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ABSTRACT 

In this contribution we provide a simple and useful state 

estimation approach for a general class of non linear models 

that describe dynamic power systems. At first we show, 

through a small power network, that this class of systems is 

modeled by non linear differential-algebraic equations that we 

may always transform to a system of ordinary differential 

equations. After, we investigate a state estimator based on the 

EKF technique as well as the local stability analysis. High 

performances are illustrated through a simulation study 

applied on 3 and 5 buses test systems. 
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Nomenclature 

M Inertia constant of the generator 

D Damping constant of the generator 

δ mechanical rotor angle of the rotating  machine 

ω mechanical angular velocity 

ωs electrical angular velocity 

PM Mechanical power input 

Pj, Qj Nodal active and reactive power 

Pc,d Transit power 

Ybus Nodal  admittance matrix 

,
ij ij
G B

 

real and imaginary terms of bus admittance matrix 

corresponding to ith  row and jth column 

N Total  number  of  system  buses 

ng Number of generator buses 

nl Number of load buses 

PGi Electrical power supplied by the generator 

,i iV  Phase and voltage at bus i 

1. INTRODUCTION 
Control design, diagnosis and monitoring of power 

systems become a major concern and an important economic 

issue during the last decades, in particular, in industrialized 

countries. Indeed, the main reasons are not only to optimize 

energy consumption but also to reduce the "Black Out" in 

vulnerable regions. It is important to observe, preferably in 

real-time, relevant variables of the power network. To 

achieve this goal it is necessary to use state estimation 

techniques or state observers from a database using physical 

sensors. Indeed, it is very difficult or impossible (for 

accessibility, technical and/or cost reasons) to measure 

through hardware sensors the excessive number of state 

variables in large scale systems. It is therefore important to 

develop software sensors that can produce a reliable estimate 

of the necessary variables. Unfortunately, these techniques 

are often based on a static model of the network around an 

operating point, and are off line due to large computational 

requirements. Therefore, the Energy Management Systems 

(EMS) based on these techniques are, in general, inefficient 

and lead to poor management of the networks [1].  

State estimation in power system has mainly focused on 

Static State Estimation (SSE) from redundant measurement 

[2]. 

However, to oversee an electrical power system in 

efficient, economic and secure manner, it is most important 

to be acquainted with the different dynamics states, then, it is 

Dynamic State Estimation (DSE) in electric power system, 

which apprises of the aforesaid information.  

In designing a DSE, it is important to model the 

dynamics of the complex bus voltages/phases (algebraic 

state) and generators (dynamic state). The existing models 

not only fail to depict the true behavior of the power system 

dynamics but also some of the parameters appearing in these 

models do not bear any physical meaning, reducing the size 

of model  [3] or linearization form [4]. To override the 

limitations of the existing models, a relevant model has been 

considered in this paper to model the dynamics of the power 

system based on the nonlinear DAE models proposed in [5]. 

Where we show that we can always rewrite the system with 

a nonlinear DAE form with explicit ODE. 

After the step of modeling, it is extremely important to 

consider a robust estimator which reflects a reliable image in 

the terms of capacity as for estimation, robustness and 

stability. The most important objective is the possibility of 
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real-time application with the development of the Digital 

Signal Processor devices [6]. The existing methods are based 

on: 

 The power system is considered as a quasi-static 

system and then applying a tracking estimator [7]. 

 Definition of spaces of linear combinations and their 

algebraic complement for the calculation of the 

observer gain [8]. 

  Consideration of linear approximation to extract the 

algebraic states [9] or to consider a linear dynamic 

power system model and applying the classical 

Kalman Filter [1] (by varying the algorithm of 

resolution such as Square Root Filter Algorithm 

[10] or changing the weight vector on measurement 

in objective function such as in the exponential 

form used in [11]). 

We consider in this paper, an estimator based on a 

modified version of EKF while using new numerical 

approximations for the calculation of the Jacobian matrix. 

The purpose of this work is to provide a generic 

dynamic model of balanced power systems and to design 

state estimation techniques to overcome the problems raised 

above. Indeed, description of the network by a dynamic 

model leads us to have an idea about the transient behavior 

that plays a central role for monitoring and control design. 

