
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.4, March 2012

46

A New Method of Query over Encrypted Data in
Database using Hash Map

Mohammed Alhanjouri

Asst. Prof. at Islamic university of Gaza
Gaza, Palestine

Ayman M. Al Derawi
Islamic university of Gaza

Gaza, Palestine

ABSTRACT

Critical business data in databases is an attractive target for

attack. Therefore, ensuring the confidentiality, privacy and

integrity of data is a major issue for the security of database

systems. High secure data in databases is protected by

encryption. When the data is encrypted, query performance

decreases. In our paper we propose a new mechanism to query

the encrypted data beside make a tradeoff between the

performance and the security. Our mechanism will work over

many data-types. We implement our work as a layer above the

DBMS; this makes our method compatible with any DBMS.

Our method based on replacing the select conditions on the

encrypted data with another condition which is faster. The

new way must have no security weak that is can't show an

aspect for the plain data. The results of the experiments

validate our approach.

Keywords

Encryption, Hash Map, Querying over Encrypted data, Index.

1. INTRODUCTION
Usually data is stored in databases to process and manage its

relations; some data are classified as a high important data

that needs to be high secured or on a level of security, the best

way to secure such data is to encrypt it. Many encryption

algorithms were studied and many designs of databases have

prepared to put the considerations of encryption and security

of the databases. In [1] the major challenges and design

considerations pertaining to database encryption was

described. The article first presents an attack model and the

main relevant challenges of data security, encryption

overhead, key management, and integration footprint. Next,

the article reviews related academic work on alternative

encryption configurations; indexing encrypted data; and key

management. Finally, the article concludes with a benchmark

using the following design criteria: encryption configuration,

encryption granularity and keys storage. Dawn Xiaodong

Song [2] proposes a new encryption method that allows

searching the encrypted data without decryption. However,

the method is not adapted for database encryption. Hankan

Hacijumus [3] proposes a way that has a weakness; it will

output false joining records, which leads to the greatly

increased cost of decrypting records and degraded

performance of query. They propose a schema of executing

SQL over encrypted data in the database-service-provider

model. Then in [4] the writers proposed a new query method,

in which the query is completed on the server side and the

client side together, they have proposed bucket index, which

support the range query for the numeric data. Then they add a

technique that supports arithmetic computation [5]. In [6]

Hore optimized the bucket index method on how to partition

the bucket to get the trade between the security and query

performance. The methods based on index is supported by

DBMS (Data Base Management System), and focused on the

query performance at the cost of storage space. There are also

some researches on the fuzzy query of character string.

Zhengfei Wang proposed a function to support fuzzy query

over the encrypted character data [7] [8]. Their method named

pairing coding method, it encodes every adjacent two

characters in sequence and converted original string directly

to another characteristic string by a hash function. This

method can’t deal with some characters, and could perform

badly for big character string. Paper [9] had proposed

characteristics matrix to express string and the matrix will

also be compressed into a binary string as index. Every

character string need a matrix size of 259x256, it is large and

will lead to much computation; in addition, the length of

index has come to more than hundred bits, which is not

suitable for storage in database. In [10] the paper works on a

group of users that wants to access a secure data on a server.

The shared sensitive information requires more security and

privacy protection, In that paper, two schemes was proposed

which can search the encrypted documents without re-

encrypting all documents in a server even if group keys have

to be updated. The schemes can support general database

normalization for encrypted database. Their experiments show

that their schemes are much more efficient than the

comparables ones. Paper [11] only encrypts the sensitive field

and it is also using bucket index to improve query

performance. The order on numeric data is very useful. But on

the character data, it has little effect. So the method in [11] is

not fit for the character data. [12] Creates a B+ tree index for

the data before encrypting them. When querying the

encrypted data, firstly, it locates the encrypted records related

to the querying predicate based on the B+ tree index;

secondly, it decrypts the encrypted records to accomplish the

results. Also, it must encrypt the B+ tree itself to protect it

from leaking confidential information. According to the

structure of the B+ tree, it encrypts each node of the B+ tree

separately. The results of experiments in [12] show that the

query performance over the encrypted data decreases about 20

percent compared with the plaintext query performance.

The traditional way to search an encrypted data is to decrypt

all the data to plain text then find the target records. This way

is obviously cost very time and have a bad performance

especially with a large number of records.

