheduling Approach Using Job

Grouping strategy in Grid Computing [13] proposes grid level

resource scheduling with Job Grouping strategy that

maximizes the resource utilization and minimizes processing

time of jobs.The resource and job scheduling model is based

on a hierarchical approach. The model is divided into three

levels, user level, top level (global level) and local level

(cluster level). Whenever an application is submitted into grid

at the global level, highest computational power cluster is

selected and if its total computational power is higher than

submitted application then next application enters and this

time total required computational power of application (first +

second) is compared with selected cluster computational

power. The same process is repeated until total computational

power requirements of the applications in that group is less

than or equal to the available computational power of the

selected cluster. This grouped of applications is submitted to

the cluster having highest computational power and then local

level scheduling is done according to the ability of nodes

within the cluster.

In improved heuristic approach based on Particle Swarm

Optimization (PSO) algorithm to solve task scheduling

problem in grid is proposed. In improved PSO algorithm user

jobs were grouped in an un-uniform manner. The percentage

of the processing capability of a resource on the total

processing capability of all the resources is calculated. Then

using this percentage, the processing capability of a resource

based on the total length of all tasks to be scheduled is

calculated. By this way the jobs are allocated to the available

resources not uniformly, but the utilization of resources will

be increased. The scheduler groups the jobs according to the

calculated processing capability. The new job group is

scheduled to execute in the available resources. This process

of grouping and scheduling is repeated until all the user jobs

are grouped and assigned to selected grid resources. [14].

4. STUDY OF SCHEDULING

ALGORITHMS

4.1 Constraint-Based Job and Resource

scheduling in Grid Computing

Job scheduling is the mapping of jobs to specific resources but

assigning a single job to the specific resource takes high

processing time and communication time. So, processing and

communication time can be reduced by considering a

grouping strategy [11].This Grouping strategy is based on

processing capability (in MIPS), bandwidth (in Mb/s), and

memory-size (in Mb) of the available resources. Jobs are put

into the job group until all the following conditions are

satisfied:

Groupedjob_MI <= Resource_MIPS * Granularity size (1)

Groupedjob MS <= Resource MS (2)

Groupedjob_MS <= Resource_baudRate * Tcomm (3)

Where, MI (Million Instruction) is job's required

computational power, MIPS (Million Instruction Per Second)

is processing capability of the resource and Granularity size is

user defined time which is used to measure total no. of jobs

that can be completed within that specified time,

Groupedjob_MS is required Memory Size of group jobs and

Resource_MS is available Memory of the resource. Size of

resource, Baud Rate is the bandwidth capacity of resource,

Tcomm is the job's communication time. Equation (1)

required computational power of grouped jobs shouldn't

exceed to the resource's processing capability. Eq (2)

Memory-size requirement of grouped job shouldn't exceed to

the resource's memory-size capability. In Eq (3) Memory-size

of the grouped job shouldn't exceed to resource's transfer

capability within a given time period. These are the main

factors in job grouping strategy that influences the way job

grouping is performed to achieve the minimum job processing

time and maximum resource utilization of the Grid resources.

4.1.1 Pseudocode of the Algorithm [11]:
1. Groupedjobi:=0;

2. Sort(JobList_size) in Ascending order according to MI and

 assign ID.

3. Resources selected by HST;

4. For i:=0 to ResourceList size-l Do

5. (Groupedjobi)MI:= 0;

6. Ri MI := ResourceListi MIPS * Granularity size;

7. Ri BW:= baud Rate * Tcomm

8. For j:=0 to JobList_size-1

9. while (j <=Joblist_ size-1)

10. {

11. Groupedjob:= Groupedjob+ Jobj ;

12. if(((Groupedjob)MI <= Ri MI) &&(Groupedjob)MS <= Ri MS)

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

31

 &&((Groupedjob)MS <= Ri BW)))

13.{

14. j++;

15. }

16. Else

17.{

18. Groupedjob:= Groupedjob – Jobj ;

19. }

20. j--;

21. break;

22. } //End while

23. Create a new job with total MI less or equals to Resource

 MI;

24. Assign a unique ID for the newly created Groupedjob;

25. Place the Groupedjobj to Target ResourceListj for

 Computation;

26. Receive computed Groupedjob from ResourceListj;

27. i++;

28. Endfor;

29. End;

In this algorithm, after gathering the details of user jobs and

the available resources, the system selects jobs in order after

sorting them in descending order of their MI to form different

job groups. Resources are arranged in hierarchical manner,

where Heap Sort Tree (HST) is used to obtain the highest

computational power resource or root node, so as to make

balanced and effective job scheduling. When the resources

join into the grid, they are arranged in a tree by Heap sort Tree

using their computational power. The root node of the tree

having highest computational power in whole grid system is

ready to compute the jobs .Jobs are put into a job group one

after another until sum of the resource requirements of the

jobs in that group is less than or equal to amount of resource

available at the selected resource site. In this way jobs are

subsequently gathered or grouped one by one according to the

resulting MI, Memory size and Bandwidth of the resource

until the condition on which it is based is satisfied. As soon as

a job group is formed, the scheduler submits the grouped job

to the corresponding resource for job computation.

