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INTRODUCTION 
In 1992, Dhage[1] introduced the concept of D – metric space. 

Recently, Mustafa and Sims[4] shown that most of the results 

concerning Dhage‟s D – metric spaces are invalid. Therefore, 

they introduced a improved version of the generalized metric 

space structure and called it as   G – metric space. For more 

details on G – metric spaces, one can refer to the papers [4]-

[7]. 

Now we give basic definitions and some basic results ([4]-[7]) 

which are helpful for proving our main result. 

In 2006, Mustafa and Sims[5] introduced the concept of G-

metric spaces as follows: 

Definition 1.1.[5] Let X be a nonempty set, and let G: 

X × X × X   R+ be a function satisfying the following 

axioms: 

(G1) G(x, y, z) = 0 if x = y = z, 

(G2) 0 <   G(x, x, y), for all 
,x y X

  with x ≠ y,  

(G3) G(x, x, y)   ≤  G(x, y, z), for all 
, ,x y z X

 with 

z ≠ y, 

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = … (symmetry 

in all three variables) and 

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all 

, , ,x y z a X
, (rectangle inequality) 

then the function G is called a generalized metric, or, more 

specifically a G – metric on  X  and the pair (X, G) is called a 

G – metric space. 

Definition 1.2.[5] Let (X, G) be a G-metric space then 

for x0   X, r  > 0, the G-ball with centre x0 and radius r is 

 BG(x0, r) = {y  X : G(x0, y, y ) < r }. 

Proposition 1.1.[5] Let (X, G) be a G-metric space 

then for any x0   X, r  > 0, we have, 

(1) if  G(x0, x, y ) <  r then x , y   BG(x0, r), 

(2) if  y   BG(x0, r) then there exists a  > 0 such that 

BG(y, )   BG(x0, r). 

It follows from (2) of the above proposition that the family of 

all G-balls,  

B = {BG(x, r): x   X, r > 0} is the base of a topology  (G) 

on X, the G-metric topology. 

Proposition 1.2.[5] Let (X, G) be a G-metric space 

then for all x0  X and r > 0, we have, 

                     BG(x0, 

1

3 r) GdB
(x0, r)  BG(x0, r)  

where dG(x,y) = G(x,y,y) + G(x,x,y), for all 
,x y X

. 

Consequently, the G-metric topology  (G) coincides with 

the metric topology arising from dG. Thus, while 

„isometrically‟ distinct, every G-metric space is topologically 

equivalent to a metric space. This allows us to readily 

transport many results from metric spaces into G-metric 

spaces settings. 

Definition 1.3.[5] Let (X, G) be a G–metric space, and 

let {xn} a sequence of points in X, a point „x‟ in X is said to 

be the limit of the sequence {xn} if
,
lim

m n
G(x, xn, xm) = 0, 

and one says that sequence {xn} is G–convergent to x. 
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              Thus, that if  xn   x or 
lim
n  xn = x in a G-metric 

space (X, G) then for each 0 ,  there exists a positive 

integer N such that G (x, xn, xm) <   for all m, n ≥ N. 

Proposition 1.3.[5] Let (X, G) be a G – metric space. 

Then the following are equivalent:   

(1) {xn} is G-convergent to x, 

(2) G (xn, xn, x)     0 as n    ∞, 

(3) G (xn, x, x)    0 as n   ∞, 

(4) G (xm, xn, x)    0 as m, n     ∞. 

Definition 1.4.[5] Let (X, G) be a G – metric space. A 

sequence {xn} is called G – Cauchy if, for each 0  there 

exists a positive integer N such that G (xn, xm, xl) <   for all 

n, m, l ≥ N; i.e. if G (xn, xm, xl) →0 as n, m, l→∞.  

Proposition 1.4.[5] If (X, G) is a G – metric space then 

the following are equivalent: 

(1) The sequence {xn} is G – Cauchy, 

(2) for each 0 , there exist a positive integer 

N such that  G(xn, xm, xm) <   for all n, m ≥ N. 

Proposition 1.5.[5] Let (X, G) be a G – metric space. 

Then the function G(x, y, z) is jointly continuous in all three of 

its variables. 

Definition 1.5.[5] A G – metric space (X, G)  is said to be  G–

complete if every G-Cauchy sequence in (X, G) is G-

convergent in X.  

Proposition 1.6.[5]  A G – metric space (X, G) is G – 

complete if and only if (X, dG) is a complete metric space. 

Proposition 1.7.[5]  Let (X, G) be a G – metric space. Then, 

for any , , ,x y z a X ,  it follows that: 

(i) If  G(x, y, z) = 0, then x = y = z,  

(ii) G(x, y, z) ≤ G(x, x, y) + G(x, x, z), 

(iii) G(x, y, y) ≤ 2G(y, x, x), 

(iv) G(x, y, z) ≤ G(x, a, z) + G(a, y, z), 

(v) G(x, y, z) ≤ 2/3 (G(x, y, a) + G(x, a, z) + G(a, y, z)), 

(vi)       G(x, y, z) ≤   (G(x, a, a) + G(y, a, a) + G(z, a, a)). 

MAIN RESULTS 

  There has been a considerable interest to study common 

fixed point for a pair (or family) of mappings satisfying 

contractive conditions in metric spaces.  Several interesting 

and elegant results were obtained in this direction by various 

authors. It was the turning point in the “fixed point arena” 

when the notion of commutativity was used by Jungck [2] to 

obtain common fixed point theorems. This result was further 

generalized and extended in various ways by many authors.  