We are proposing a new method to query encrypted data with

many data types (string, character, numeric and date). Our

method will have a good comparable response time with the

traditional way. We also will use an index over the data, the

indexing information should be related with the data well

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.4, March 2012

47

enough to provide an effective query execution mechanism;

on the other side, the relationship between indexes and data

should not open the door to linking that can comprise the

protection. The attackers shouldn't guess the original input

value from the output value if using the same function for

encryption/decryption.

We have a compatible challenge, we don’t know how the

current DBMSs work and we can't add changes to its cores,

that's needs an open source DBMS. In order to solve this

problem we have to make sure that our new method can adapt

easily with the DBMS. Our proposed way implemented on a

standard database from a universal benchmark, some tests will

done to prove the theoretical idea behind our work and this

will follows by a comparison with the traditional way.

2. METHODOLOGY

2.1 Layer Technique
In order to implement our work we need an open source

database, the drawback for this technique is that our work can

adapt only with this type of the database and can't work with

the commercial databases like Oracle, MS SQL, MS Access,

MySQL, … etc which surely are closed source. To solve this

problem, we developed another way to implement our work to

adapt with any kind of DBMS. We add a layer above any kind

of DBMS, this layer have the responsibility to manage the

way to query over encrypted data.

The drawback for adding the new layer is the response time;

the results prove that the performance of adding the layer will

be much better when working on encrypted data with the

traditional way.

The client will work over the layer which will contact with

DBMS figure (1).

Fig 1: The Layer over the DBMS

The layer will provide the inner needed method for the

methodology of process the encrypted data. The layer is better

to be placed on the same place with the DBMS for two

reasons:

1- Decreases the time of contacting with DBMS

2- Security purpose, the DBMS is usually placed on a

safe place from the attackers.

2.2 Architecture of Layer Technique
The architecture of the layer is shown in figure (2). The

queries from the client sent to the layer which has a subsystem

called the Query Processor to check in the Meta data if there

is any query on an encrypted column. The Meta data contains

an instance of a data structure object called Hash Map. The

Hash Map stores the mapping between the plain text and the

encrypted text as KEY: VALUE, in which the KEY is the

plain text and the VALUE is the encrypted value of the plain

text. The Hash Map contains two main operations, PutValue

and GetValue. PutValue(Key , Value), GetValue(Key): Value.

Fig 2: Architecture of the layer

The Query Processor replaces the client query with 'a plain

where' clause on encrypted data value (the where clause is a

plain text) with another one with an encryption on the plain

searched data. For example if table CUSTOMER has an

encrypted column C_PHONE and the client query is:

SELECT * FROM CUSTOMER

WHERE C_PHONE = '02 526 544';

By using the tradition way we need to decrypt all the values of

C_PHONE then check which one equals '02 526 544', this

means a huge response time especially with a large number of

records.

By using our technique and using the Hash Map, the query

processor will first search the Hash Map for the Key = '02 526

544' and get the Value which will be the ENC_VALUE ('02

526 544'), then replaces the where statement to be

SELECT C_NAME FROM CUSTOMER

WHERE H_C_PHONE = ENC_VALUE('02 526 544');

By using the index over C_PHONE it will be fast and easy to

find the row that has the value of '02 526 544' on C_PHONE

without needing to decrypt all the values which means a better

response time.

2.3 Encryption
In our experiment we used AES-256 to encrypt the pre-

selected column that’s usually contains a high important data

that is needed to be secured, the key of the AES will created

according to standards and will kept on the server side.

An index is build over the encrypted column that makes the

searching over the values in the encrypted column faster. By

finding the needed encrypted value we find the needed plain

text. That’s done by using the same encryption/decryption

algorithm with the same symmetric key which must be kept

secret away from the attackers.

Fig 3: Index over encrypted data

Query Processor Meta Data

Encryption/Decryption

Function
Hash Map

In
d

ex
 o

v
er

en
cr

y
p

te
d

v
a

lu
es

• Encrypted

Data1

• Encrypted

Data2

• …………

• …………

• …………

E
n

cr
y

p
te

d

C
o

lu
m

n

Encrypted Data

DBMS

Layer

Client Client Client

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.4, March 2012

48

2.4 HASH Map

In computer science, a hash map is a data structure that uses

a hash function to map identifying values, known

as keys (e.g., a person's name), to their associated values (e.g.,

their telephone number). Thus, a hash map implements

an associative array. The hash function is used to transform

the key into the index (the hash) of an array element

(the slot or bucket) where the corresponding value is to be

sought. In a well-dimensioned hash map, the average cost

(number of instructions) for each lookup is independent of the

number of elements stored in the table. At the heart of the

hash map algorithm is a simple array of items; this is often

simply called the hash table. Hash table algorithms calculate

an index from the data item's key and use this index to place

the data into the array. The implementation of this calculation

is the hash function, f [13]:

index = f(key, arrayLength)

Fig 4: A small phone book as a hash table

The core of our method based on using the hash map. The

data is stored on the Hash Map by using the function

PutValue(Key, Value), the Key is a an identifier to the Value,

we use the function GetValue(Key): Value to get the Value by

passing the Key. In our methodology the Key will be the plain

text and the Value will be the Encrypted plain text; i.e.

encrypted Key.