For doing so, through a 3 buses IEEE example, we show that 

the dynamic model is always written as a system of coupled 

dynamic nonlinear equations and algebraic ones. To develop 

useful and simple state estimators, we transform the obtained 

DAE model to an augmented one written as a system of 

ordinary differential equations. Thus, we propose a state 

estimator based on the Extended Kalman Filter, we also 

investigate stability analysis. In the last section, numerical 

simulations of two networks 3 and 5 buses test systems show 

the relevance and efficiency of the proposed approaches. 

2. DYNAMIC POWER SYSTEM MODEL 
The dynamics of a power system can be modeled with a 

combination of nonlinear differential equations and nonlinear 

algebraic equations. These sets of equations are often solved 

separately in different analysis techniques. The solution is 

accomplished in an iterative way, with the important feature 

that all the desired system characteristics are included. The 

general form of the DAE model is given as: 

( ) ( ( ), ( ), ( ))

0 ( ( ), ( ))

( ) ( ( ), ( ))

d d d a

d a

d a

t F t t t

g t t

t h t t





 

x x x u

x x

y x x
 

(1) 

With: dn
dx (t) and ( ) an

ax t  are respectively dynamic 

and algebraic states,  ( ) dn
dF t   a function representing the 

nonlinear differential equations,  (.) an
g   represents the 

nonlinear algebraic constraints (equations),  ( ) pu t  the 

control and ( ) my t   the output system. The problem with 

the system (1) is that ( )ax t does not appear explicitly. 

2.1 Problem Formulation 
To put out, in details, the physical dynamic power model, 

we will treat the case of the 3 buses test system given in Fig. 1 

(with ng=2 and nl=1): 

 

 

 

 

 

 

Figure 1. 3 buses test system 

We consider these assumptions [5]: 

-  The internal field currents are constant, providing 

the representation of the machine as a constant 

voltage behind the direct axis transient reactance. 

-  The mechanical power provided by the prime mover 

is constant and all dynamics of the prime mover are 

neglected. 

-  All generators are rotating at synchronous speed 

(steady state) and are round rotors. 

-  All generators in the system are identical, and 

therefore the inertia constant (Mi) along with the 

damping constant (Di) of each generator have the 

same value. 

-  The mechanical rotor angle is the same as the 

electrical phase angle of the voltage therefore δ now 

refers to the electrical angle.  To further simplify the 

notation, the transient reactance is incorporated into 

the system Ybus, resulting in θi as generator terminal 

voltage phase and Vi as the terminal voltage 

magnitude. 

If we take node 1 as reference, the set of equation of this 

network is given by [8]: 

˙

, ,

: 0

: ( ( , , ) )
2

: ( , , ) 0

: ( , , ) 0

: ( , , )

i i

I
i i s

II s
i i M G i

I
i j j

II
i j j

q c d c d

f

f P P V D
M

g P P V

g Q Q V

y P P V

  


   

 

 

 

   

   


  

  

 



 (2) 

With:

1... 1; ( 1)...( ); 1... ; , 1...g g g li n j n n n q m c d N       , 

the node 1 is taken as the reference and : 

1

| || | [ cos( ) sin( )]
i

N

G i j ij i j ij i j

j

P V V G B   


     

Therefore the model (2) can be rewritten under this form: 

( , , )

( , )

F x x u

y h x










 

GS GS 

Bus 1 

Bus 2 

Bus 3 
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with: 

[ , , , ] , , { }, (.) [ , ]iMT T
i i i i bus i j

P
x V u Y F f g

M
        

and ,c dy P  where u and y will be respectively the control 

and the output of the system. The choice of transit power as 

output which is based on this measure is used by the Tunisian 

Company of Electricity and Gas. Thus for this network, the 

state vector and the system equations are given by (3) and (4). 

1 2 3 4 3 3 2 2[       ] [       ]T Tx x x x x V     (3) 

3 3

1 2

2 1 3 4 2

2 2 1 3 4

2 2 1 3 4

1 3,2 1 3 4

:

: ( ( , , ) )
2

: ( , , ) 0

: ( , , ) 0

: ( , , )

I
s

II s
M G

I

II

f x x

f x P P x x x Dx
M

g P P x x x

g Q Q x x x

y P x x x





  

   




 

  







 (4) 

with x1 and x2 are the dynamic variables, x3 and x4 are the 

algebraic variables. While using (1) the system is rewritten as:  

1
1 2 3 4

2

1 2 3 4

3,2 1 3 4

( , , , , ) [ , ]

( , , , ) [ , ] 0

( ) ( , , )

I II T
d d

I II T

x
x F x x x x u f f

x

g x x x x g g

y t P x x x

  
    
