
 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

16

Testing Object-Oriented Software Systems: A Survey of

Steps and Challenges

Clarence J M
Tauro

Christ University
Bangalore, India

N Ganesan

Director (MCA)
RICM, Bangalore

Anupam Ghosh
Christ University
Bangalore, India

Nirupam Ghosh
Christ University
Bangalore, India

ABSTRACT
Object-Oriented programming is a combination of different

levels consists of abstraction, class level cluster level and

system level. In this article, we are going to discuss about the

different testing aspects for object oriented programs. Idea is

to test different testing aspects of Object-oriented Software

Systems. The challenge is to cover testing with minimum

effort to get maximum output.

Keywords
Object-oriented software system, Unit-testing, Model based

testing, integration testing, system testing, test automation.

1. INRODUCTION
Previously computer program was nothing but just a list of

commands called functions where all data getting stored in

one single location which creates problem in testing the

program properly.

Object-oriented testing and traditional testing are similar in

few aspects. Like we use unit testing, we perform integration

testing to make sure all subsystems work correctly, we

perform system testing to make sure software meets the

specified requirements.

Object-oriented programming language has features like

inheritance, polymorphism which is completely new and

brought technical challenges for tester while testing. This

paper will tell how to test encapsulation, polymorphism

testing along with Unit-testing, Model based testing,

integration testing.

2. NEED OF TESTING
Testing is a merry-go-round process which includes a good

amount of time along with cost, for all. But the reality is

quite opposite, without testing it is not possible to deliver

projects successfully, as during software development,

developers make many mistakes throughout the different

phase of development and testing helps in correcting those

mistakes. In other way, testing encompasses all phases of

development-in every phase; the work products of that phase

are tested. So in every phase of development there is testing

activity. For example, in the requirement engineering stage,

the SRS (System Requirement Specification) document is

written and tested to check whether it captures all the user

requirements or not. The same is applicable for object
oriented testing as object-oriented programming increases

software reusability, extensibility, interoperability, and

reliability and at the same time it is necessary to realize

these benefits by uncovering as many programming errors as

possible.

3. WHAT TESTING IS AND ISN’T
Testing comprises the efforts to find defects. Testing does

not include efforts associated with tracking down bugs and

fixing them. In other words, testing does not include the

debugging or repair of bugs. Testing is a procedure of

finding faults, defects in the software. While debugging is to

rectify the faults, defects find during testing in the software.

4. PROBLEM AND CHALLENGES
The object-oriented paradigm has set of testing and

maintenance problems. The inheritance, aggregation and

association relationships among the object classes make an

OO program difficult to test. The encapsulation and

information hiding features result in chains of member

function invocations that often involve objects of more than

one class. The problems for software testing are:

1. It is difficult to understand the code and prepare the test

cases.

2. It is not cost-effective to construct test stubs for member

functions since most of them consist of one to two

statements. Rather, one would just use them provided

that they have been tested.

3. It is necessary to determine and limit the required

regression tests when a function or a class is changed.

4. It requires a fresh look into the traditional coverage

criteria and to extend them to include not just coverage

of individual functions, but also invocation sequence,

object stated and state sequences, and data definition

and use path across functions and objects.[18]

5. OO TESTING
The fundamental unit of object-oriented program is class

testing. The code for a class can be tested effectively by

review or by executing test cases. [1] For each class, decision

is taken whether to test it independently as a unit or in some

way as a component of a larger part of the system. Initially

we want to make sure that the requirements set forth in the
specification are meeting exactly by the code for a class. The

amount of attention given to testing a class to make sure that

it does nothing more than what it is specified for depends on

the risk associated with the class supplying extra behaviors.

Any incomplete coverage of code after a wide range of test

cases have been run against the class could be an indicator

mailto:ganeshnj@gmail.com

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

17

that the class contains extra, undocumented behaviors. Or it

could merely suggest that the implementation must be tested

using more test cases.

The decisions are based on following factors:

 The role of the class in the system, especially the degree

of risk associated with it.

 The complexity of the class measured in terms of the

number of states, operations, and associations with other

classes.

 The amount of effort associated with developing a test

driver for the class.

A test driver that creates instances of the class and sets up a

suitable environment around those instances to run a test case

is generally used to test Classes. The driver sends one or

more messages to an instance as specified by a test case, then

checks the outcome of those messages based on a reply

value, changes to the instance, and/or one or more of the

parameters to the message.