Value = Enc(Key)

This way will cost more time especially with the insertion and

updating on the encrypted column. Any insert or update

statement must be followed by an inserting/updating value on

the Hash Map. The time complexity for the Hash Map in big

O notation is O(1) for the search and O(1) for the insert in

average, O(n) for the search and O(1) for the insert in worst

case[13].

3. EXPERIMENTS AND ANALYSES OF

PERFORMANCE
The purpose of the experiments is to show the validity and the

efficiency of our proposed approach.According to TPC-H

benchmark, the data in the database is automatically created

by using the tool dbgen. TPC-H database include eight tables,

of which used in our experiment is customer table. To encrypt

data of the tables, AES -256 encryption algorithm

implemented in Delphi is used. The experiments are

conducted on a personal computer with Intel Core2 Due 2.10

GHz and 2.87 GB RAM. Relevant software components used

are Windows 7 as the operating system and Oracle 11g R2 as

the database server. The layer is implemented by using the

Delphi as a programming language. We test the different

methods by measure the response time of the query over the

table has a number of records ranging from 100 to 10000

records.

4. DATABASE ENTITIES, RELATION-

SHIPS, AND CHARACTERISTICS
The components of the TPC-H database are defined to consist

of eight separate and individual tables (the Base Tables). The

relationships between columns of these tables are illustrated in

Figure 5: The TPC-H Schema.

Table Layouts

The table layout can be finding on TPC-H v2.8.0

Data Generator

The DBGEN program used to generate the executable the data

that populate the TPC-H Databases. This program produces

flat files that can be used by the test sponsor to implement the

benchmark.

Querying over Encrypted data

In the experiment, we test query execution time through

comparing two different query approaches. The first way is

the traditional way; decrypt all encrypted character data

before querying them. The second way, which we propose in

this paper, is to decrypt the result records after filtering the

records not related to querying conditions.

Query Algorithm: query over encrypted character data

INPUT: a SQL which has a where statement on an encrypted

data

OUTPUT: a collection of records satisfying with the query

conditions.

METHOD:

 (1) Replacing the query conditions of SQL using the rules

of metadata.

(2) Executing the new SQL query, returning the records

satisfying the translated query conditions by using the index.

(3) If the returning records contain an encrypted column,

decrypt the records of the encrypted column and obtaining

actual results.

We studied the two cases: the first case when the select query

has no selects on an encrypted column(s) and has a where

statement on an encrypted column. The second case when the

select query has selects on an encrypted column(s) and have a

where statement on an encrypted column.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/Value_(mathematics)
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Hash_function

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.4, March 2012

49

In each of the cases, we use the following methods:

1- The tradition method: query all the selected data with

ignoring the where statement, decrypt the encrypted

columns in the where statement, then filter the needed

rows that have the values of the where statement.

We marked this method by: DEC_ALL

2- The enhanced method: replace the where statement on the

encrypted columns with a where statement on the encrypt

value of the searched plain text.

We marked this method by: ENH_HASH_METHOD

The results of each method are listed below in table 1.

Table (1). Query time cost vs. Number of record.
No Of Records 100 500 1000 10000

DEC_ALL* 864 4013 6800 47578

ENH_HASH_METHOD* 9 8 8 9

DEC_ALL 821 4189 6882 47565

ENH_HASH_METHOD 4 6 5 6

*Has selected encrypted columns

*The time is measured in ms

Figure (6) shows the cost of query-execution time of the two

kinds of querying methods when the size of the data increased

from 100 to 100000 records. We measured the time in mille

second. The experiments are done for the two cases; with

selected encrypted column and without. We mark the results

of the experiments with using a select statement having

selection on an encrypted column by *.

