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ABSTRACT 

Although Ant Colony Systems (ACS) have gained much 

attention in last two decades but slow execution and 

convergence speed are still two challenges for these meta-

heuristic algorithms. Many parallel implementations have 

been proposed for faster execution. However, most of 

available implementations use coarse-grained synchronization 

mechanisms that are not efficient and scalable. In this work, 

we have taken a fine-grained (ant-level) approach that is more 

efficient and scalable. We have used traveling salesman 

problem as a test case and have presented a parallel fine-

grained implementation for shared-memory multi-core 

systems.  Our experimental results show that our proposed 

parallel implementation can achieve considerably higher 

speedup values on modern multicore processors.   
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1. INTRODUCTION 
Swarm intelligence methods have recently become common 

tools for combinatorial optimization problems (COPs). These 

methods try to find the optimal solution using collective 

behavior of agents via an iterative process. The interactions in 

such systems may be local direct message passing between 

the individuals or indirectly through the environment i.e. 

stigmergy. 

Ant Colony System (ACS) [1] is a well-known swarm-based 

optimization method, in which the optimization is performed 

by the foraging behavior of ants trying to find the shortest 

path to a food source in the environment [2].  As in its 

ancestor, the Ant System (AS) [3], the density of deposited 

pheromone is used to share prior experience between the 

colony members. 

Due to the iterative nature of ACS, the process is highly time-

consuming. As in other population based meta-heuristic 

methods, such as genetic algorithm, it may take a long time, 

(in some cases, several days) to run the ACS for a reasonable 

number of iterations.  

Many research works have been done on parallelizing ant 

colony optimization. Most  of them have focused on 

clustered computing techniques. In such systems, the 

communication between the computers is the bottleneck[4]. 

Therefore, most of the previous works have used coarse-

grained implementations to minimize this overhead, and yield 

better parallel performance. 

In this paper, we introduce a new approach for shared 

memory multi-processor systems, e.g. multi-core CPUs, in 

which the communication overhead is very light and effective. 

A multi-threaded implementation with maximum 

asynchronism is proposed by analyzing the performance 

bottlenecks and relaxing avoidable barrier points. Our results 

show promising speedup and efficiency using 12 processors. 

The remainder of the paper is organized as follows. In the 

next section we discuss state-of-the-art parallel ACS 

implementations in the literature. Section III gives a brief 

introduction to the Ant Colony Optimization. Then in section 

IV, the proposed method is presented. Section V presents our 

experiment results. Finally, section VI offers some concluding 

remarks and avenues for future research.  

2. RELATED WORK 
The time-consuming nature of ant colony systems has 

encouraged many researchers to overwhelm this issue. The 

proposed solutions can be categorized into two major 

approaches. The first approach is to change the nature of ant 

colony system, in order to avoid unnecessary computations 

and yield faster convergence. Few research have been done in 

this area and they yield relatively minor speed-ups where the 

speedup vary among different problems [5].  

The second approach is to take advantage of parallel 

computing techniques, to run some of the calculations 

simultaneously. The taxonomic discrimination among these 

algorithms is based on the granularity level and the exchange 

strategy. The granularity level is the level to which the 

problem is decomposed for parallel processing [4]. Each 

single process may be run a single ant, a subset of ants, i.e. 

cellular model [6], or the whole ant colony system. These 

different approaches result to different granularities. Fine-

grained methods focus on completing a single ACS process as 

fast as possible, by taking the advantage of parallel computing 

solutions [7]. This is usually done by running a subset of ants 

in each processing unit, and exchange some sort of 

information between them [8]. On the other hand, the coarse-

grained methods, also known as Multi-instance or Colony-

based methods, try to run multiple instances of ant colony 

systems concurrently [9–11]. The simplest case in a cluster 

computing environment is to run the ACS independently in 

each machine, and then select the best solution among the 

results collected from the systems [12–14]. More complex 

models may arrange some kind of periodic information 

exchange [15–18]. 

