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ABSTRACT  
This paper, focuses on model predictive control (MPC) 

problem with fault-tolerance capabilities is formulated 

within the hybrid systems framework In particular Mixed 

Logical Dynamical (MLD) approach is considered. It 

allows to model the hybrid systems involved continuous, 

discrete dynamics and constraints. The changes or the 

switches which may appear over such dynamics are 

modeled by using the auxiliary variables taking into 

account the interconnections.  In this work, we proposed 

a reconfiguration control approach based on Model 

Predictive Control (MPC) framework. A fault MLD 

model is also proposed. The main contribution of this 

paper consists in the investigation of a new method for 

fault tolerant control used the MLD model. The proposed 

formulation is illustrated by considering a two tank 

system benchmark. 
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1. INTRODUCTION 
Many control systems are subject to faults or 

malfunctions. The failure of components, like sensors or 

actuators can partially or fully disable the action of the 

controller. This results in an unsatisfactory performance 

of the system, decreased availability, emergency 

shutdowns or even significant damages to the plant. In 

addition. In modern technological systems, there is a high 

demand on performance, safety, and reliability of 

systems. It is desired that if a fault happens, the control 

system can automatically detect the fault and moderate its 

effect on the system such that it can continue working 

while providing an acceptable performance. 

 In any case, it is important to avoid dangerous areas to 

prevent damages to the system. Therefore, Fault tolerance 

control is very important for modern technological 

systems. 

In fact, the fault Tolerant systems in literature can be 

derived into two main groups: active and passive 

techniques. On the one hand, the passive technique is 

designed, such that it is robust, within performance range, 

to fault occurrences. On the other hand, the active fault 

tolerant system aims at changing the control operation 

when the fault is detected. These changes can comprise 

reconfiguration of the controller scheme, modification of 

controller parameters or alternative set point trajectories. 

In recent decades there exists an emerging area of 

research working in Fault tolerant control of hybrid 

systems, for a survey one can look at [1] [2], [3].                

A class of approaches for diagnosis of hybrid systems 

discrete/temporal abstraction of the continuous dynamics 

is presented in [4]. In [5], the authors use a Petri net 

abstraction for dealing with continuous behaviors of 

hybrid systems. In [6], the diagnose uses a discrete event 

abstraction of the system and the continuous dynamics 

information is taken in consideration when it becomes 

necessary. In [3] a model based diagnosis method on a 

hybrid bond graph modelling framework is proposed. 

Motivated by different capabilities and applications of the 

mixed logical dynamical (MLD) modeling of hybrid 

system, many approaches have been reported in [7], [8], 

[9]. Moreover using the MLD framework problems such 

as optimal control state estimation,. This can be 

reformulated as a mixed integer programming problem 

and therefore solved using the same technique. This 

paper, deals with MLD formalism First, we proposed a 

new formulation integrating the faults in MLD model. 

The MPC controller is investigated for control objective. 

The aim of this paper consists in embedding the active 

fault-tolerant design of controllers based on model 

predictive control (MPC) within the hybrid system 

framework. In this context, a new methodology is 

developed. The goal is to verify the fault tolerance 

capabilities of MPC and computational aspects of MLDF 

framework to deal with hybrid systems modeling and 

control problem. The paper is organized as follows: in 

section 2, we introduce basic propositional logic rules, 

Boolean algebra, and mixed-integer linear inequalities. 

These tools are used to define the MLD formalism. 

Predictive control of MLD model is developed in section 

3.Different steps followed to obtain the MLD faults 

model we proposed in section 4. In addition MPC with 

MLD faults are study also the problem of active 

diagnosis is formulated and solution is proposed.  

Simulation results are presented and discussed in section 

5. The paper is concluded in section 6. 

2. MIXED LOGIC DYNAMICAL 

SYSTEMS MODELLING 
Mixed logical dynamical formalism is a powerful 

modeling approach in hybrid systems theory. It 

transforms dynamics, logic and constraints of a complex 



International Journal of Computer Applications (0975 – 8887)  

Volume 43– No.10, April 2012 

30 

system into an integrated model, logical and dynamical 

constraints are translated to mixed-integer inequalities 

[9]-[10].  