We found that DEC_ALL is relatively costly and there is a

huge difference between the tradition DEC_ALL method and

our method. This difference is obviously due to the number of

records needs to decrypt in each of the methods. In the

DEC_ALL, first, all the records in the table needs to be

decrypt in the advance, then the decrypted records which are

now a plain text have to be filtered as the condition in the

where statement. The results of DEC_ALL are related to the

number on records in the target table.

The results of ENH_HASH_METHOD show that there is a

much improvement in the response time in compare with the

DEC_ALL method. This improvement due to needing to use

the decryption function one time only, the other operations

needed (replacements of the where conditions and search the

Hash Map) are done in the memory and need very little time

in compare with the time needed when using the decryption

functions.

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

CUSTOMER (C_)

SF *150,000

Fig 5: The TPC-H Schema

PARTKEY
NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

PARTKEY
SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

NATIONKEY

NAME

REGIONKEY

COMMENT

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

QUANTITY

EXTENDEDPRICE

DISCOUNT

TAX

REGIONKEY

NAME

COMMENT

ORDERKEY

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-PRIORITY

CLERK

SHIP-PRIORITY

COMMENT

PART (P_)

SF *200,000

PARTSUPP (PS_)

SF *800,000

SUPPLIER (S_)

SF *10,000

LINEITEM (L_)

SF *6,000,000

NATION (N_)

 25

ORDERS (O_)

SF *1,500,000

REGION (R_)

5

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.4, March 2012

50

Fig 6: Results of executing the same query using different

methods

The number of records in the table does not affect the

response time; this is due to using the Hash Map to search the

needed record in the database table which column is indexed

so the values are ordered.

Fig 7: Results of executing the same query using our

method

In figure (7), a comparison in made between the

ENH_HASH_METHOD and ENH_HASH_METHOD*, we

didn’t include the results of DEC_ALL because they are

relatively much bigger so the graph will not give us a

meaningful view. The results of figure (7) show that in the

first case, in which the select statement has a select on an

encrypted column that the ENH_HASH_METHOD* have a

little more response time due to the time needed to decrypt the

encrypted column. Using Hash Map will cost much when

there is an insert or update on a value on the encrypted

column, but this case (the insert and update statements) are

not studied in this paper and we focus here on the select

statement.

5. CONCLUSION
We proposed a new method of query over encrypted data in

databases that can work with many data types. It doesn’t

affect the inner structure of the DBMS because it

implemented as a layer above the DBMS. We adapt our

method using the hash map. The performance of our method

is better than the traditional way to query over encrypted data;

we prove this by do experiments that is measure the response

time for every method when the number of records in the

database changed. We implemented a small database

according to TPC-H standard to do our experiments over it.

The enhancing of the query performance over the encrypted

data is a hot topic that is still under development

6. REFERENCES
[1]

Erez Shmueli, Ronen Vaisenberg, Yuval Elovici and Chanan

Glezer, “Database Encryption – An Overview of

Contemporary Challenges and Design Considerations”

SIGMOD Record, September 2009 (Vol. 38, No. 3)

[2] Dawn Xiaodong Song, David Wagner, and Adrian

Perring. Practical Techniques for Searches on Encrypted

Data, IEEE Symposium on Security and Privacy, 2000,

pp. 44-55.

[3] H. Hacigumus , Bala Iyer and Sharad Mehrotra,

"Providing Database as a Service", Data Engineering,

2002. Proceedings. 18th International Conference

[4] H. Hacigumus, B. Iyer, C. Li and S. Mehrotra, “Executing

SQL over encrypted data in the database service provider

model,” In ACM SIGMOD Conference, 2002, pp. 216-

227.

[5] H. Hacigumus, B. Iyer, and S. Mehrotra. “Efficient

execution of aggregation queries over encrypted

relational databases”. In the proceedings of Database

Systems for Advanced Applications (DASFAA), 2004,

pp. 125-136

[6] B. Hore, S. Mehrotra and G. Tsudik. “A Privacy-

Preserving Index for Range Queries”. In Proceedings of

the 30th VLDB Conference, 2004, pp. 720–731.

[7] Z. Wang, J. Dai, W. Wang and B.L. Shi, “Fast Query over

Encrypted Character Data in Database”.

