
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.8, September 2012

8

Fine-grained Parallel Ant Colony System for Shared-

Memory Architectures

Ali Hadian

Iran University of Science and
Technology
Tehran, Iran

Saeed Shahrivari
Tarbiat Modares University

Tehran, Iran

Behrouz Minaei-Bidgoli
Iran University of Science and

Technology
Tehran, Iran

ABSTRACT

Although Ant Colony Systems (ACS) have gained much

attention in last two decades but slow execution and

convergence speed are still two challenges for these meta-

heuristic algorithms. Many parallel implementations have

been proposed for faster execution. However, most of

available implementations use coarse-grained synchronization

mechanisms that are not efficient and scalable. In this work,

we have taken a fine-grained (ant-level) approach that is more

efficient and scalable. We have used traveling salesman

problem as a test case and have presented a parallel fine-

grained implementation for shared-memory multi-core

systems. Our experimental results show that our proposed

parallel implementation can achieve considerably higher

speedup values on modern multicore processors.

General Terms

Optimization, Parallel Processing.

Keywords

Ant Colony System, Parallel Computing, Traveling Salesman

Problem, Shared Memory System.

1. INTRODUCTION
Swarm intelligence methods have recently become common

tools for combinatorial optimization problems (COPs). These

methods try to find the optimal solution using collective

behavior of agents via an iterative process. The interactions in

such systems may be local direct message passing between

the individuals or indirectly through the environment i.e.

stigmergy.

Ant Colony System (ACS) [1] is a well-known swarm-based

optimization method, in which the optimization is performed

by the foraging behavior of ants trying to find the shortest

path to a food source in the environment [2]. As in its

ancestor, the Ant System (AS) [3], the density of deposited

pheromone is used to share prior experience between the

colony members.

Due to the iterative nature of ACS, the process is highly time-

consuming. As in other population based meta-heuristic

methods, such as genetic algorithm, it may take a long time,

(in some cases, several days) to run the ACS for a reasonable

number of iterations.

Many research works have been done on parallelizing ant

colony optimization. Most of them have focused on

clustered computing techniques. In such systems, the

communication between the computers is the bottleneck[4].

Therefore, most of the previous works have used coarse-

grained implementations to minimize this overhead, and yield

better parallel performance.

In this paper, we introduce a new approach for shared

memory multi-processor systems, e.g. multi-core CPUs, in

which the communication overhead is very light and effective.

A multi-threaded implementation with maximum

asynchronism is proposed by analyzing the performance

bottlenecks and relaxing avoidable barrier points. Our results

show promising speedup and efficiency using 12 processors.

The remainder of the paper is organized as follows. In the

next section we discuss state-of-the-art parallel ACS

implementations in the literature. Section III gives a brief

introduction to the Ant Colony Optimization. Then in section

IV, the proposed method is presented. Section V presents our

experiment results. Finally, section VI offers some concluding

remarks and avenues for future research.

2. RELATED WORK
The time-consuming nature of ant colony systems has

encouraged many researchers to overwhelm this issue. The

proposed solutions can be categorized into two major

approaches. The first approach is to change the nature of ant

colony system, in order to avoid unnecessary computations

and yield faster convergence. Few research have been done in

this area and they yield relatively minor speed-ups where the

speedup vary among different problems [5].

The second approach is to take advantage of parallel

computing techniques, to run some of the calculations

simultaneously. The taxonomic discrimination among these

algorithms is based on the granularity level and the exchange

strategy. The granularity level is the level to which the

problem is decomposed for parallel processing [4]. Each

single process may be run a single ant, a subset of ants, i.e.

cellular model [6], or the whole ant colony system. These

different approaches result to different granularities. Fine-

grained methods focus on completing a single ACS process as

fast as possible, by taking the advantage of parallel computing

solutions [7]. This is usually done by running a subset of ants

in each processing unit, and exchange some sort of

information between them [8]. On the other hand, the coarse-

grained methods, also known as Multi-instance or Colony-

based methods, try to run multiple instances of ant colony

systems concurrently [9–11]. The simplest case in a cluster

computing environment is to run the ACS independently in

each machine, and then select the best solution among the

results collected from the systems [12–14]. More complex

models may arrange some kind of periodic information

exchange [15–18].

The exchanged information may be small-sized information,

such as the best-so-far solutions, or the whole pheromone

matrix. More information exchange generally improves the

results quality, but imposes more overhead, that yields longer

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.8, September 2012

9

execution time [19]. Fine-grained methods usually use more

information exchange, and may need some extra system-level

facilities, e.g. synchronization points [4], [7].