The exchanged information may be small-sized information, 

such as the best-so-far solutions, or the whole pheromone 

matrix. More information exchange generally improves the 

results quality, but imposes more overhead, that yields longer 
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execution time [19]. Fine-grained methods usually use more 

information exchange, and may need some extra system-level 

facilities, e.g.  synchronization points [4], [7].  

Most of the related works are based on cluster computing 

platforms. Due to large communication overhead in such 

systems that is caused by the delay in networking, the 

community have believed that the fine-grained 

implementations will suffer from this overhead and hence are 

less efficient comparing to coarse-grained methods [15], [20]. 

However, this issue does not hold in shared-memory systems 

because the processes communicate by accessing common 

memory blocks that is a processor-level lightweight action. 

Recent parallel ACS proposals for shared memory systems 

have chosen the coarse-grained model. Delisle et al [8] have 

compared these methods with respect to varying parameters, 

such as the number of ants, the problem size, etc. 

Following a different approach, the implementation of ACS 

for some specific hardware has been proposed. These 

implementations have utilized inherent parallel capabilities of 

the hardware, such as hierarchical memory model in General 

Purpose Graphics Processing Units (GPGPU)[13], [21], 

redundant processor connections in Optical Pipelined 

Reconfigurable Mesh (PR-Mesh) systems [22], runtime 

reconfigurable processor arrays [23], and FPGA [24]. A 

number of papers have also proposed ACO implementations 

for the MapReduce framework, a programming model and 

software framework for distributed data processing[25], [26] 

3. BACKGROUND 
As in the original ACS paper, we will use Travelling 

Salesman Problem (TSP) as the test case [1]. Assume 

1 2{ , , }, nC c c c   the set of n cities with cost matrix  , 

where ( , )r k is the cost, i.e. distance, from 
rc  to 

kc . The 

aim is to find the shortest Hamiltonian path in the weighted 

graph. It is proved that the problem is NP-hard [27], and has 

been the most famous combinatorial optimization problem in 

the meta-heuristics literature [28].  

The family of ant optimization techniques use pheromone 

trails in the environment as a natural memory model for the 

optimization system. This is modeled by  , the matrix of 

desirability measure, in which ( , )r k  is the density of 

pheromone trails in the path between 
rc  and 

kc .  Ants create 

their paths randomly, but this random selection is biased 

toward the paths with higher pheromone densities. Ants move 

from one city to another using the state transition rule. 

Assume ant 
ka  to be in 

rc  and ( )kJ r  the set of cities which 

are not observed by
ka . The ant decides whether to choose the 

best known path i.e. exploitation or select a path in a 

probabilistic manner i.e. exploration. The next city 
sc  is 

selected from  the following rule: [4]. 

0
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(2) 

In order to select a city, q is sampled from a uniform 

distribution from [0,1]. If 
0q q , the best path is selected.   

The parameter
00      1 q  determines the preference of 

exploitation over exploration. ( , )r s is the heuristic function. 

For instance, in TSP the heuristic function is defined as the 

inverse of the distance (cost) function ( , )r s .  is a positive 

value which controls the importance of heuristic function 

versus the amount of pheromone trails.   

At the beginning of process, the pheromone on the path of 

each two cities have some initial value
0 . It is suggested to 

let 
1

0 ( )nnnL  , where n  is the size of the problem (i.e. 

number of cities) and 
nnL  is the cost of a rule produced by a 

heuristic, such as Nearest Neighbor. When an ant moves from 

ic  to. jc ., the pheromone is updated by the local updating 

rule: 

0(1 )ij ij     
 

(3) 

[0,1]   is the pheromone decay factor, which determines 

the rate of pheromone evaporation. The local pheromone 

updating rule prevents the ACS from falling into local optima. 

When all ants finish their tours, the best path, which is the 

path with least cost (
*P ) is used to apply the global updating 

rule. Let 
*C  be the total cost of 

*P , then the pheromone is 

updated according to: 

*

*
(1 )        ( )ij ij i jc c P

C


      if

 

 

(4) 

The pseudo code for the Ant Colony System is given in Fig. 1. 