Figure1. Object Class

Figure1 illustrates an example of an Object Class ―A‖ which

has two methods. This Object Class has a dependency

association with all other Classes as shown. If a change was

made to the unit ―Object Class A‖ (METHOD 2), in theory

all test cases involving the unit should be rerun, at all levels.

The dependency diagrams required for testing are less

complex and association is easier to manage.

5.1 Encapsulation
In object oriented programming, all the operations that are

performed on some data are modeled and stored within a

single structure called a class. The behavior and interface

(which is defined by the class' public methods) of a class are

defined by the methods that operate on its instance data. In a

conventional paradigm, the modeling of these two aspects is

done separately. Encapsulation is about risk management,

reducing our maintenance burden, and limiting our exposure

to vulnerabilities —especially those caused by

bypassed/forgotten sanity checks or initialization procedures,

or various issues that may arise due to the simple fact of the

code changing in different ways over time. Technically,

encapsulation is hiding internal details behind an opaque

barrier so as to force external entities to interact through

publicly available access points. It makes us consider exactly

how access is restricted. It also makes us consider what

exactly a detail that needs to be protected is, and what

exactly should be exposed to the outside world.

Encapsulation minimizes the ripple effect of making a

change and therefore generally minimizes the amount of

regression testing required at the UNIT level.

Figure2. Encapsulation

The order of unit testing can save a lot of time and effort.

For example, using the dependencies shown in Figure2, if A

is tested first, we require a stub for B, if B is then tested, we

require a stub for C. If the testing order is reversed, C, B, A,

then the tester wouldn‘t have to create any stubs, he/she

could simply use the actual class, as a stub. [15]

5.2 Polymorphism
In the object oriented paradigm, it is possible to define a

single generic interface for multiple methods with the same

name that perform the same or similar operations. This helps

in reducing the complexity by using or reusing the same

interface to specify a general class of action.

As an example, a method used to draw graphics. If three

dimensions are passed, the method draw creates a triangle, if

four dimensions a rectangle, five pentagons and so on. In

this case there are three different methods with the same

name but they accept different amounts of variables in the

method call. Generally the selection of the variant is

determined at run-time (dynamic binding) by the compiler

based on, for example, the type or number of arguments

passed.

Few questions arise that need to be considered before testing:

1. Do we only need to one variant?

2. Do we test all variants?

3. If all, do we need to test all at all levels?

There isn‘t one set answer for these questions. The answers

to these questions will depend on the testers, the companies

policies etc. In a perfect world we would test everything.

However, in reality it is generally impossible to test

everything in large scale projects.

The same test cases (Driver and Stubs) could be used to test

each variant at the UNIT level (test reuse). Also because of

software reuse, it may not be necessary to test all the variants

at the INTEGRATION level if all are fully tested at the

UNIT level. Whether each variant will be tested at the

system level would depend on the requirements

specification.

5.3 Inheritence
Inheritance does not introduce new classes of faults, but it

provides an opportunity for optimization by re-using test

METHOD

CLASS A

METHOD

CLASS C

METHOD

CLASS B

USES
USES

METHOD 1

METHOD 2

OBJECT CLASS A

METHOD

E

METHOD

METHOD
METHOD

D

C
B

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

18

executions. [1] During analysis and design, inheritance

relationships between classes can be recognized in the

following two general ways:

1. As a specialization of some class that has already been

identified

2. As a generalization of one or more classes that have
already been identified[15]

Inheritance relationships can be identified at just about any

time during an iterative, incremental development effort. In

particular, the specialization relationship can be applied even

fairly late in an effort without a large impact on most other

program components. This flexibility is one of the big

advantages to using inheritance and one of the strengths of

object-oriented technologies.

Implementing classes is more straightforward when done

from the top of the hierarchy down. In the same way, testing

classes in an inheritance hierarchy is generally more

straightforward when approached from the top down. In

testing first at the top of a hierarchy, we can address the

common interface and code and then the test driver code for

each subclass. Implementing inheritance hierarchies from the

bottom up can require significant refactoring of common

code into a new super class.

The chances of dealing with different inheritance structures

and the added possibility of potentially dealing with multiple

forms of inheritance can add another level of complexity to

the testing process. [15]

These issues raise a number of questions:

1. Do we completely test all BASE classes and their

subclasses and at what levels should we test?