 


 

 









 (5) 

A simple diagram for the simulation of power system with 

model (1) is proposed, which: for the dynamic states we use a 

block of integration with nonlinear function (  dF t ) with 

algebraic constraints resolver under a package SIMULINK of 

MATLA®B. The simulation diagram is as follows (Fig. 2): 

 

 

 

 

 

 

 

 

 

Figure 2. Diagram of simulation 

2.2 Semi-explicit DAE index 1 
If at an equilibrium point, the system (1) is called semi-

explicit [9], index-1 property requires that ( , )d ag x x is 

solvable for ax and det( ( , )) 0
ax d ag x x   (to 

simplify ( ) , ( )d d a ax t x x t x  ): 

0 ( , ) ( , )

0 ( , ) ( ,

 

 , ) ( , )

d a

d a

x d a d x d a a

x d a d d a x d a a

g x x x g x x x

g x x F x x u g x x x

 

 





 


 (6) 

Where
( , )

( , )
a

d a
x d a

a

g x x
g x x

x





and 

( , )
( , )

d

d a
x d a

d

g x x
g x x

x





  In other words, the differentiation 

index is 1, if, by differentiation of the algebraic equations with 

respect to time, an implicit ODE system results [12]: 

1

( , , )

( , ) (

 

 , ) ( , , )
a d

d d d a

a x d a x d a d d a

x F x x u

x g x x g x x F x x u



 








 (7) 

Where
1( , ) a a

a

n n
x d ag x x

  and ( , ) a d

d

n n
x d ag x x


 .  

A study of nature and stability of DAE system is given by 

[13]. It should be noted that: 

1 2

3 4

( , )
( , ) [ ]

a a

a

a a

x xd a
x d a

x xa

g gg x x
g x x J

g gx

 
   

   

  (8) 

 With J is the Jacobian matrix used in the Load Flow 

calculation excepted for generators terms, which allows us to 

verify that this det( ( , )) 0d ag x x   and g is solvable for any 

ax  (the elements of this matrix are the components of the 

diagonal Jacobian matrix used in load flow). 

Finally, the complete model in form ODE is as follows: 

1

( , , )

( , , )

( , ) ( , ) ( , , )

( , )0
( , )

( , )

a d

d
d a

a

d d a

x d a x d a d d a

d a
d a

d a

x
x f x x u

x

F x x u

g x x g x x F x x u

g x x
y h x x

h x xy



 
  
 

 
  
  

  
     
   






 

(9) 

In the expression of ( , )d ah x x , the purpose of adding 

the algebraic constraint ( , )adg x x  is to check it 

permanently. It should be noted that the assumptions and the 

propositions given can be generalized for the other forms of 

dynamic power system models (models including a 

characteristic of the static/dynamic loads [14] and generators 

with exciter model [5]). 

3. DYNAMIC STATE ESTIMATION  
The main problem in dynamic state estimation of power 

system is that few methods are applicable. Effectively, the 

numerous and strong nonlinearities in presence lead 

generally to the use of Extended Kalman Filter to resolve the 

state estimation problem. We propose here the Extended 

Kalman Estimator to increase the precision as well as the 

( )ax t  : algebraic state 

u(t) : mechanical  
power 

 power 

( ( ), ( ), ( ))d d aF x t x t u t
 

.
 

Algebraic 
constraints 

resolver 

y(t) : transit 

power 

( )dx t  : dynamic state 
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robustness of the estimation. A study of the convergence of 

EKF will be presented. 

3.1 Extended Kalman Filter 
The Kalman filter is a recursive estimator. It means that 

to consider the running state, only preceding state and current 

measurements are necessary. The history of the observations 

and the estimates is; thus; not necessary. In the extended 

Kalman filter (EKF), the state transition and observation 

models need not be linear functions of the state but may 

instead be differentiable functions [15]. The considered 

nonlinear discrete system is given by (10): 

1 ( , )

( , )

k k k k

k k k k

x f x u v

y h x u w

  


 
 (10) 

Where kv  and kw  are the system and observation 

noises which are both assumed to be zero mean multivariate 

Gaussian noises with covariance kQ  and kR  respectively. 