4.2 A Memory-Aware Dynamic Job

Scheduling Model in Grid Computing

Memory aware job scheduling Model presents and evaluates

an extension to Computational-Communication Memory size

based job grouping scheduling strategy that tries to maximize

the utilization of Grid resources and their processing

capabilities, and also reduces processing time and network

delay to schedule and execute the jobs on the grid. The model

groups the jobs according to jobs requirement and available

resource capability. The size of a grouped job depends on the

processing requirement length expressed in Million

Instructions, Bandwidth expressed in Mb/s and Memory size

requirement expressed in Mb, expected execution and transfer

time in seconds [12].

The processing requirement of the Grouped job or coarse-

grained job shouldn't exceed to the resource processing

capability at any point of time during grouping of the jobs.

Memory size requirement of the grouped job shouldn't exceed

to the resource memory size capability. Memory size of the

grouped jobs shouldn't exceed to resource transfer capability

at any point of time during grouping of the jobs.

Communication time of the grouped jobs should not exceed

computation time of the grouped jobs. These are the main

constraints in job grouping strategy that influences the way

job grouping is performed to achieve minimum job execution

time and maximum resource utilization in the Grid system.

4.2.1 Pseudocode of the Algorithm [12]:
1. Groupedjobk:=0, j:=0, k=0;

2. Sort resources in descending order according to their

 MIPS;

3. Jobs are taken in FCFS order and assigned each an ID;

4. For i:=0 to ResourceList size-1 Do

5. {

6. TEG :=0,C= 0, M:=0, TEG :=0

7. while (j<=Joblist_size-1)

8. {

9. TEG :=+ tej;

10. C:=+ αcj;

11. M:=+ µmj;

12. TTG :=+ tij;

13. Ri MI := ppi * TEG;

14. Ri BW:= βbi * TTG;

15. if(((C<= Ri MI) && (M <= Пmi)) && ((M <= Ri BW)))

16. {

17. Groupedjobk:= Groupedjobk+ Jobj ;

18. j ++;

19. }

20. Else

21. {

22. TEG := TEG - tej ;

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

32

23. C=C - αcj ;

24. M:=M -µmj;

25. TTG := TTG- tij;

26. Submit the Groupedjobk to Ri

27. Set computational power of the resource Ri to zero

28. k++;

29. }//End if

30. Break;

31. } // End while

32. If (Prearranged Time of Reconstruction is arrived)then

33. {

34. Reconstruct the Job queue and Resource queue;

35. Go to step 1;

36. }

37. }// End for

38. End;

In this algorithm, after gathering the details of user jobs and

the available resources, the system selects jobs in FCFS order

to form different job groups. The scheduler selects resources

in FCFS order after sorting them in descending order of their

MIPS. Jobs are put into a job group one after another until

sum of the resource requirements of the jobs in that group is

less than or equal to amount of resource available at the

selected resource site. In this way jobs are subsequently

gathered or grouped one by one according to the resulting MI,

Memory size and Bandwidth of the resource until the

condition on which it is based is satisfied. As soon as a job

group is formed, the scheduler submits the grouped job to the

corresponding resource for job computation. After executing

the job group, the results goes to the corresponding users and

resource is again available to Grid system with its available

power and ready to execute another job.

4.3 Improved Job-Grouping Based PSO

Algorithm For Task Scheduling In Grid

Computing
PSO is one of the latest population-based search models and

has been applied successfully to a number of optimization

problems. A PSO algorithm contains a swarm of particles in

which each particle includes a potential solution [14]. The

user jobs were grouped in an un-uniform manner based on the

percentage of a particular resource processing capacity on the

total processing capacity of all the resources available in the

grid, which improves computation/communication ratio and

utilization of resources.