4. THE PROPOSED METHOD 
Our approach is to optimize the performance of state of the art 

fine-grained ACS implementations. We realized that OS-level 

performance analysis, an area that has received less attention 

in the parallel ACO community, yields more performance 

improvement than new heuristic modifications and results in a 

simple but effective implementation. 

Fig.2 shows a general fine-grained parallel ACS 

implementation. For better comparison, the line numbering in 

both algorithms are kept similar. The logic of the algorithms 

is the same, but the requirements for multi-threaded 

processing are added to the algorithm. In such 

implementation, each ant is assigned to a thread, and the 

pheromone matrix is shared between the threads (line 4). The 

ant threads can simultaneously read the pheromone values 

from the pheromone and distance matrixes. Any concurrent 

modification of the matrix element, i.e. updating the 

pheromone values, should be done in a thread-safe manner. 

Otherwise, the concurrent update may cause an unpredictable 

effect that is known as race condition. The thread-safe settings 

are usually implemented by putting a lock, e.g. semaphore, on 

the updating element of the pheromone matrix. This lock 

mechanism ensures that no other thread may modify the value 

of element that is updated by the current thread.  
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Fig. 1. Ant Colony System. 

The settings described above are common in all the previous 

fine-grained ACS systems. We have analyzed the components 

of that system for finding the bottlenecks. A brief review of 

our observations, which builds the strategies of the proposed 

method, is as follows. 

1) The global pheromone update (lines 9.1 – 9.3) is a very 

lightweight process. Conversely to most of the previous 

parallel configurations [8], we found that performing this task 

in parallel will cause a huge synchronization overhead. Thus, 

running the task in serial mode may conjure much better 

performance. 

2)  Launching each ant as a new thread (line 4) requires 

initializing local information, such as the list of visited cities 

and hence, it will cause some performance overhead. 

Additionally, the thread initialization overhead is heavy itself. 

To our knowledge, all the previous parallel ACS proposals 

create threads in each iteration. In such setting, as an ant 

thread finishes, its allocated resources will be removed. To 

run a new thread, all the required resources, such as 

descriptors, heap and call stack will be initialized, as well as 

the thread’s private data, namely the list of previously visited 

cities. We have taken the advantage of thread pooling 

technique, specially the Java ExecuterService mechanism to 

avoid such overhead and reuse the resources from the 

previous iterations.  

3) In order to avoid unsafe memory access conflicts in the 

shared graph, in which the ant threads need to read and update 

pheromone values by the local updating rule (lines 7.1 – 7.3), 

a synchronization mechanism, such as barrier points or 

memory lock have been proposed in almost all of the previous 

works[2], [20]. This thread-safe implementation not only 

causes a huge overhead, but also decreases the speedup when 

running on the machines with more processing units. We 

discuss that this mechanism is not useful, and hence can be 

avoided. 

Assume two ant threads Ti and Tj are trying to update the 

pheromone trails for the same path between two cities cr and 

cs. Obviously, this is a race condition for the threads. In order 

to analyze how much does it degrade the algorithm’s 

performance we discuss on what may occur to the ACS in the 

case of race condition, and how much it is likely to happen. 

 

Fig.2. General fine-grained parallel ACS. 

Let tr and tw to be the time of reading and updating the 

pheromone trail, respectively. Without loss of generality, 

suppose Ti to be first thread which reads the pheromone trail. 

From the thread management literature, three situations are 

possible. 

Situation 1: 
r w r w

i i j jt t t t   : in this case, threads Ti and Tj 

have sequentially read and written the values, no 

inconsistency occurs. 

Situations 2: 
r r w w

i j j it t t t   : in this case, the Ti reads the 

pheromone value, then Tj  updates (reads and writes) the 

value, and Ti overwrites the value. It is equivalent to the case 

that Tj  has ignored executing the local update in the edge 

between cr and cs. 

Situation 3: 
r r w w

i j i jt t t t   : it is similar to situation 2, but 

the Ti’s local updating has been ignored. 

To discuss about the occurrence likelihood of such unsafe 

event, we analyze the accumulated time for executing each 

component. Each ant should apply equations 1 and 2 for all 

paths in the graph. Then, it selects one path and applies the 

local pheromone updating rule on the selected one. On 

average, the first operation is O{(n/2) × (time to compute eq. 