Mixed-integer inequalities contain continuous and integer 

variables. In fact using binary and auxiliary variables, 

hybrid systems are modeled as linear dynamical systems 

with mixed-integer inequalities constraints. Mixed logical 

dynamical modeling allows the state and the control 

inputs to be continuous or discrete. A binary variable is 

associated with each logical relation like: 

 

           
1i iX True   

                                 (1)                                                                                 

      

Propositional logic is also translated to equivalent linear 

inequalities. As an example can be shown that:   

1 2X X is equivalent to 1 2 1   . 

Another basic principle of MLD modeling is the 

interaction between logical and dynamical variables. It 

can be proved that    1 [ 0]f x     is true if    

 

                                                                 

( )
      

( ) ( )

f x M M

f x m



  

 


                                     (2)                                                                                 

                        

Where M (m) is maximum (minimum) or an upper 

(lower) bound of f  and  is a small positive number. 

This equivalence permits the assignment of binary 

variables to dynamical constraints which may define the 

different operation modes of hybrid system. Another 

useful equivalence that deals with the interaction of 

logical and dynamical variables is as follows: The 

equality relation ( )z f x  regardless of the relation 

between   and ( )f x could be translated to the following 

four mixed integer inequalities: 

   

               (3) 

                                        

 

 

 

 

 

  In fact the MLD modeling framework [9], is based on 

the idea of translating logic relations, discrete/logic 

dynamics, A/D (analog to digital (logic)), D/A 

conversion and logic constraints into mixed integer linear 

inequalities. These inequalities are combined with the 

continuous dynamical part, which are described by linear 

difference equations. The resulting MLD system is 

described by the following relations [9]. 

   

1 2 3

1 2 3

2 3 1 4 5

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

x k A x k B u k B k B z k

y k C x k D u k D k D z k

E k E z k E u k E x k E







     


   


     (4)                                                                                     

                                                                                                                                     

Where: 

1 2 3 1 2 3 1 2 3 4, , , , , , , , , , ,A B B B C D D D E E E E
and 5E

 

are matrices of appropriate dimension. 

The continuous and binary (mixed) variables x, y and u 

are respectively the state, inputs and outputs of MLD 

system which are defined as follows: 

 

 , , 0,1 , ,lc
nc n n

c l c l
l

x
x x x x n n n

x

 
      
 

 

 , , 0,1 , ,lc
pc p p

c l c l
l

y
y y y y p p p

y

 
      
 

           

 , , 0,1 , ,
c c l

c l c l
l

u m m mu u u u m m m
u

 
      
 

 

The variables   and z  are introduced when translating 

logic propositions into linear inequalities.  

 ( ) 0,1 lrk  are the auxiliary binary variables, which 

represent the events in the hybrid dynamical system.  

( ) crz k  are the auxiliary continuous variables, which 

combination continuous dynamics and discrete dynamics.  

The variables  and z  are introduced when translating 

logic propositions into linear inequalities. There are used 

to define the relations between continuous and discrete 

parts. 

 

 

 
lx

 

A/D 

 

Discrete / Logic dynamics 

Continous dynamics 

cx

 

z

 

( )z f x

 
( ) 0 1f x           

D/A 

 

Fig 1:  MLD structure 

Academic example 
In this section, an illustrating example is considered [9]. 

The procedure of MLD modeling is applied to this 

system described by the following equations:                                                                   

     

 
0.3 ( ) ( ) ( ) 0

( 1)
0.8 ( ) ( ) ( ) 0

x k u k si x k
x k

x k u k si x k

 
  

  
             (5)                                                                                                    

 

Where,    ( ) 10 10 and ( ) 1 1x k u k      

To construct the MLD model, the condition x(k) ≥0 can 

be associated to a binary variable δ(k) such that    

 

                    ( ) 0 ( ) 1x k k                            (6)    

                                                         

 By using the transformations described the equation (2) 

can be expressed by the following inequalities: 

                                     

      

( ) (1 ( ))

( ) ( )( )

x k m k

x k k M



  

   


                                    (7)                                                                                      

    

where 10M m   , and    is a small positive scalar.                                                                     

Then, equation (5) can be rewritten as:   

 

      
( ) (1 )

( ) (1 )

z M

z m

z f x m

z f x M















  
   