4.3.1 Particle Swarm Optimization for scheduling
Particle Swarm Optimization (PSO) is a swarm-based

intelligence algorithm influenced by the social behaviour of

animals such as a flock of birds, finding a food source or a

school of fish protecting themselves from a predator. A

particle in PSO is analogous to a bird or fish flying through a

search (problem) space. The movement of each particle is co-

ordinated by a velocity which has both magnitude and

direction. Each particle position at any instance of time is

influenced by its best position and the position of the best

particle in a problem space. The performance of a particle is

measured by a fitness value, which is problem specific. In

PSO, the population is the number of particles in a problem

space. Particles are initialized randomly. Each particle will

have a fitness value, which will be evaluated by a fitness

function to be optimized in each generation. Each particle

knows its best position pbest and the best position so far

among the entire group of particles gbest. The pbest of a

particle is the best result (fitness value) so far reached by the

particle, whereas gbest is the best particle in terms of fitness

in an entire population. In each generation the velocity and

position is updated using following equation:

 

 k
ixigbestrand

c
k

ixipbestrandck
k

iv
k

iv






2

211

1


And
111 


k

i
k

i
k

i vxx

where Vi
k: velocity of particle i at iteration k

 Vi
k+1: velocity of particle i at iteration k + 1

 ω : inertia weight

 cj: acceleration coefficients; j = 1, 2

The PSO algorithm starts with random initialization of

particle‟s position and velocity. In this problem, the particles

are the task to be assigned and the dimension of the particles

is the number of tasks in a workflow. The value assigned to

each dimensions of a particles are the computing resources

indices. Thus the particles represent a mapping of resource to

a task. The evaluation of each particle is performed by the

fitness function. The particles calculate their velocity using

above given Equations. The evaluation is carried out until the

specified number of iterations (user-specified stopping

criteria). PSO algorithm provides a mapping of all the tasks to

a set of given resources based on the processing capability of

the available resources.

4.3.2 Pseudo code of the Algorithm [14]:
1. The scheduler receives Number of Gridlets „n‟ and

Number of Resources „m‟.

2. Scheduler receives the Resource-list R[].

3. Set Tot-MIR (Sum of the processing capacity of all the

resources) to zero.

4. Set Tot-GMI (Sum of the length of all the gridlets) to

zero.

5. The Gridlets created by the system are submitted to the

scheduler.

6. Set the resource ID j to 1 and the index i to 1.

7. While j is less than or equal to m repeat steps 7.1 to 7.4.

7.1. Get the jth resource from the resource list.

7.2. Multiply the MIPS of jth resource with granularity time

specified by the user.

7.3. Find Tot-MIR by adding previous Tot-MIR with the

value got from step.

7.4. Get the MIPS of the next resource.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

33

8. Assign the gridlets to the resources using PSO

algorithm.

9. While i is less than or equal to n repeat steps 9.1 to 9.3.

9.1. Get the length of the ith Gridlet (Gi-MI).

9.2. Find Tot-GMI by adding previous Tot-GMI and Gi-MI

9.3. Get the length of the next Gridlet.

10. While j is less than or equal to m repeat steps 10.1 to

10.3.

10.1 Calculate the processing capability of jth resource by

multiplying MIPS of jth resource and granularity time.

10.2 Calculate the processing capability of jth resource on

 the processing capability of all the available resources

 (PTot-GMIj) by dividing processing capability of jth

 resource by Tot-MIR.

10.3 Calculate the processing capability of jth resource on the

 total length of all available gridlets by multiplying PTot-

 GMIj and Tot-GMI.

11. Set k to zero

12. While i is less than or equal to n repeat 13 to 15

13. While j is less than or equal to m repeat steps 13.1 to

 step 15

13.1 Set Tot-Jleng to zero.

13.2 While Tot-Jleng is less than equal to PTot-GMIj and i is

 less than n repeat:

 Begin

 Calculate Tot-Jleng by adding previous Tot-Jleng and

 length of the ith Gridlet (Gi-MI)

 End

14. If Tot-Jleng is greater than PTot-GMIj then subtract Gi-

 MI (length of the last Gridlet) from Tot-Jleng.

15. If Tot-Jleng is not zero repeat steps 15.1 to 15.4.

15.1. Create a new Grouped-gridlet of length equal to Tot-

 Jleng.

15.2. Assign a unique ID to the newly created Grouped-gridlet

15.3. Insert the Grouped-gridlet into a new Grouped-gridlet

 list GJk

15.4. Insert the allocated resource ID into the Target resource

 list TargetRk

15.5. Increment the value of k

16. When all the gridlets are grouped and assigned to a

 resource, send all the Groupedgridlets to their

 corresponding resources.