1)}. If the exploration is chosen from eq. 1 that occurs with 

probability (1-q0), another similar time should be considered. 

Note that both equations 1 & 2 are raised to the power β, 

which is computed using the time-consuming Taylor series 

expansion. On the other hand, the local pheromone updating 

is a light process, consisting of four simple operations. As a 

result, when the number of nodes (cities) is large enough, it is 

very improbable for two ant threads to simultaneously be in 

Algorithm 2: General fine-grained implementation for 

parallel ant colony system 

1:  for each Iteration 

3:       for each ant: IN PARALLEL 

4:              Start a new thread, Initialize the ant, and share 

distance and pheromone graph for the thread 

5:              while a tour is not finished 

6:                     Choose the next city (Eq. 1,2) 

7.1:                     LOCK PHEROMONE PATH  

7.2:                         Local pheromone update (Eq. 3) 

7.3:                     UNLOCK PHEORMONE PATH 

8:              end while   //end of ant’s travel 

9.1:           LOCK THE PATH 

9.2:               Global pheromone update (Eq. 4) 

9.3:           UNLOCK THE PATH  

10.1:          Terminate the thread, release resources. 

10.2:      end for     

13:  end for      //end of iteration 

Algorithm 1: Ant Colony System 

1:  for each Iteration 

3:       for each ant 

4:              Initialize the ant  

5:              while a tour is not finished 

6:                     Choose the next city (Eq. 1,2) 

7:                     Local pheromone update (Eq. 3) 

8:              end while    //end of ant’s travel 

9:              Global pheromone update (Eq. 4) 

10:      end for  

11:  end for      //end of iteration 
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the critical region, and hence the unsafe states are unlikely to 

happen. As a rule of thumb, when the number of processing 

nodes is more than 20 that is usual in the benchmark datasets 

of parallel ACO, the local updating between the threads never 

overlaps. Therefore, we drop the synchronization and lock 

mechanisms in the proposed parallel ACS.  

5. EXPERIMENTAL ANALYSIS 
We have used the pr2392 TSP problem, having 2392 cities 

and their positions, as one of the largest and most frequently 

used data set in the literature.  The ant colony system with 20, 

50, 100, and 200 ants is tested by setting the number of active 

threads to 1, 2, 4, 8, 12, 24 and 36. We used a HP server 

system with two 6-core Intel® Xeon™ X5660 processors with 

hyper threading technology. The number of iterations is fixed 

to 100. Due to the stochastic behavior of ACS, the 

experiments in each configuration are repeated for 5 times and 

the average values are reported.  

The proposed modification to the ACS is a fine-grained 

method because the effect of local pheromone update by each 

ant is instantly applied to the graph. The path selection by 

each ant of the colony is concurrent, asynchronous, and 

independent of the others. Thus, the parallelized ant colony 

system at the agent level i.e. the ant level, is roughly identical 

to the natural serial implementation, which makes us to intend 

expect similar results in multiprocessing, but in less time. 

Therefore we just report performance results that are caused 

by parallel execution. 

Several metrics can be used to evaluate the parallel 

performance, from which the speedup and computational 

efficiency are the most commons. Assume Tm to be the 

execution time of the parallel program with m processors and 

T1 be the execution time of sequential algorithm which is in 

our settings equal to time of executing the parallel version 

with one thread.  The speedup is defined as the ratio of T1/Tm. 

For stochastic algorithms where the execution time varies 

between multiple runs, the average value of T1 and Tm are 

used: 

1[ ]

[ ]
m

m

E T
S

E T


 

 

(5) 

Similarly, the computational efficiency em = Sm / m, is the 

normalized value of speedup. We should mention that when 

the number of active threads is more than the number of 

available processors, m is set to the number of processors [2].  

 

Fig. 3. Speedup of parallel ACS on pr2392. 