2. Do we completely test all BASE classes and only the

changes or modifications in the subclasses, and if so at

which levels?

3. In which order do we test the hierarchy, top down or

bottom up?

To answer number 3 first, the generally accepted practice

is to test top down, starting with. The levels to test at (unit,

integration) are discussed in Table 1.

Scenario Unit Integration

None X?

New X X?

Redefined X X?

Virtual Completed X X?

Virtual not Completed

Table1. Inherited Testing

The Table1 summarizes the recommended testing at the unit

and integration level for each method of inheritance.

1. None- There is no need to perform unit testing if this

was done at the BASE class level. However there may

be a requirement to perform integration testing if the

inherited attributes (methods and /or data) are used in a

new scenario.

2. New- In this case the new attributes would need to be

tested at the unit level, since this is the first level at

which these attributes are introduced. They would be

integration tested only if there are used by another class

in a scenario.

3. Redefined- In this case unit testing must be performed

again since the structure of the inherited attribute has

been changed. Integration testing is conducted if the

attributes are used at that level in a scenario.

4. Virtual Completed. Unit testing must be performed, and

integration testing if used at that level of inheritance.

5. Virtual not completed- No testing is required.[15]

6. MODEL BASED TESTING
With increasing complexity of software program, it is

essential that people involve in design and development of

software should communicate closely. Uniform Modeling

Language (UML) gives us a standard way to create a

system‘s blueprint, covering business process and system

classes and also concrete things like classes written in a

specific programming language, database schema and

reusable components. The use case model is a model design

based on the user‘s understanding/view of the system.

The modeling diagrams used in UML:

1. Use case diagrams: The use case model captures the

requirements of a system. Use cases are a means of

communicating with users and other stakeholders what

the system is intended to do.

2. Class diagrams: Class diagrams depict a static view of

the model, or part of the model, describing what

behavior and attribute it has rather than detailing the

process for achieving operations. Class diagrams are

most useful in illustrating relationships between classes

and interfaces.

3. Object diagrams: It is a special case of a class diagram.

Object diagrams use a subset of the elements of a class

diagram in order to emphasize the relationship between

instances of classes at some point in time. They are

useful in understanding class diagrams. They don‘t

show anything architecturally different to class

diagrams, but reflect multiplicity and roles.

4. Sequence diagrams: A sequence diagram is a form of

interaction diagram which shows objects as lifelines

running down the page, with their interactions over time

represented as messages drawn as arrows from the

source lifeline to the target lifeline.

5. Collaboration diagrams: It describes interaction among

classes and associations. These interactions are modeled

as exchanges of message between classes through their

association.

6. State Machine diagrams: A state machine diagram

models the behavior of a single object, specifying the

sequence of events that an object goes through during

its lifetime in response to events.

7. Activity diagrams: An activity diagram is used to

display the sequence of activities. Activity diagrams

show the workflow from a start point to the finish point

detailing the many decision paths that exist in the

progression of events contained in the activity.

8. Component diagrams: Component diagrams illustrate

the pieces of software, embedded controllers, etc., that

will make up a system. A component diagram has a

higher level of abstraction than a Class Diagram -

usually a component is implemented by one or more

classes (or objects) at runtime.

9. Deployment diagrams: A deployment diagram models

the run-time architecture of a system. It shows the

configuration of the hardware elements (nodes) and

shows how software elements and artifacts are mapped

onto those nodes.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

19

The vast majority of the work examining model based testing

of OO systems focuses on the use of either class or state

diagrams. Class diagrams provide information about the

public interface of classes, method signatures, and important

relationships between classes. State diagrams provide

information about the behavior of a class (or the BASE class

and working our way down. This enables a tester to reuse

test cases, and potentially test results in certain situations set

of classes.)

There are many phases in the testing process, including unit,

function, system, regression, and solution testing. The

following table illustrates the differences between these

phases, as well as the potential UML diagram for use in the

phase. [17]

Test type Coverage

Criteria

Fault

Model

UML

Diagram

Unit Code correctness,

error

handling

pre / post

conditions,

invariant

class and

state

diagram

Function Functional functional

and API

behavior,

integration

issues

interaction

and class

diagrams

System Operational

Scenarios

workload,

contention,

synchron. ,

recovery

use case,

activity,

and

interaction

diagrams

Regression Functional Unexpected

behavior

from new /

changed

function

interaction

and class

diagrams

Solution Inter-System

communication

Interop.