Most of the related works are based on cluster computing

platforms. Due to large communication overhead in such

systems that is caused by the delay in networking, the

community have believed that the fine-grained

implementations will suffer from this overhead and hence are

less efficient comparing to coarse-grained methods [15], [20].

However, this issue does not hold in shared-memory systems

because the processes communicate by accessing common

memory blocks that is a processor-level lightweight action.

Recent parallel ACS proposals for shared memory systems

have chosen the coarse-grained model. Delisle et al [8] have

compared these methods with respect to varying parameters,

such as the number of ants, the problem size, etc.

Following a different approach, the implementation of ACS

for some specific hardware has been proposed. These

implementations have utilized inherent parallel capabilities of

the hardware, such as hierarchical memory model in General

Purpose Graphics Processing Units (GPGPU)[13], [21],

redundant processor connections in Optical Pipelined

Reconfigurable Mesh (PR-Mesh) systems [22], runtime

reconfigurable processor arrays [23], and FPGA [24]. A

number of papers have also proposed ACO implementations

for the MapReduce framework, a programming model and

software framework for distributed data processing[25], [26]

3. BACKGROUND
As in the original ACS paper, we will use Travelling

Salesman Problem (TSP) as the test case [1]. Assume

1 2{ , , }, nC c c c  the set of n cities with cost matrix  ,

where (,)r k is the cost, i.e. distance, from
rc to

kc . The

aim is to find the shortest Hamiltonian path in the weighted

graph. It is proved that the problem is NP-hard [27], and has

been the most famous combinatorial optimization problem in

the meta-heuristics literature [28].

The family of ant optimization techniques use pheromone

trails in the environment as a natural memory model for the

optimization system. This is modeled by  , the matrix of

desirability measure, in which (,)r k is the density of

pheromone trails in the path between
rc and

kc . Ants create

their paths randomly, but this random selection is biased

toward the paths with higher pheromone densities. Ants move

from one city to another using the state transition rule.

Assume ant
ka to be in

rc and ()kJ r the set of cities which

are not observed by
ka . The ant decides whether to choose the

best known path i.e. exploitation or select a path in a

probabilistic manner i.e. exploration. The next city
sc is

selected from the following rule: [4].

0
()

0

arg max[(,)].[(,)] if (exploitation)

Probabilistic selection (Eq. 2) if (exploration)

ku J r

r u r u q q
s

q q

 


 


 
 

(1)

()

[(,)].[(,)]
if ()

(,)].[(,)](,)

0 if ()

k

k

ij
u J r

k

r s r s
s J r

r s r sp r s

s J r





 

 





 






(2)

In order to select a city, q is sampled from a uniform

distribution from [0,1]. If
0q q , the best path is selected.

The parameter
00 1 q  determines the preference of

exploitation over exploration. (,)r s is the heuristic function.

For instance, in TSP the heuristic function is defined as the

inverse of the distance (cost) function (,)r s .  is a positive

value which controls the importance of heuristic function

versus the amount of pheromone trails.

At the beginning of process, the pheromone on the path of

each two cities have some initial value
0 . It is suggested to

let
1

0 ()nnnL  , where n is the size of the problem (i.e.

number of cities) and
nnL is the cost of a rule produced by a

heuristic, such as Nearest Neighbor. When an ant moves from

ic to. jc ., the pheromone is updated by the local updating

rule:

0(1)ij ij     

(3)

[0,1]  is the pheromone decay factor, which determines

the rate of pheromone evaporation. The local pheromone

updating rule prevents the ACS from falling into local optima.

When all ants finish their tours, the best path, which is the

path with least cost (
*P) is used to apply the global updating

rule. Let
*C be the total cost of

*P , then the pheromone is

updated according to:

*

*
(1) ()ij ij i jc c P

C


      if

(4)

The pseudo code for the Ant Colony System is given in Fig. 1.

4. THE PROPOSED METHOD
Our approach is to optimize the performance of state of the art

fine-grained ACS implementations. We realized that OS-level

performance analysis, an area that has received less attention

in the parallel ACO community, yields more performance

improvement than new heuristic modifications and results in a

simple but effective implementation.