Fig. 3 shows the speedup of the enhanced parallel ACS on 

pr2392. As we increase the number of active threads, the 

speedup increases, as expected. If the number of threads is 

more than the available processors, around twice or forth, the 

speedup is slightly increased. This is caused by the hyper 

threading technology, in which the processor can keep the 

active running of two tasks i.e. threads, and can switch 

between them in a limited number of system clocks. It is 

hence recommended to set the number of thread to twice the 

number of processors. 

Fig. 4 shows the computational efficiency of the proposed 

method. Detailed results are tabulated1 in  

Table 1. The only comparable result in the literature, is the 

work by Delisle et al  [8] which is based on shared memory 

systems. Table 2 shows the speedup and computational 

efficiency of both methods on the middle-sized datasets. Our 

method outperforms the synchronized method in all cases, as 

expected before.  

 

Fig. 4. Computational Efficiency of parallel ACS on 

pr2392. 

6. CONCLUSION 
Due to the time-consuming nature of ant colony systems, 

various methods have been proposed to increase its overall 

execution speed. The family of fine-grained implementations 

has gained less interest in prior proposals because the 

communication overhead is not tolerable in cluster systems. In 

this work, we have implemented a parallel ant colony system 

that is specially crafted for systems with shared-memory 

architecture. 

We have optimized the algorithm’s overall speed by 

reviewing the thread-management overheads and skipping 

neutral thread-safety locks. By relaxing the synchronization 

mechanisms that is used for consistency, we have reached 

near-linear speedup that means if we double the assigned 

CPU-cores for ACS execution; we shall expect approximately 

double speedup value. Near-linear scalability of our proposed 

implementation makes it ideal for multicore CPUs that their 

number of cores is steadily increasing. To validate the 

performance of our proposed parallel Ant Colony System, we 

have performed some experiments on a state of the art Intel 

multicore CPU.   Our results show promising speedup value 

around 6X to 8X on a machine with two 6-core hyper 

threaded i7 CPUs that is very promising.  

                                                           
1 For better organization, we have placed the comparison tables to end 

of the paper. 
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Table 1. Performance Results of parallel ACS on pr2392. 

#threads 
50 ants 100 ants 200 ants 

Com. Eff. Speedup Com. Eff. Speedup Com. Eff. Speedup 

24 0.60 7.24 0.58 6.98 0.49 5.86 

12 0.54 6.46 0.54 6.53 0.44 5.31 

8 0.69 5.56 0.69 5.51 0.58 4.61 

4 0.84 3.35 0.82 3.29 0.77 3.08 

2 0.91 1.81 0.96 1.92 0.94 1.88 

1 1 1 1 1 1 1 

 

Table 2. Comparison of performance results on medium-sized datasets with 8 threads. 

Problem Metric 

Delisle et al  [8] The proposed method 

Number of processors Number of processors 

2 3 4 5 6 7 8 2 3 4 5 6 7 8 

lin318 
Speedup 1.65 2.39 3.09 3.64 4.15 4.63 4.77 1.95 2.91 3.76 4.60 5.18 5.79 6.69 

Com. Eff. 0.83 0.8 0.77 0.73 0.69 0.66 0.6 0.97 0.97 0.94 0.92 0.86 0.83 0.84 

pcb442 
Speedup 1.71 2.47 3.26 4.02 4.57 5.24 5.55 1.94 2.87 3.75 4.57 5.24 5.77 6.81 

Com. Eff. 0.86 0.82 0.81 0.8 0.76 0.75 0.69 0.97 0.96 0.94 0.91 0.87 0.82 0.85 

d657 
Speedup 

1.78 2.54 3.23 3.95 4.62 5.14 5.74 1.96 2.86 3.82 4.72 5.39 6.19 7.10 

Com. Eff. 
0.89 0.85 0.81 0.79 0.77 0.73 0.72 0.98 0.95 0.95 0.94 0.90 0.88 0.89 

rat575 
Speedup 

1.74 2.62 3.39 4.12 4.83 5.36 6.14 1.95 2.89 3.89 4.77 5.60 6.20 7.23 

Com. Eff. 
0.87 0.87 0.85 0.82 0.8 0.77 0.77 0.98 0.96 0.97 0.95 0.93 0.89 0.90 

 

 

 