In this paper, we have used the classical form of EKF 

(we have used Euler discretization with a step size Te, 

1 ( , ) ( , )k k e k k k kx x T f x u f x u     to discretize the 

continuous model (09)) given by: 

  

1

1

1

ˆ ˆ( , )

( )

( )

ˆ( , )

k k k k k

T T
k k k k k k k k

T
k k k k k k k

k k k k

x f x u K e

K F P H H P H R

P F K H P F Q

e y h x u







 

 

  

 

 (11) 

 

With: 

ˆ

( ( , ))
ˆ( , ) |

k k

k e k k
k k k x x

k

x T f x u
F F x u

x


 
 


and   

ˆ

( )

( , )
ˆ( , ) |

( ) k k

k

kk k
k k k x x

kk

k

g x

xh x u
H H x u

h xx

x



 
 

    
 
 

 

. 

 

There are some attempts to apply Kalman Filter on 

linearized D.A.E system [16], but our proposition is to apply 

the E.K.E in the classic general form with some numerical 

approximations that we propose for the Jacobian calculation. 

Initially, it should be noted that due to the difficulty of 

finding kF  (following the transformation of the algebraic 

variables in ODE model), we will make the following 

numerical approximation: 

 

ˆ

1

( ( , ))
ˆ( , ) |

( ( , , ))

( , )

( ( ( , ) ( , ) ( ,

 

, )))

( , )

k k

k k k

k k

k a k k d k k k k

k k

k e k k
k k k x x

k

d e d d a k

d a

a e x d a x d a d d a k

d a

x T f x u
F F x u

x

x T F x x u

x x

x T g x x g x x F x x u

x x





 
 



 




  



 
 
 
 
 
 
 

 (12) 

The numerical approximation is used on the second term 

of kF   (since it is very difficult to determine) as follows: 

1

1

( ( ( , ) ( , ) ( , , )))

( , )

( , , )
( ( ( , ) ( , ) ))

( , )

k a k k d k k k k

k k

k k

a a k k d k k

k k

a e x d a x d a d d a k

d a

d d a k

n e x d a x d a

d a

x T g x x g x x F x x u

x x

F x x u
I T g x x g x x

x x





  




  



 (13) 

For ˆ ˆ,
k k k kd d a ax x x x  . The terms 

1

axg
 and 

dxg are 

calculated numerically.  

3.2 Convergence Analysis 
In this section, we present a convergence analysis of EKF 

based on the method of [17] [18] and [19] by including an 

unknown diagonal matrix to model linearization errors and a 

Lyapunov function. This is leads to the resolution of a LMI 

which depends on the choice on kR and kQ . 

Initially, the error vector is defined: ˆk k kx x x   and the 

candidate Lyapunov function: 
1

1 1 1 1
T

k k k kV x P x
      , where : 

1

1 1
1

1 ( )

( )

( )

( ,..., )
d a

k k k k k k k k

T
k k k k k

k k n n k

x F K H x F

P F P F Q

diag

 

  



 




   


 
 


 

  

We have then: 
1

1 1

1

( ) ( )

    ( )

T
k k k k k k k k

T T T
k k k k k k k k k k

V F x P F x

x F F P F Q F x

 

 


 





 

  

   
 (14) 

A decreasing sequence 1,...{ }k kV   means that there exists a 

positive scalar 0 1   so that: 1 (1 ) 0k kV V    . 

Therefore, this gives us this LMI: 
1 1( ) (1 ) 0T T

k k k k k k k k kF F P F Q F P          (15) 

With the same reasoning used in [18], we determine domains 

in which (15) is satisfactory. Under the following assumption: 

1

2(1 ) ( )
| | | |

( ) ( ) ( )

T
k k k k

jk k j jk T
k k k

F P F Q
sup

F P F

 
  

  

  
     

 




 (16) 

1,...{ }k kV   is a decreasing sequence. With   and   denoting 

the maximum and minimum singular values respectively, and 

as k  is a diagonal matrix then: 

2

1

1

(1 ) ( )
[ ( )]

( ) ( ) ( )

(1 ) ( )
         

( ) (( ) ) ( )

T
k k k k

k T
k k k

k

T T
k k k k k k

F P F Q

F P F

P

F F P F Q F
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 

  
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  





 











  

 (17) 

We have then: 

1

2 1

1

( ( ) )

[ ( )] ( ) (( ) ) ( )

(1 ) ( )

T T
k k k k k k k k

T T
k k k k k k k

k

F F P F Q F

F F P F Q F

P

  

    

 









 

 

  

    (18) 