Fig.2 shows a general fine-grained parallel ACS

implementation. For better comparison, the line numbering in

both algorithms are kept similar. The logic of the algorithms

is the same, but the requirements for multi-threaded

processing are added to the algorithm. In such

implementation, each ant is assigned to a thread, and the

pheromone matrix is shared between the threads (line 4). The

ant threads can simultaneously read the pheromone values

from the pheromone and distance matrixes. Any concurrent

modification of the matrix element, i.e. updating the

pheromone values, should be done in a thread-safe manner.

Otherwise, the concurrent update may cause an unpredictable

effect that is known as race condition. The thread-safe settings

are usually implemented by putting a lock, e.g. semaphore, on

the updating element of the pheromone matrix. This lock

mechanism ensures that no other thread may modify the value

of element that is updated by the current thread.

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.8, September 2012

10

Fig. 1. Ant Colony System.

The settings described above are common in all the previous

fine-grained ACS systems. We have analyzed the components

of that system for finding the bottlenecks. A brief review of

our observations, which builds the strategies of the proposed

method, is as follows.

1) The global pheromone update (lines 9.1 – 9.3) is a very

lightweight process. Conversely to most of the previous

parallel configurations [8], we found that performing this task

in parallel will cause a huge synchronization overhead. Thus,

running the task in serial mode may conjure much better

performance.

2) Launching each ant as a new thread (line 4) requires

initializing local information, such as the list of visited cities

and hence, it will cause some performance overhead.

Additionally, the thread initialization overhead is heavy itself.

To our knowledge, all the previous parallel ACS proposals

create threads in each iteration. In such setting, as an ant

thread finishes, its allocated resources will be removed. To

run a new thread, all the required resources, such as

descriptors, heap and call stack will be initialized, as well as

the thread’s private data, namely the list of previously visited

cities. We have taken the advantage of thread pooling

technique, specially the Java ExecuterService mechanism to

avoid such overhead and reuse the resources from the

previous iterations.

3) In order to avoid unsafe memory access conflicts in the

shared graph, in which the ant threads need to read and update

pheromone values by the local updating rule (lines 7.1 – 7.3),

a synchronization mechanism, such as barrier points or

memory lock have been proposed in almost all of the previous

works[2], [20]. This thread-safe implementation not only

causes a huge overhead, but also decreases the speedup when

running on the machines with more processing units. We

discuss that this mechanism is not useful, and hence can be

avoided.

Assume two ant threads Ti and Tj are trying to update the

pheromone trails for the same path between two cities cr and

cs. Obviously, this is a race condition for the threads. In order

to analyze how much does it degrade the algorithm’s

performance we discuss on what may occur to the ACS in the

case of race condition, and how much it is likely to happen.

Fig.2. General fine-grained parallel ACS.

Let tr and tw to be the time of reading and updating the

pheromone trail, respectively. Without loss of generality,

suppose Ti to be first thread which reads the pheromone trail.

From the thread management literature, three situations are

possible.

Situation 1:
r w r w

i i j jt t t t   : in this case, threads Ti and Tj

have sequentially read and written the values, no

inconsistency occurs.

Situations 2:
r r w w

i j j it t t t   : in this case, the Ti reads the

pheromone value, then Tj updates (reads and writes) the

value, and Ti overwrites the value. It is equivalent to the case

that Tj has ignored executing the local update in the edge

between cr and cs.

Situation 3:
r r w w

i j i jt t t t   : it is similar to situation 2, but

the Ti’s local updating has been ignored.

To discuss about the occurrence likelihood of such unsafe

event, we analyze the accumulated time for executing each

component. Each ant should apply equations 1 and 2 for all

paths in the graph. Then, it selects one path and applies the

local pheromone updating rule on the selected one. On

average, the first operation is O{(n/2) × (time to compute eq.

1)}. If the exploration is chosen from eq. 1 that occurs with

probability (1-q0), another similar time should be considered.

Note that both equations 1 & 2 are raised to the power β,

which is computed using the time-consuming Taylor series

expansion. On the other hand, the local pheromone updating

is a light process, consisting of four simple operations. As a

result, when the number of nodes (cities) is large enough, it is

very improbable for two ant threads to simultaneously be in

Algorithm 2: General fine-grained implementation for

parallel ant colony system

1: for each Iteration

3: for each ant: IN PARALLEL

4: Start a new thread, Initialize the ant, and share

distance and pheromone graph for the thread

5: while a tour is not finished

6: Choose the next city (Eq. 1,2)

7.1: LOCK PHEROMONE PATH

7.2: Local pheromone update (Eq. 3)

7.3: UNLOCK PHEORMONE PATH

8: end while //end of ant’s travel

9.1: LOCK THE PATH

9.2: Global pheromone update (Eq. 4)

9.3: UNLOCK THE PATH

10.1: Terminate the thread, release resources.