Problems

use case

and

deployment

diagrams

Table2. Diagram use in different testing phases

The problem lies with UML is that during testing process it

is not decided that which diagrams might be useful in various

phases. Some issues need to be taken care before effectively

applied UML in testing process. One issue is that it is

tempting to think that the models which are derived during

design and implementation can be used by tester as well. But

this is not feasible reason

1. The model that derived from development process lack

details in features need to develop test cases.

2. Tester gain valuable insight by building or modifying

the models in the testing process.

7. INTEGRATION TESTING
Software test strategy provides the basic strategy and

guidelines to test engineers to perform software testing

activities in a rational way. Software integration strategy

usually refers to an integration sequence (or order) to

integrate different parts (or components) together.

A test model is needed to support the definition of software

integration test strategies. [7]

Typical test models:

 Control flow graph

 Object-oriented class diagram

 Scenario-based model

 Component-based integration model

 Architecture-based integration model

.When Unit testing is completed then only we can

perform Integration testing.

One of the biggest problems in integration testing is to

determine how long to spend to test this phase as it takes

almost the whole testing phase.

Driver and Stub- Driver are programs which simulate the

behaviors of software components [2] (or modules) that are

the control modules of a under test module. Stubs are

programs which simulate the behaviors of software

components (or modules) that are the dependent modules of

a under test module.

Figure3. Driver and Stub

Strategies of Integration testing for object-oriented

software:-

1. On Top Down testing process the main control module

is used

 as a test driver, and the stubs are substituted for all

modules directly subordinate to the main control

module, the subordinate stubs are replaced one at a time

with actual modules. The tests are conducted as each

module is integrated. On completion of each set of tests,

another stub is replaced with the real module.

A Top Down approach is obviously a White Box method as

in depth knowledge of lower layers of the programs

functionality is required for the generation of the stub files.

2. Bottom UP Testing works in reverse of really Top

Down testing. In this process the low-level modules are

combined into clusters that perform a specific software

sub-function. The driver is written to coordinate test

case input and output. The test cluster is tested. Drivers

are removed and clusters are combined moving upward

in the program structure. The advantages with this are

that once a layer has been completely tested, it‘s less
likely that any Bug found has occurred in that layer.

Some other integration testing strategies are:

1. Execution based integration test – Tracing the execution

of an interaction. This testing strategy finds control

flows that cannot be executed.

2. Value based integration test – Executes the interaction

between components with certain values. This testing

corresponds to the traditional boundary value, input

validation and syntax testing. This testing strategy finds

errors like passing of illegal parameters and

interpretation problems of parameters.

3. Function based integration testing – Tests the correct

provision of functionality through the component‘s

collaboration. This testing strategy focuses on detecting

mismatches between the interpretations of the

interaction between components.

Driver Tested

Unit

Stub

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

20

8. SYSTEM TESTING
The last phase of testing is System testing which comes just

before the product is delivered to customer. This level of

testing ensures that the program matches the final

specification that was drawn at beginning of the project.

[9]The most important thing in this phase is that it not

concerned on how system works rather it is more concerned

with the result produced. For this reason, system testing is

considered to be ‗Black Box testing‘. System Testing should

take place in the setup which is accurately reacts like the

system in which the product will be deployed. By this way

any error occur can be easily caught and fixed before final

product release.

It seems that system tests for object oriented systems would

be no different to system tests for non-object oriented

systems. Specifications for object oriented software can be

very different from non-object oriented software. For

example, object-oriented systems can be modeled in UML

and use `Use Case' and `Class' diagrams. These diagrams are

then used to produce the test cases.

9. REGRESSION TESTING
Regression testing is performed similar to traditional systems

to make sure previous functionality still works after new

functionality is added. [3] On changing a class which has

been tested previously implies that the unit tests should be

rerun. The test scenario may have to be adapted based on the

changes done to support proper testing. In addition, the

integration test should be redone for that suite of classes.

10. TEST AUTOMATION
Not but the least automated testing always play vital role in

delivering product with good quality at proper time. Test

automation is software that automates any aspect of testing

of an application system with a capability to generate test

inputs and expected results. It reduces the repetitive works
that we do manually and also provide us the result as ‗pass‘

or ‗fail‘.