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( 1) 1.1 ( ) ( ) 0.8 ( ) ( )x k k x k x k u k   

           (8)                                                                      

 

By defining a new variable ( ) ( ) ( )z k k x k , using the 

equation (3) this auxiliary variable is expressed as 

follows:                               

                                                                                              

( ) 10 ( )

( ) 10 ( )

( ) ( ) 10(1 ( ))

( ) ( ) 10(1 ( )

z k k

z k k

z k x k k

z k x k k












 


  
                                     (9) 

                                                                    

So the system (8) is ruled by this linear equation:  

( 1) 1.1 ( ) 0.8 ( ) ( )x k z k x k u k   
                   (10)                                                                                                                                       

Subject to the linear constraints (7) and (9). Therefore, 

the MLD equivalent representation of (5) for 

 10,10x  and  1,1u  is given by collecting 

Equations (7), (9) and (10). 

 

3.  PREDICTIVE CONTROL BASED 

ON MLD MODEL 
The main idea of MPC is to use a model of the system to 

predict the future evolution of the system in a fixed 

prediction horizon with the measurements of the system. 

Based on this prediction at each time step k, the 

controller selects a sequence of future command inputs 

through an optimization procedure, which aims at 

minimizing a suitable cost function and enforces 

fulfilment of the constraints. Then, only the first sample 

of the optimal sequence is applied to the plant at time 

step k, and at time step k+l, the whole optimization 

procedure is repeated with new plant measurements this 

online replanning provides the desired feedback control 

action. Let k be the current time step, Hp is the prediction 

horizon, and x(k) is the current state. 

An important control problem for MLD systems is to 

stabilize the system to an equilibrium state or to track a 

desired reference trajectory. In general finding a control 

law that attains these objectives for an MLD system is not 

an easy task, as in general MLD systems are neither 

linear nor even smooth. MPC provides a successful tool 

to perform this task, as will be shown next. For the sake 

of brevity we will concentrate on the stabilization to an 

equilibrium state. 

In fact, the following theorem [11] show that MPC 

problem, feasibility is preserved over time and that 

feasibility implies stability.Consider the MLD system (4) 

and an equilibrium state/input/output triple 

( , , )eq eq eqx u y and let ( , )eq eqz be the corresponding pair 

of auxiliary variables. 

 Assume that the initial state (0)x  is such that a feasible 

solution of the MLD-MPC problem exists for sample step 

0. The input signal resulting from applying the optimal 

MLD-MPC input signal in a receding horizon approach 

stabilizes the MLD system in the sense that 

lim ( ) , lim ( ) 0 ,

lim ( ) , lim ( ) 0,

lim ( ) 0.

y

z

eq eq Qk k

eq eq Qk k

eq Qk

x k x y k y

u k u k

z k z



 

 

 



  

  

 
         (11) 

                                                                                                          

This problem can be solved using powerful mixed integer 

quadratic programming (MIQP) algorithm [9]. 

In fact, for system modeled with MLD formalism the 

optimization problem of predictive control MPC has the 

following form:                                      

 

1

1
1 2 2

{ } 0

2 2 2

min ( , ( )) || ( 1/ ) || || ( / ) ||

         || ( / ) || || ( / ) || || ( / ) ||

p

p

k H x yp
k

u z

H
k H

k eq Q eq Q
u i

eq Q eq Q eq Q

J u x k x k i k x y k i k y

u k i k u k i k z k i k z


 

 


 



      

        

             

(12)                          

Where ,u xQ Q are positive definite matrices, and  

, ,y zQ Q Q are nonnegative definite matrices. 

Furthermore, the MLD system equations we have the 

end-point condition ( | )p eqx H k x (stability constraint). 

In addition, the optimal MPC minimizes the objective 

function J  subject to constraints: 

                                      

1 2 3

1 2 3

2 3 1 4 5

(0 | ) ( )

( | )

( 1 | ) ( | ) ( ) ( | ) ( | )

( | ) ( | ) ( ) ( | ) ( | )

( | ) ( | ) ( ) ( | )

p eq

x k x k

x H k x

x i k Ax i k B u i B i k B z i k

y i k Cx i k D u i D i k D z i k

E i k E z i k E u i E x i k E














    
    

    

                                                                                      (13) 

We assume that there exists an optimal sequence 

 * * * *(0), (1),..., ( 1)ku u u u N  for this problem. The 

MPC control law is defined as the first element of this 

sequence
*(0)u . The input is applied to the system and 

the whole procedure is repeated at the next time instance.  