10.2: end for

13: end for //end of iteration

Algorithm 1: Ant Colony System

1: for each Iteration

3: for each ant

4: Initialize the ant

5: while a tour is not finished

6: Choose the next city (Eq. 1,2)

7: Local pheromone update (Eq. 3)

8: end while //end of ant’s travel

9: Global pheromone update (Eq. 4)

10: end for

11: end for //end of iteration

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.8, September 2012

11

the critical region, and hence the unsafe states are unlikely to

happen. As a rule of thumb, when the number of processing

nodes is more than 20 that is usual in the benchmark datasets

of parallel ACO, the local updating between the threads never

overlaps. Therefore, we drop the synchronization and lock

mechanisms in the proposed parallel ACS.

5. EXPERIMENTAL ANALYSIS
We have used the pr2392 TSP problem, having 2392 cities

and their positions, as one of the largest and most frequently

used data set in the literature. The ant colony system with 20,

50, 100, and 200 ants is tested by setting the number of active

threads to 1, 2, 4, 8, 12, 24 and 36. We used a HP server

system with two 6-core Intel® Xeon™ X5660 processors with

hyper threading technology. The number of iterations is fixed

to 100. Due to the stochastic behavior of ACS, the

experiments in each configuration are repeated for 5 times and

the average values are reported.

The proposed modification to the ACS is a fine-grained

method because the effect of local pheromone update by each

ant is instantly applied to the graph. The path selection by

each ant of the colony is concurrent, asynchronous, and

independent of the others. Thus, the parallelized ant colony

system at the agent level i.e. the ant level, is roughly identical

to the natural serial implementation, which makes us to intend

expect similar results in multiprocessing, but in less time.

Therefore we just report performance results that are caused

by parallel execution.

Several metrics can be used to evaluate the parallel

performance, from which the speedup and computational

efficiency are the most commons. Assume Tm to be the

execution time of the parallel program with m processors and

T1 be the execution time of sequential algorithm which is in

our settings equal to time of executing the parallel version

with one thread. The speedup is defined as the ratio of T1/Tm.

For stochastic algorithms where the execution time varies

between multiple runs, the average value of T1 and Tm are

used:

1[]

[]
m

m

E T
S

E T


(5)

Similarly, the computational efficiency em = Sm / m, is the

normalized value of speedup. We should mention that when

the number of active threads is more than the number of

available processors, m is set to the number of processors [2].

Fig. 3. Speedup of parallel ACS on pr2392.

Fig. 3 shows the speedup of the enhanced parallel ACS on

pr2392. As we increase the number of active threads, the

speedup increases, as expected. If the number of threads is

more than the available processors, around twice or forth, the

speedup is slightly increased. This is caused by the hyper

threading technology, in which the processor can keep the

active running of two tasks i.e. threads, and can switch

between them in a limited number of system clocks. It is

hence recommended to set the number of thread to twice the

number of processors.

Fig. 4 shows the computational efficiency of the proposed

method. Detailed results are tabulated1 in

Table 1. The only comparable result in the literature, is the

work by Delisle et al [8] which is based on shared memory

systems. Table 2 shows the speedup and computational

efficiency of both methods on the middle-sized datasets. Our

method outperforms the synchronized method in all cases, as

expected before.

Fig. 4. Computational Efficiency of parallel ACS on

pr2392.

6. CONCLUSION
Due to the time-consuming nature of ant colony systems,

various methods have been proposed to increase its overall

execution speed. The family of fine-grained implementations

has gained less interest in prior proposals because the

communication overhead is not tolerable in cluster systems. In

this work, we have implemented a parallel ant colony system

that is specially crafted for systems with shared-memory

architecture.

We have optimized the algorithm’s overall speed by

reviewing the thread-management overheads and skipping

neutral thread-safety locks. By relaxing the synchronization

mechanisms that is used for consistency, we have reached

near-linear speedup that means if we double the assigned

CPU-cores for ACS execution; we shall expect approximately

double speedup value. Near-linear scalability of our proposed

implementation makes it ideal for multicore CPUs that their

number of cores is steadily increasing. To validate the

performance of our proposed parallel Ant Colony System, we

have performed some experiments on a state of the art Intel

multicore CPU. Our results show promising speedup value

around 6X to 8X on a machine with two 6-core hyper

threaded i7 CPUs that is very promising.