The appropriate extent of automated testing depends on our

testing goals, budget, software process, kind of application

under development, and particulars of the development and

target environment.

Automated tests ensure a low defect rate and continuous

progress, whereas manual tests would very rapidly lead to

exhausted testers. To summarize the characteristics of tests

we are aiming at: [19]

 Tests run the system – in contrast to static analyses.

 Tests are automatic to prevent project members to get

bored with tests (or alternatively to prevent a system

that isn‘t tested enough)

 Automated tests build the test data, run the test and

examine the result automatically.

 Success resp. failures of the test are automatically

observed during the test run.

 A test suite also defines a system that is running

together with the tested production system. The purpose

of this extended system is to run the tests in an

automated form.

 A test is exemplar. A test uses particular values for the

input data, the test data.

 A test is repeatable and determined. For the same setup

the same results are produced. [19]

11. CONCLUSION
The conclusion of this short expose is that it throws some

light on different testing aspects of object-oriented software

system. And to full fill the challenge ‗to cover testing with

minimum effort to get maximum output‘, we need automate

the test since only an automated test can cover the code in

combination. In testing object-oriented systems, the test is

moved up to a higher level of abstraction, where test

automation is absolutely necessary.

12. ACKNOWLEDGMENT
We are heartily thankful to Prof. Jebrial, Prof. Joy Paulose,

whose encouragement, guidance and support enabled us to

develop an understanding of the subject.

13. REFERENCES
[1] Mauro Pezz`e, Michal Young,‖ Testing Object Oriented

Software‖, Proceedings of the 26th International

Conference on Software Engineering (ICSE‘04), IEEE,

2004

[2] Priti Bansal, Sangeeta Sabharwal, and Pameeta Sidhu,

―An Investigation of Strategies for Finding TestOrder

During Integration Testing of Object Oriented

Applications‖, International Conference on Methods

and Models in Computer Science, IEEE, 2009

[3] Suganya G,Neduncheliyan S,‖A Study of Object

Oriented testing techniques: Survey and

challenges‖,IEEE Conferences,2010

[4] John D. McGregor and David A. Sykes, ‖A Practical

Guide To Testing Object –Oriented Software‖Mar,

2001.

[5] Perry D., Kaiser G.: ―Adequate Testing and Object–

oriented Programming‖, Journal of 00-Programming,

Vol. 2, No. 5,Jan. 1990,

[6] Gareth Thomas, ‖Object Orientated Integration

Testing‖, December 14, 2006;

[7] Jerry Gao Ph.D., ―Software Integration Testing‖, Jan

1999

[8] Jilles van Gurp, ‖Object Oriented testing‖, December

9,1998

[9] Dafydd Vaughan, ―System Testing with Object-

Oriented Programs‖, Jan 12,2007

[10] Binder, R. ―Testing Object-Oriented Systems. Models,

Patterns, and Tools‖, Addison-Wesley, 1999.

[11] Myers, G. ―The Art of Software Testing, John Wiley &

Sons‖, New York, 1979.

[12] Jilles van Gurp, ―Object Oriented Testing Report‖, 1998

[13] Grady Booch, Ivar Jacobson and James

Rumbaugh,‖The Unified Software Development

―,Process.1999

[14] GradyBooch, RobertA.Maksimchuk , MichaelW.Engel,

BobbiJ.Young, Jim Conallen, Kelli A. Houston,

―Object-Oriented Analysis and Design with

Applications (3rd Edition)‖, 2007

[15] Maj Nicko Petchiny, ‖Object Oriented Testing‖,April

1998

[16] Jitendra S. Kushwah, Mahendra S. Yadav, Testing for

Object Oriented Software‖ Indian Journal of Computer

Science and Engineering(IJCSE),Feb 2001

[17] Clay E.Williams, ‖Software Testing and the UML‖,

International Symposium on Software Reliability

Engineering(ISSRE99),Bocs,Baton,1999

[18] D.Kung, J.Gao, P.Hsia, F.Wen,‖ Change Impact

Identification in Object Oriented Software

Maintenance‖Software maintenance,Proceeding,

International Conference,IEEE,1994

[19] Bernhard Rumpe,‖ Model-based Testing of Object-

Oriented Systems‖, International Symposium, FMCO

2002