17. After the execution of the grouped-gridlets by the assigned

 resources send them back to the Target resource list.

18. Display the Id of the resource, start time, end time,

 simulation time and task execution cost of each executed

 grouped-gridlet.

The percentage of the processing capability of a resource on

the total processing capability of all the resources is

calculated. Using this percentage, the processing capability of

a resource based on the total length of all tasks to be

scheduled is calculated. By this way the jobs are allocated to

the available resources. The scheduler groups the jobs

according to the calculated processing capability. The new job

group is scheduled to execute in the available resources. This

process of grouping and scheduling is repeated until all the

user jobs are grouped and assigned to selected grid resources.

5. EXPERIMENTAL RESULTS
GridSim toolkit [15] is used to conduct the simulations by

setting values to the number of jobs from 100 to 500.

Processing time is recorded to analyze the feasibility of the

algorithms. The system accepts total number of user jobs,

processing requirements or average MI of those jobs, allowed

deviation percentage of the MI, granularity size of the job

grouping activity and the available Grid resources in the Grid

environment. Details of the available Grid resources are

obtained from Grid Information Service (GIS) entity that

keeps track of the resources available in the Grid

environment. Each Grid resource is described in terms of their

various characteristics, such as resource ID, name, total

number machines in each resource, total processing elements

(PE) in each machine, MIPS of each PE, and bandwidth

speed. In this simulation, the details of the Grid resources

used are as follows:

Table 1. Grid Resources Setup For the Simulation

Resource Name MIPS Cost per sec

R1 200 100

R2 160 200

R3 210 300

R4 480 210

The tests are conducted using four resources of different

MIPS as shown in table 1. The MIPS of each resource is

computed as follows:

Resource MIPS = Total_PE * PE_MIPS,

where

 Total_PE = Total number of PEs at the resource,

 PE_MIPS = MIPS of PE

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

34

Each resource has its own predefined cost rate for counting

the charges imposed on a Grid user for executing the user jobs

at that resource. The MIPS and cost per second are selected

randomly for the simulation purpose.

The total processing cost is computed based on the actual

CPU time taken for computing the Gridlets at the Grid

resource and at the cost rate specified at the Grid resource, as

summarized below:

Process_Cost = T * C,

where

 T = Total CPU Time for Gridlet execution, and

 C = Cost per second of the resources.

Table 2 and figure 2 shows the results obtained for processing

time required to execute 100 to 500 gridlets using different

job grouping based algorithms keeping the same resources

and job specification

Table 2. Comparision Between The Algorithms

 Accoridng To Their Processing Time

No.

of

Jobs

PROCESSING TIME(In Simulation Sec)

Constraint

Based Job and

Resource

Scheduling

(CBJRS)

A Memory-

Aware

Dynamic job

Scheduling

Model(MDJS)

Improved Job-

Grouping Based

PSO algorithm for

task Scheduling

(IJGPSO)

100 227 234 177

200 329 361 256

300 357 464 374

400 470 623 410

500 536 726 427

Figure 2. Processing time of different algorithms for

executing 100 to 500 gridlets

Table 3 and figure 3 shows the results obtained for processing

cost required to execute 100 to 500 gridlets using different job

grouping based algorithms with the same resource and job

specification. . From the results obtained, it is seen that

heuristic based “Improved Job Grouping based PSO algorithm

in grid Computing” algorithm takes less time and cost than the

other two algorithms.

Table 3. Comparision Between The Algorithms

 Accoridng To Their Processing Cost

No.

of

Jobs

PROCESSING COST

Constraint

Based Job

and

Resource

Scheduling

(CBJRS)

A Memory-

Aware

Dynamic job

Scheduling

Model

(MDJS)

Improved Job-

Grouping Based

PSO algorithm

for task

Scheduling

(IJGPSO)

100 68723 61751 58383

200 125092 129727 78257

300 180607 185281 118562

400 243468 243848 197262

500 298575 312321 215113

Figure 3. Processing cost for executing different number

of gridlets

6. CONCLUSION AND FUTURE WORK
In this paper, we analyzed various job grouping based

scheduling algorithms in grid computing. Simulation result

has shown their processing time and cost with respect to

number of jobs without considering the preprocessing time of

the scheduling algorithm and results of the simulation may

vary in different simulating environment. From the results

obtained, it is clearly shown that heuristic based “Improved

Job Grouping based PSO algorithm in grid Computing”

algorithm takes less time and cost than the other two

algorithms. As the both other two algorithms follow

constraints (memory size constraint, bandwidth constraint), in

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.15, April 2012

35

that case “Constraint-Based Job and Resource scheduling in

Grid Computing” gives better results in the terms of both

processing time and cost.