Communications In Information and Systems, 2004,

pp.289-300

[8] Zheng-Fei Wang, Wei Wang and Bai-Le Shi , "Storage

and Query over Encrypted Character and Numerical Data

in Database", Computer and Information Technology,

2005. CIT 2005. The Fifth International Conference

[9] H. Zhu, J. Cheng and R. Jin, “Execution Query over

Encrypted Character Strings in Databases,” Frontier of

Computer Science and Technology, 2007, pp. 90-97

[10] H. APark, D. Lee, J. Zhan and G. Blosser, "Efficient

Keyword Index Search over Encrypted Documents of

Groups" ISI 2008, June 17-20

[11] Yu Han, Zhao Liang Niu Xiamu, “Research on a new

method for database encryption and cipher index”. Acta

Electronica Sinica, No. 12A 2005

[12] Z. Wang, A. Tang and W. Wang, "Fast Query over

Encrypted Data Based on b+ Tree”, International

Conference on Apperceiving Computing and Intelligence

Analysis (ICACIA), 23-25 Oct. 2009.

[13] Wikipedia, the free encyclopedia that anyone can edit

“http://en.wikipedia.org/wiki/Hash_table” , an article on Hash

table

 [14] Bertino, E.; Sandhu, R., "Database security – concepts,

approaches and challenges", IEEETransactions on

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7807
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7807
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7807
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10445
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10445
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10445
http://en.wikipedia.org/wiki/Hash_table

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.4, March 2012

51

Dependable and Secure Computing, VOL. 2, NO. 1,

JANUARY-MARCH 2005

[15] S. Sesay, Z. Yang, J. Chen and D. Xu, “A secure

Database Encryption Scheme”. Consumer

Communications and Networking Conference (CCNC),

2005, pp. 49-53

[16] W. Baohua, M. Xiniang and L. Danning, "A Formal

Mutilevel Database Security Model", IEEE International

Conference on Computational Intelligence and Security,

13-17 Dec. 2008.

[17] Y. Zhang, W. Li and X. Niu, “A Method of Bucket Index

over Encrypted Character Data in Database”. Intelligent

Information Hiding and Multimedia Signal Processing,

2007, pp. 186-189

[18] Michael Mitzenmacher , "Compressed Bloom Filters",

IEEE/ACM Transactions on Networking, VOL. 10, NO.

5, October 2002

[19] Jehoshua Bruck , Jie Gao and Anxiao (Andrew) Jiang,

"Weighted Bloom Filter" ISIT 2006, Seattle, USA, July 9

14, 2006

[20] Yasuhiro Ohtaki, "Partial Disclosure of Searchable

Encrypted Data with Support for Boolean Queries,

Availability, Reliability and Security”, 2008. ARES 08.

Third International Conference

[21] Yong Zhang, Wei-xin Li and Xia-Mu Niu, "A Secure

Cipher Index Over Encrypted Character Data in

Database", Proceedings of the Seventh International

Conference on Machine Learning and Cybernetics,

Kunming, 12-15 July 2008

[22] Lianzhong Liu and Jingfen Gai, "Bloom Filter Based

Index for Query over Encrypted Character Strings in

Database", 2009 World Congress on Computer Science

and Information Engineering

[23] Yong Soon KIM and Eui Kyeong Hong, "Considerations

of Extending SQL on Encrypted Data in UniSQL",

Advanced Communication Technology, The 9th

International Conference on 12-14 Feb. 2007

[24] Tingjian Ge and Stan Zdonik, "Fast, Secure Encryption

for Indexing in a Column-Oriented DBMS", Data

Engineering, 2007. ICDE 2007. IEEE 23rd International

Conference

[25] Premchand B. Ambhore,B.B.Meshram and

V.B.Waghmare "A Implementation of Object Oriented

Database Security", Software Engineering Research,

Management & Applications, 2007. SERA 2007. 5th

ACIS International Conference

[26] Yu Chen and Wesley W. Chu, Fellow "Protection of

Database Security via Collaborative Inference

Detection", IEEE Transactions on Knowledge and Data

Engineering, VOL. 20, NO. 8, August 2008

[27] Zhu Yangqing, Yu Hui and Li Hua, "Design of A New

Web Database Security Model", 2009 Second

International Symposium on Electronic Commerce and

Security

[28] Sohail IMRAN and Irfan Hyder, "Security Issues in

Databases", 2009 Second International Conference on

Future Information Technology and Management

Engineering

[29] Xu Ruzhi, Guo jian and Deng Liwu, "A Database

Security Gateway to the Detection of SQL Attacks",

2010 3rd International Conference on Advanced

Computer Theory and Engineering (ICACTE)

[30]http://www.cecs.csulb.edu/~monge/classes/share/B+TreeI

ndexes.html.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4529302
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4529302
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4195058
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4195058
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4221634
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4221634
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4221634
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4221634
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4296898
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4296898
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4296898
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4296898