1 For better organization, we have placed the comparison tables to end

of the paper.

0

2

4

6

8

24 12 8 4 2 1

Sp
e

e
d

u
p

Number of active threads (0n 12-core
system)

200
ants

100
ants

50 ants

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.8, September 2012

12

7. REFERENCES
[1] M. Dorigo and L. M. Gambardella, “Ant colony system:

A cooperative learning approach to the traveling

salesman problem,” Evolutionary Computation, IEEE

Transactions on, vol. 1, no. 1, pp. 53–66, 1997.

[2] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A

survey on parallel ant colony optimization,” Applied

Soft Computing, vol. 11, no. 8, pp. 5181–5197, 2011.

[3] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system:

optimization by a colony of cooperating agents,”

Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, vol. 26, no. 1, pp. 29–41, 1996.

[4] I. Ellabib, P. Calamai, and O. Basir, “Exchange

strategies for multiple ant colony system,” Information

Sciences, vol. 177, no. 5, pp. 1248–1264, 2007.

[5] S. P. Tseng, C. W. Tsai, M. C. Chiang, and C. S. Yang,

“A fast ant colony optimization for traveling salesman

problem,” in Evolutionary Computation (CEC), IEEE

Congress on, pp. 1–6, 2010.

[6] M. Pedemonte and H. Cancela, “A cellular ant colony

optimisation for the generalised Steiner problem,”

International Journal of Innovative Computing and

Applications, vol. 2, no. 3, pp. 188–201, 2010.

[7] M. Randall and A. Lewis, “A parallel implementation

of ant colony optimization,” Journal of Parallel and

Distributed Computing, vol. 62, no. 9, pp. 1421–1432,

2002.

[8] P. Delisle, M. Gravel, M. Krajecki, C. Gagné, and W.

Price, “Comparing parallelization of an ACO: message

passing vs. shared memory,” in Second International

Workshop on Hybrid Metaheuristics, 2005.

[9] P. Delisle, M. Krajecki, M. Gravel, and C. Gagné,

“Parallel implementation of an ant colony optimization

metaheuristic with OpenMP,” in Proceedings of the 3rd

European Workshop on OpenMP (EWOMP’01),

Barcelona, Spain, 2001.

[10] M. S. F. Catalano and F. Malucelli, “Parallel

randomized heuristics for the set covering problem,”

International Journal of Practical Parallel Computing,

vol. 10, no. 4, pp. 113–132, 2001.

[11] E. G. Talbi, O. Roux, C. Fonlupt, and D. Robillard,

“Parallel ant colonies for the quadratic assignment

problem,” Future Generation Computer Systems, vol.

17, no. 4, pp. 441–449, 2001.

[12] E. Alba, G. Leguizamon, and G. Ordonez, “Two models

of parallel ACO algorithms for the minimum tardy task

problem,” International Journal of High Performance

Systems Architecture, vol. 1, no. 1, pp. 50–59, 2007.

[13] H. Bai, D. OuYang, X. Li, L. He, and H. Yu, “MAX-

MIN ant system on GPU with CUDA,” in Innovative

Computing, Information and Control (ICICIC), 2009

Fourth International Conference on, 2009, pp. 801–804.

[14] M. Rahoual, R. Hadji, and V. Bachelet, “Parallel ant

system for the set covering problem,” Ant Algorithms,

pp. 249–297, 2002.

[15] M. Middendorf, F. Reischle, and H. Schmeck, “Multi

colony ant algorithms,” Journal of Heuristics, vol. 8, no.

3, pp. 305–320, 2002.

[16] R. Michel and M. Middendorf, “An island model based

ant system with lookahead for the shortest

supersequence problem,” in Parallel Problem Solving

from Nature—PPSN V, pp. 692–701, 1998.

[17] R. Michel and M. Middendorf, “An ACO algorithm for

the shortest common supersequence problem,” in New

ideas in optimization, 1999, pp. 51–62.

[18] D. A. L. Piriyakumar and P. Levi, “A new approach to

exploiting parallelism in ant colony optimization,” in

Micromechatronics and Human Science, 2002. MHS

2002. Proceedings of 2002 International Symposium

on, pp. 237–243, 2002.

[19] C. Twomey, T. Stützle, M. Dorigo, M. Manfrin, and M.

Birattari, “An analysis of communication policies for

homogeneous multi-colony ACO algorithms,”

Information Sciences, vol. 180, no. 12, pp. 2390–2404,

2010.