In future, research on job scheduling can be carried out in

various directions depending upon minimizing complexity of

the scheduling algorithm, load balancing at local site, various

load factors, tolerant, user‟s demand and price etc. Future

work may involve developing a more comprehensive job

grouping-based scheduling system that takes into account

QoS (Quality of Service) requirements of each user job before

performing the grouping method and handle more

complicated scenario involving dynamic factors such as

dynamically changing grid environment for e.g. network

failure, hardware failure at a node etc. The above constraints

and issues can be taken into account in designing a more

efficient and practical scheduler, that will help the society to

realize the benefit and implementation of the real grid

computing system.

7. REFERENCES
[1] Foster and C. Kesselman, “The Grid: Blueprint for a

Future Computing Infrastructure” Morgan Kaufmann

Publishers,San Francisco, CA, USA, 1999.

[2] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of Grid:

Enabling Scalable Virtual Organizations”, International

Journal of Supercomputer Applications, 2001.

[3] Mark Baker, Rajkumar Buyya, and Domenico Laforenza,

"Grids and Grid technologies for Wide-Area Distributed

Computing", Software - Practice and Experience – SPE ,

vol. 32, no. 15, pp. 1437-1466, 2002

[4] Berman, F., Fox, G. and Hey, A.,” Grid Computing–

Making the Global Infrastructure a Reality”

London,Wiley,2003.

[5] Buyya, R., Date, S., Miizuno-Matsumoto, Y., Venogopal,

S. and Abramson, D., “Neuroscience Instrumentation

and Distributed Analysis of Brain Activity Data: A case

for eScience on Global Grids”, Journal of Concurrency

and Computation: Practice and Experience. Vol 17, No.

15, pp.1783-1798 ,2004.

[6] V. Rajendran,G. Sudha Sadasivam, “An Efficient

Approach to Task Scheduling in Computational Grids”,

International Journal of Computer Science and

Application, vol. 6, No. 1, pp. 53-69, 2009.

[7]. Muthuvelu. N, Liu. J, Lin Soe. N, Venugopal. S, Sulistio.

A and Buyya. R, 2005, “A Dynamic Job Grouping-Based

Scheduling for Deploying Applications with Fine-

Grained Tasks on Global Grids”, in Proceedings of

Australasian Workshop on Grid Computing and e-

Research (AusGrid2005), , pp. 41-48,2005.

[8]. Ng. W. K, Ang. T. F, Ling. T. C, and Liew. C. S,

“Scheduling Framework for Bandwidth-Aware Job

Grouping-based Scheduling in Grid Computing”,

Malaysian Journal of Computer Science, Vol. 19,

pp.117-126,2006.

[9]. T.F. Ang, W.K. Ng, “A Bandwidth-Aware Job

Scheduling-Based Scheduling on Grid Computing”,

Asian Network for Scientific Information, vol. 8, No. 3,

pp. 372-277, 2009.

[10] Quan Liu, Yeqing Liao, “Grouping-Based Fine-grained

Job Scheduling in Grid Computing”, IEEE First

International Workshop on Education Technology and

Computer Science, vol.1, pp. 556-559, 2009.

[11] M.K.Mishra,V.K.Soni,R. Sharma,Sarita

Das,“Constraint-Based Job and Resource scheduling in

Grid Computing” ,3rd International Conference On

Computer Science and Information

Technology,IEEE,2010.

[12] M.K.Mishra,V.K.Soni,R. Sharma, B. R. Parida, R. K.

Das,“A Memory-Aware Dynamic Job Scheduling Model

in Grid Computing” , International Conference On

Computer Design And Appliations,IEEE,2010.

[13] M.K.Mishra,V.K.Soni,R. Sharma, “An Improved

Resource Scheduling Approach Using Job Grouping

strategy in Grid Computing”, International Conference

on Educational and Network Technology,IEEE,2010.

[14] S.Selvarani, G.Sudha Sadhasivam “Improved Job-

Grouping Based PSO Algorithm For Task Scheduling In

Grid Computing”, International Journal of Engineering

Science and TechnologyVol. 2(9), 2010.

[15] R. Buyya and M. Murshed, “GridSim; A toolkit for the

modeling and simulation of distributed management and

scheduling for grid computing”, Concurrency and

Computation: Practice and Experience , Volume 14,

Issue 13-15,2002.