4. ACTIVE FAULT TOLERANT 

CONTROL USING MPC AND MLD 

FORMALISM 
In this section,  presented a methodology ways including 

fault tolerance in MPC controller. According to 

Maciejowski [12] [13] when using an MPC controller, if 

the knowledge of faults is available, either the internal 

model or system constraints can be modified accordingly. 

In this way, fault tolerance can be implicitly incorporated 

into an MPC controller in a natural way. Furthermore, 

due to the flexibility for expressing the control objectives 

within the MPC formalism, when faults cause control 

objectives to become unattainable, they can be dropped 

from the optimization problem or degraded in priority, 

for example, by changing hard constraints to soft ones . 

In fact, having the model define in 4 contains continuous 

and binary input and outputs. I will be developed a 

methodology for integrated faults in MLD model. 

4.1 Formulation of MLDF (Mixed 

logical dynamical faults) 
 Faults  actuator or sensor  

 The faults actuator or sensor is presented by: 

(1 )

(1 )

app u c c fc

mes y c c fc

u u u u

y y y y





   

   
                     (14) 

With , [0,1]y u      
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If  , 0u y    no failure 

If  , 1u y    total loss of actuator or sensor   

,u y 
 : Coefficients of failure. 

Where appu : applied control system  

            cu
 : computed control system 

            fcu
 : continuous failure control 

            mesy
 :  output sensor 

            cy
 :  measured output with the normal operation 

sensor  

            fcy
 : continuous sensor fault  

 For obtain the MLD fault, the key idea is to model the 

effects of a fault on the system as logic proposition and to 

translate them into inequalities to be added to the MLD 

model of a system. In fact, for presented actuator faults or 

sensor faults in MLD model, we need to introduce the 

auxiliary continuous variables zf.  For sensor faults: 

   
 

(1 )

0,1

mes y c c f

f f fc f

y y y z

z y



 

   

  
                           (15) 

    

Therefore, two cases can arise if: 

 

  

 

 

 

In fact the addition of continuous auxiliary variable leads 

to increased inequality constraints as an auxiliary variable 

can be converted into linear inequalities following 4 

equations 

 

                                 

   

( ) (1 )

( ) (1 )

with  min ,  max

f f fc

fc fc

z M

z m
z y

z f x m

z f x M

m y M y














  

  
   

 
       (16)                                              

 

We can define the MLD fault as follow: 

                                                              
~ ~

1 2 3

~ ~

1 2 3

~ ~ ~ ~ ~ ~ ~

2 3 1 4 5

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x k Ax k B u k B k B z k

y k Cx k D u k D k D z k

E k E z k E u k E x k E







+ = + + +

= + + +

+ £ + +
  (17)                                     

 

      With

~

f






 
  
  , 

~

  
f

z
z

z

 
  
   

Finally, we obtain the MLD fault including the normal 

and failure mode and all constraints of the systems  

  

4.2  Formulation problem and solution 

proposed 
 

A standard control [14] problem can be shown by the 

following triple: , ( ),C U                            (18) 

 where:  

      Global objectives 

 ( )C   Structure of system which depend parameters  

  

  U   Control law 

Solving this problem consists in finding a control u U  

so as to achieve the global objective   under constraints 

whose structure ( )C  .  

In the fault free case the nominal global objectives  are 

assumed to be achieved under the nominal 

control nU land nominal constraint structure ( )nC  . 

The occurrence of faults can modify the structure of the 

system, meaning that global objectives can be or not 

achieved under the new structure. 

 

Solution proposed  

A new formulation of the problem , ( ),f fC U   is 

proposed, which has a solution and thus allows 

achieving , by changing the system structure, using the 

model system proposed MLD Fault and control fU .  

(which result from the disconnection or replacement of 

fault components). In some cases, no solution exists, and 

then global objectives must be redefined to degraded 

ones.. In our case, the FDI module figure 2 functionality 

is assumed to work correctly. Ideally it detects and 

isolates the faulty also the fault information is assumed 

readily available and is used to modify the corresponding 

constraints in the optimization problem (19). 