When (18) is satisfied, kV is a strictly decreasing sequence. 
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This last equation gives us an idea on the choice of kQ  and for 

kR , we proceed as follows: 

1

1

( ) ( )

( ( ) )

[ ( ( ) )]
a d

k k k k

T T
k k k k k k k k k

T T
k n n k k k k k k k

F F K H

F F P H H P H R H

F I P H H P H R H

 








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 
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  



 (19) 

by replacing 1( )T T
k k k k k k kP H H P H R H  by kA , we 

obtain: 

1

1

( ) ( ) [ ( )]

( ) ( ) ( )

a d

a d

k k k k n n

k k k n n

F F A A I

F A A I
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 
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
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with: 
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1
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T T
k k k k k k k k

T T
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T
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T
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P H H

H P H R

  
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 







 

 




 

(21) 

We obtain finally: 

1( ) ( ) ( ) ( )
( )

( )

      

a d

T
k k k k k n n

k T
k k k k

F P H H A I
F

H P H R

   











 (22) 

However, in order to ensure ˆlim ( ) 0k k
k

x x


   and since kV  

is a strictly decreasing sequence and kP  is a bounded matrix, 

it follows that: 

0

0

0 (1 )

0 lim ( ) lim ( ) lim ((1 ) ) 0

T k

k k k

T k

k k k
k k k

x x V V

x x V V

 

 
  

   

     

 

 
 

with 
10

d an n kI P 
  . 

Consequently, in the same reasoning of [18] and [19], and to 

guarantee that the EKE ensures local asymptotic convergence, 

we must verify the following conditions: 

 System (10) is A-locally uniformly rank observable, 

there exists 1k A  where the observability 

matrix: 

 

( ( - 1, )) ( )d arank O k A k n n    (23) 

 

where: 

1

2 1

1 1

( 1, )

k A

k A k A

k k k A

H

H F
O k A k

H F F

 

   

  

 
 
   
 
 
 





 

 In practice, we use a numerical rank test 

on ( 1, )O k A k  . 

 kF , kH  are uniformly bounded matrices and 

1
kF 

exist. 

 The matrices kQ  and kR are chosen as follows: 

 

1 1 1

1 1 1/ 1

d a d a

T
k k k n n n n

T
k k k k k m

Q e e I I

R H P H I

 

 

    

   

 

 
 (24) 

where   and  have to be chosen large and positive and 

 and  a positive scalar fixed by the user. 

4. SIMULATION RESULTS  
Studies are carried out on the IEEE 3 and 5 buses test system 

to evaluate the performance of the proposed dynamic model 

and the EKF. The transit power is considered as 

measurements. For the discretization of the model (09), we 

have used Euler discretization with a step size
3

10eT s


 .  

4.1 Results of simulation of 3 buses test 

system 
The measurement values are generated by adding low variance 

noise (±5% of real value) to the generated measurements 

(transit power P3, 2). 

Firstly, to verify that det( ( , )) 0
ax d ag x x  , Fig. 3 presents the 

evolution of det( ( , ))
ax d ag x x : 
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Figure 3. Evolution of det( ( , ))

ax d ag x x . 

 Fig. 3 demonstrates in a clear way that the transformation of 

DAE model to ODE is applicable for power system. 

Now, Fig. 4 shows the evolution of the rank of the 

observability matrix (numerical calculation with A=4). 

 

 

Figure 4. Evolution of
( 4, )
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busesrcond O

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After the verification of the observability, 
( 4, )
3

k k
busesO


 is well 

conditioned (
( 4, )
3( )

k k
busesrcond O


>0), we present the variation of 

ˆrealx x‖ ‖ in Fig. 5 (based on the choice of Qk and Rk) to 

validate the convergence of the proposed estimator. We 

consider the measurement values are generated with the 

diagram of simulation (Fig. 2) and by adding high variance 

noise to the calculated measurements (±15 % of real value of 

transit power P3,2) with: 

- Standard Choice of Qk and Rk (Standard EKF):  
2

44.989*10

0.915

EKF
k

EKF
k

Q I

R




 

- Proposed choice (Modified EKF): 
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Figure 5. Evolution of ˆrealx x . 

Fig. 5 shows in a clear way, the interest of the appropriate 

choice of the expressions of Rk and Qk to ensure stability and 

convergence. Another problem connected to the stability of 

DSE methods is the choice of initial values for various states to 

estimate. We tested the Standard and Modified EKF for 100 

simulations while varying the initial values in a random way 

(variation of ±20% with respect to the actual initial values). 