In particular, now we look in the context of common fixed 

point theorem in G- metric spaces. Start with the following 

contraction conditions: 

Let T  be a mapping from a complete G-metric space (X, G) 

into itself and consider the following conditions:  

(1.1)   G(Tx, Ty, Tz) ≤  G(x , y, z) for all 
, ,x y z X

, 

where 0   < 1, 

It is clear that every self mapping T of X satisfying condition 

(1.1) is continuous. Now we focus to generalize the condition 

(1.1) for a pair of self maps S and T of X in the following 

way: 

(1.2)   G(Sx, Sy, Sz) ≤  G(Tx ,Ty, Tz) for all 

, ,x y z X
, where 0  < 1, 

To prove the existence of common fixed points for (1.2), it is 

necessary to add additional assumptions of the following type:  

(i) construction of the sequence {xn} (ii) some mechanism to 

obtain common fixed point and this problem was overcome  

by imposing additional hypothesis on a pair of { S, T }. 

 Most of the theorems followed a similar pattern of maps:  

(i) contraction (ii) continuity of functions (either one or both) 

and (iii) some conditions on  pair of mappings were given. In 

some cases, condition (ii) can be relaxed but condition (i) and 

(iii) are unavoidable.  

Definition 2.1. Two mappings f and g are said to be 

commuting maps if  
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                          fgx = gfx for all x X . 

Now we shall prove our main result:  

Theorem 2.1. Let (X, G) be a complete G – metric space 

and let f and g be self-mappings on X satisfying the following 

conditions:  

(2.1) f(X)    g(X); 

(2.2) g is continuous; 

(2.3) G(fx, fy, fz) ≤ q G(gx, gy, gz), for every  

, ,x y z X  and 0 < q < 1.  

Then f and g have a unique common fixed point in X  

provided  f  and g commute. 

Proof. Let x0 be an arbitrary point in X. By (2.1), one can 

choose a point x1 in X such  

that  fx0 = gx1, In general choose xn+1 such that yn = fxn = 

gxn+1. 

Now, we prove {yn} is a G-Cauchy sequence in X. 

From (2.3), take x = xn, y = xn + 1, z = xn + 1 we have 

G(fxn, fxn+1, fxn+1) ≤ q G(gxn, gxn+1, gxn+1) = q G(fxn-1, fxn, fxn) 

Continuing in the same way, we have 

G(fxn, fxn+1, fxn+1)  ≤  qn  G(fx0, fx1, fx1)   G(yn, yn+1, yn+1)  ≤  

qn  G(y0, y1, y1) 

Therefore, for all ,n m N (set of natural numbers), n < m, 

we have by G(5) 

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1)+G(yn+1, yn+2, yn+2)+G(yn+2, 

yn+3, yn+3)+---+ G(ym-1, ym, ym) 

 ≤ (qn + qn+1 + q n+2 + - - - + qm-1) G(y0, y1, y1) 

 ≤ (qn + qn+1 + q n+2 + - - - ) G(y0, y1, y1) 

 =

n  q  

 (1 q)
G(y0, y1, y1) → 0  as n → ∞. 

Thus {yn} is a G – Cauchy sequence in X. Since (X, G) is 

complete G – metric space, therefore, there exists a point z in 

X such that lim
n

 yn = lim
n

gxn= lim
n

fxn = z. Since g is 

continuous. Therefore lim
n

ggxn= lim
n

gfxn= gz. Further, we 

have since f and g are commuting maps, therefore by 

definition, we get lim
n

gfxn = lim
n

fgxn = lim
n

ggxn= 

lim
n

gfxn= gz.  From (2.3), take x = gxn, y = xn, z = xn, we 

have  

G(fgxn, fxn, fxn) ≤ q G(ggxn, gxn, gxn) . 

Proceeding limit as n → ∞, we have z = gz. We now prove 

that z = fz. 

Again from (2.3), setting x = xn, y = z, z = z, we have  

G(fxn, fz, fz) ≤ q G(gxn, gz, gz) . 

Taking limit as n → ∞, we have z = fz. Therefore, we have gz 

= fz = z. Thus z is a common fixed point of  f  and g.  

Uniqueness.  We assume that z1 (≠z) be another common 

fixed point of  f  and g. 

Then G(z, z1, z1) > 0 and 

G(z,  z1, z1) = G(fz, fz1, fz1) ≤ q G(gz, gz1, gz1)  = q G(z, z1, z1) 

< G(z, z1, z1), 

 a contradiction, therefore z = z1. Hence uniqueness follows. 

Example 2.1.  Let X = [-1, 1] and let G: X × X × X   

R+ be the G – metric defined as  

follows:  ( , , )G x y z x y y z z x       for 

all , ,x y z X . Then (X, G) is a 

 G-metric space. Define ( )
6

x
f x   and ( )

2

x
g x  .  Here 

we note that,  

(1) f (X)   g(X),      (2) g is continuous on X,  

(3) G(fx , fy, fz)  ≤ q G(gx, gu, gz), holds for all 

, ,x y z X , 
1

1
3

q  . 



International Journal of Computer Applications (0975 – 8887) 

Volume 42– No.21, March 2012 

24 

However, the maps f and g are commuting maps and x = 0 is 

the unique common fixed point of   f and g. Thus all the 

conditions of the Theorem 2.1 are satisfied. 
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