 

 

Fig2: MPC Fault Tolerant Controller  

In fact, for including the faulty mode in MLD model of 

the system, we need to generate additional binary 

variable corresponding to faulty mode (zf). If the fault is 

detected, the active fault tolerant control technique 

consists to reconfigure the model predictive controller for 

0 0 no fault  

1 fault

f f

f f fc

z

z y





  

  
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the faulty system by changing the constraints to reflect 

the identified fault. Therefore, the MPC problem should 

be modified accordingly by replacing the MLD by 

MLDF(17).   

In faulty mode, the criteria ( )J k is modified as fellow:  

1

1
1 2

{ }
0

2 2

2 2

min ( , ( )) || ( 1/ ) ||

       || ( / ) || || ( / ) ||

       || ( / ) || || ( / ) ||

p

p

k H xp

k

y u

z

H
k H

rf Qk
u

i

rf Q rf Q

rf Q rf Q

J u x k x k i k x

y k i k y u k i k u

k i k z k i k z


 

 


 



   

     

     



     (19)                                                                                       

and we note in this case another optimization problem 

MIQP under constraints (20) and another equilibrium 

state must be found for the faulty system.                       

 

1 2 3

1 2 3

2 3 1 4 5

(0 | ) ( )                                                   20

( | )

( 1 | ) ( | ) ( ) ( | ) ( | )

( | ) ( | ) ( ) ( | ) ( | )

( | ) ( | ) ( ) ( | )

rf p

x k x k

x x H k

x i k Ax i k B u i B i k B z i k

y i k Cx i k D u i D i k D z i k

E i k E z i k E u i E x i k E












    

   

   

 

 

 







It means, the system is fault-tolerant with respect to the 

fault f and the control objective , if there exist a 

solution to the above problem. If the system is not fault-

tolerant, a possible solution is to change the control 

objective, e.g. by allowing some degradation in the 

performance of the system or by just considering the 

stability of the closed loop system.                                                                  

5. ILLUSTRATIVE SYSTEM 

5.1 Two tank system 
The benchmark of the two tank system has been used in 

many fields of research to illustrate the work realized in 

the CNRS research group especially in AS 193 diagnosis 

and hybrid systems [15]. The system consists of two 

liquid tanks that can be filled with pump acting on the 

tank1 (figure 3). The pump P1 delivers the liquid flows 

Qp1 and it can be manipulated from a zero flow to a 

maximum flow Qmax. The tanks are interconnected by 

two pipes at the bottom and at level hv. The flows 

through the pipes are denoted by Q4, V4 and Q3, V3. The 

flow through these pipes can be interrupted with 

switching valve V4. The liquid levels h1 and h2 in each 

tank can be measured with continuous level sensors. The 

two discrete inputs considered: are the state of valve V2 

and V4. 

 

 
Fig3: Two tank system 

From the conservation mass of law balance tanks, we 

obtain the following differential equation                     

in outV Ah Q Q                              (21) 

Where inQ   is the sum of input flow and outQ is the sum 

of output flows, A is the section of the tank, V  is the 

volume of liquid in the tank and h is the level liquid.  

 We obtain: 

                                                                                                                                     

                                             

1 1 1 1 3 3 4 4

2 3 3 4 4 2 2

1
( )

1
( )

ph Q Q V Q V Q V
A

h Q V Q V Q V
A


   


   






                   (22)                                                                    

   

  1 1 1 12QV V S g h
              

  2 2 2 22Q V V S g h
                                   

  
3 3 3 1 2 1 2 ( ) 2Q V V S sign h h g h h   A

                                           

  
4 4 4 1 22 max( ,0.5) max( ,0.5)Q V V S g h h 

                

 The nonlinear relation x is approximated by a straight 

line x, thus becomes:  

 

                                     3 3 3 3 1 2( )Q V V k h h 
      (23)                                                                                

 

The auxiliary continuous variable 3 3 1 2( )z V h h   is 

introduced to transform the above nonlinear equation to 

the linear equation
3 3 3 3Q V k z  with a set of mixed 

integer linear inequalities. For
1Q and

2Q , using the same 

method, we will have 
1 1 1Q k z  and 

2 2 2Q k z where   

1 1 1z hV and
2 2 2z h V   for more detail see [16]. 