Table 1 shows the % of convergence by applying a disturbance 

to the system parameters: 

- Case 1: Adding a low variance noise to the system 

(variation of ±5% applied on ijG  and ijB ). 

- Case 2: Adding a high variance noise to the system 

(variation of ±15% applied on ijG  and ijB ). 

Table 1.  (%) of Convergence with random initials values 

Estimator Case 1 Case 2 

Standard EKF 54 % 49% 

Modified EKF 97% 94% 

 

In the general case, the studied algorithms converge to the 

good values only when are initialized ± near to their actual 

values (the voltages are selected close to the values of the 

generators voltages and the phases equal to 0). Table 1 shows 

clearly that the Modified EKF converges in the majority of the 

cases compared with the Standard version. 

 

4.2 Results of simulation of 5 buses test 

system 
The network includes:  

- 2 generators node: bus 1 and with node 1 is the 

reference bus and 3 static load nodes: 3, 4 and 5. 

- The output is ( 2,3P ) with a state vector composed by 

8 variables: 2 2 3 3 4 4 5 5[ ] [               ]Tx V V V     . All 

variables/sizes are given in p.u). 

First, we present the evolution of the reciprocal condition 

estimator (
( 8, )
5( )

k k
busesrcond O


): 
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Figure 6. Evolution of 
( 8, )
5( )

k k
busesrcond O


 

After the verification of the observability 
( 8, )
5( )

k k
busesrcond O


 is 

well conditioned (
( 8, )
5( 0)

k k
busesrcond O


 ). We consider now, 

the measurement values are generated with the diagram of 

simulation (Fig. 2) and by adding high variance noise to the 

calculated measurements (±15% of real value of transit power 

P2,3) with : 

- Standard Choice of Qk and Rk (Standard EKF):  
5

8

3

9.615*10

2.7*10

EKF
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EKF
k

Q I

R








 

 

 

- Proposed choice (Modified EKF): 
10 3

24 8

3

10 10

10 10

EKF T
k k k

EKF T
k k k k

Q e e I I

R H P H
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

 

 
 

and we present the evolution of the norm of error estimation  

ˆrealx x‖ ‖ in Fig. 7: 
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Figure 7. Evolution of ˆrealx x‖ ‖ . 

Fig. 7 shows that the appropriate choice of matrices Qk and Rk 

with the proposed equation insures the convergence of the 

estimated states to the real values. This shows, very clearly, 

that the proposed estimator (including proposed numerical 

approximations for the calculation of Jacobian matrix) gives a 

reliable image in the terms of capacity as for estimation and 

robustness.  

This is reflected by the existence of   (given in Fig. 8) where 

the condition: 0 1   is verified (section Convergence 

Analysis). 
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Figure 8. Evolution of k . 

Fig. 8 shows the existence of k  which satisfies the condition 

already presented in the convergence analysis and is bounded 

between 0 and 1 ( 0.39  ). 

We present in Table 2 the % of convergence for 100 random 

initial values with Standard and Modified EKF (we consider 

the same two cases in 3 buses test system): 

  

Table 2. (%) of Convergence with random initial values 

Estimator Case 1 Case 2 

Standard EKF 53 % 46% 

Modified EKF 96% 93% 

 

The values obtained in Table 2 confirm that the Modified EKF 

increases the estimation quality. In fact, the rate of 

convergence is multiplied by 2 times in comparison with 

Standard EKF.  

It should be noted that the results of simulation of dynamic 

model given by the diagram (Fig. 2) are validated and 

compared with those generated by the Toolbox 

SimPowerSystems of MATLAB® (we obtained the same 

results). In addition, the use of this Toolbox facilitates the real 

time implementation in DSP device. 

I one word, many results are omitted. 

5. CONCLUSION 
An efficient dynamic power system model has been described 

and investigated while based on introducing a transformation 

of ordinary DAE model.  We also used the classical method of 

EKF to dynamic state estimation of power system while 

including some new numerical approximation for the 

calculation of Jacobian matrix and which was preceded by a 

convergence analysis.  The results show well the appropriate 

choice of the dynamic model used in terms of robustness and, 

in a very clear way, the high quality of estimation offered by 

the Modified EKF. Experimental verification is then a 

necessity to testify the practical performance of this approach 

in the near future with real-time application for the monitoring 

and the diagnosis of large electrical network. 
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