[20] Q. Lv, X. Xia, and P. Qian, “A parallel aco approach

based on one pheromone matrix,” Ant Colony

Optimization and Swarm Intelligence, pp. 332–339,

2006.

[21] J. Fu, L. Lei, and G. Zhou, “A parallel ant colony

optimization algorithm with gpu-acceleration based on

all-in-roulette selection,” in Advanced Computational

Intelligence (IWACI), 2010 Third International

Workshop on, pp. 260–264, 2010.

[22] K. D. Nguyen and A. G. Bourgeois, “Ant colony

optimal algorithm: fast ants on the optical pipelined r-

mesh,” in Parallel Processing, 2006. ICPP 2006.

International Conference on, pp. 347–354, 2006.

[23] D. Merkle and M. Middendorf, “Fast ant colony

optimization on runtime reconfigurable processor

arrays,” Genetic Programming and Evolvable

Machines, vol. 3, no. 4, pp. 345–361, 2002.

[24] B. Scheuermann, K. So, M. Guntsch, M. Middendorf,

O. Diessel, H. ElGindy, and H. Schmeck, “FPGA

implementation of population-based ant colony

optimization,” Applied Soft Computing, vol. 4, no. 3,

pp. 303–322, 2004.

[25] Q. Tan, Q. He, and Z. Shi, “Parallel Max-Min Ant

System Using MapReduce,” in Advances in Swarm

Intelligence, vol. 7331, Y. Tan, Y. Shi, and Z. Ji, Eds.

Springer Berlin / Heidelberg, pp. 182–189, 2012.

[26] Y. Yang, X. Ni, H. Wang, and Y. Zhao, “Parallel

Implementation of Ant-Based Clustering Algorithm

Based on Hadoop,” in Advances in Swarm Intelligence,

vol. 7331, Y. Tan, Y. Shi, and Z. Ji, Eds. Springer

Berlin / Heidelberg, pp. 190–197, 2012.

[27] E. L. Lawler, “The traveling salesman problem: a

guided tour of combinatorial optimization,” WILEY-

INTERSCIENCE SERIES IN DISCRETE

MATHEMATICS, 1985.

[28] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli,

“Hybrid metaheuristics in combinatorial optimization:

A survey,” Applied Soft Computing, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.8, September 2012

13

Table 1. Performance Results of parallel ACS on pr2392.

#threads
50 ants 100 ants 200 ants

Com. Eff. Speedup Com. Eff. Speedup Com. Eff. Speedup

24 0.60 7.24 0.58 6.98 0.49 5.86

12 0.54 6.46 0.54 6.53 0.44 5.31

8 0.69 5.56 0.69 5.51 0.58 4.61

4 0.84 3.35 0.82 3.29 0.77 3.08

2 0.91 1.81 0.96 1.92 0.94 1.88

1 1 1 1 1 1 1

Table 2. Comparison of performance results on medium-sized datasets with 8 threads.

Problem Metric

Delisle et al [8] The proposed method

Number of processors Number of processors

2 3 4 5 6 7 8 2 3 4 5 6 7 8

lin318
Speedup 1.65 2.39 3.09 3.64 4.15 4.63 4.77 1.95 2.91 3.76 4.60 5.18 5.79 6.69

Com. Eff. 0.83 0.8 0.77 0.73 0.69 0.66 0.6 0.97 0.97 0.94 0.92 0.86 0.83 0.84

pcb442
Speedup 1.71 2.47 3.26 4.02 4.57 5.24 5.55 1.94 2.87 3.75 4.57 5.24 5.77 6.81

Com. Eff. 0.86 0.82 0.81 0.8 0.76 0.75 0.69 0.97 0.96 0.94 0.91 0.87 0.82 0.85

d657
Speedup

1.78 2.54 3.23 3.95 4.62 5.14 5.74 1.96 2.86 3.82 4.72 5.39 6.19 7.10

Com. Eff.
0.89 0.85 0.81 0.79 0.77 0.73 0.72 0.98 0.95 0.95 0.94 0.90 0.88 0.89

rat575
Speedup

1.74 2.62 3.39 4.12 4.83 5.36 6.14 1.95 2.89 3.89 4.77 5.60 6.20 7.23

Com. Eff.
0.87 0.87 0.85 0.82 0.8 0.77 0.77 0.98 0.96 0.97 0.95 0.93 0.89 0.90