In order to take into account the flows through the upper 

valve V4, we define the auxiliary binary variables 

indicating whether the level in each tank has reached hv:  

                                             

1 1[ ( ) 1] [ ( ) ]  vk h k h                           (24)     

2 2[ ( ) 1] [ ( ) ]vk h k h   
 

and then the term 1 2max( ,0.3) max( ,0.3)h h  is 

transformed into a linear equation    

4 4 4 4

4 4 01 02

01 1 1

02 2 2

where:

( )

                    ( )

( )

v

v

Q V k z

z V z z

z h h

z h h







 


 
                               (25)                                                                                                      

are  auxiliary continuous variables. 

Finally, the differential equations (6) are discretized by 

using the Euler method by replacing h  with 

the
( 1) ( )

S

h k h k

T

 
where ST is the sampling time.  

Let first defining the state vector variables 1 2[ ]Tx h h  
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The input vector 1 4 2[ ]Tu Q V V  combined a continuous 

part and discrete part.   

1 2[ ]T    are the auxiliary binary variables . 

 01 02 1 2 3 4[ ]Tz z z z z z z  are the auxiliary continuous 

variables modelled the changes or the switches which 

may appear over such dynamics.                                                                                                                                      

The transformation of the hybrid system equations into 

the MLD form requires the application of a set of given 

rules. A higher level language and associated compiler 

(HYSDEL, see [17-18] are used here to avoid the tedious 

procedure of deriving the MLD form by hand. Given the 

MLD model, the scenarios are simulated using the 

Hybrid Toolbox for Matlab [19]. 

5.2  Simulation and Results 
The proposed method is tested on two tank system. 

In order to show the capability of handling a 

multivariable hybrid control problem we have simulated 

the system (figure.4) combining pumps and switching 

valves. The results of the predictive control are shown in 

Figure 5. As can be seen the states reaches to the given 

reference signal h1 and h2. 

4 3 10 1.10 . 0 0.8iQ m s h m    
 

In the first case, we have considered a constant reference 

having 0.6 and 0.3 value Figure 4, but in the second one a 

variable reference having sinusoidal form has been taken 

Figure 6. 
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Fig4: Liquid level in the two tank system 

We see that the water level does not exceed the maximum 

level already imposed (hmax =0.8m). The flow of pump 

figure 7 also does not exceed (Qmax=1 10-4m3/s). 

Moreover if we change the reference, which is a critical 

case we also obtain an acceptable control result in this 

new given condition figure (6). 
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Fig5: Continuous input Qp1, discrete inputs V4 and 

V2 
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Fig 6: Liquid level in the two tank system 
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Fig 7: Liquid level in the two tank system 

In fact, the switching valves required to keep track of the 

reference, the states of the system remain close to the 

reference, and this objective is reached by a switching in 

the valves V2 and V4 Figure (5) and Figure 8.   
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Fig 8. Continuous input Qp1, discrete inputs V4 and 

V2 

An actuator failure is considered on the valve V2 is 

blocked at 50 s in position off.  
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Fig 10: Liquid level in the two tank system 

Without reconfiguration MPC 
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Figure 11: Liquid level in the two tank system 

With reconfiguration MPC 

 

In fact the MPC constraints are updated based on the 

condition of the system by adding the constraint to 

present failure and using MLD failure. In this, case we 

show the faults tolerance capabilities of MPC controller 

figure 11. 
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Fig12: Continuous input Qp1, discrete inputs V4 and 

V2 

6. CONCLUSION 

In this paper, we have developed and discussed new a 

methodology of active fault tolerant control based on 

Mixed Logical and Dynamical (MLD) we have adopted 

the model predictive control as a synthesis strategy. The 

design objectives and constraints are transformed into 

mixed-integer inequalities also the active fault tolerant 

problem is reformulated as a mixed integer optimization 

problem using the MLD framework. 

When the fault is detected it is reconfiguration by 

updating the MPC constraints. Therefore the fault 

tolerance capabilities of MPC controller are proved. This 

strategy is finally applied in simulation to the level 

control of two tank benchmark. 
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