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ABSTRACT 

A novel image super-resolution reconstruction framework 

based on multi-groups of coupled dictionary and alternative 

learning is investigated in this paper. In dictionary learning 

phase, each image of a training image set is taken as high 

resolution image (HRI), the reduced and re-enlarged result of 

HRI by interpolation is taken as low resolution image (LRI), 

and the difference between them is residual image. To obtain 

the mapping between residual and LRI, coupled dictionaries 

are learned from joint data composed of residual image patch 

and LRI patch features. Considering that distinguished texture 

and structural characteristics reflected in image patches and 

dictionary learning efficiency as well, multi-groups of coupled 

dictionary and alternative learning scheme are proposed. In 

reconstruction phase, LRI is obtained first. Then sparse 

representations and corresponding errors are calculated for 

each patch of the LRI by using low resolution component of 

each group of coupled dictionary. The residual component of 

coupled dictionary with minimum errors is applied to 

reconstruct the corresponding residual image patch. All such 

reconstructed residual patches compose a residual image. 

Finally, the residual image and the LRI are fused to produce an 

expected HRI. An experimental study is performed to 

establish that the proposed approach improves the 

super-resolution reconstruction quality. 

Keywords 

super-resolution, sparse representation, multi-dictionary, 

alternative learning, principal subspace, orthogonal Gaussian 

mixture model 

1. INTRODUCTION 

Image Super-Resolution reconstruction (SR), as one of the 

most valuable research topics, its aims is to get beyond the 

resolution of imaging sensors or obtain a higher resolution 

image. It has a variety of useful applications. Usually, a 

high-resolution image is reconstructed from one or multiple 

low-resolution images. If multiple low-resolution images are 

available, they are registered at sub-pixel accuracy and a 

higher resolution image is generated by reconstruction or 

interpolation. However, with the expected scale of super 

resolution is enlarged, the performance of SR will decay even 

if the number of low-resolution image is increased. In a word, 

when a large SR scale is required or low-resolution images are 

insufficient, SR only using low-resolution images will easily 

fail. 

To break the limitation, numerous learning based schemes 

have been proposed in recent years. Relying on the learned 

prior knowledge, the SR reconstruction performed well 

whereas the low-resolution image number is reduced 

significantly even only a single low-resolution image is 

available. In fact, learning based schemes have been well 

popular in super-resolution and other image processing tasks. 

The crucial point of it is to learn a mapping between low 

frequency and high frequency and the learned mapping is 

adopted to obtain the high-resolution image given a 

low-resolution image. Freeman proposed the example-based 

method [1]. As one of the earliest learning-based SR 

reconstruction approaches, it modeled the spatial relations of 

image patches using Markov-network to obtain the transfer 
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probability matrix between high resolution image patches or 

high and low resolution image patches. Rich high frequency 

information thereafter was estimated relying on the learned 

matrix. However, the training images must be selected 

carefully. In addition, the method is sensitive to noise and the 

learning efficiency is relative low. Chang proposed neighbor 

embedding [2]. It is assumed that corresponding high and low 

resolution patches have same local geometrical manifold. First, 

low and high dimensional manifolds were learned. Then 

k-nearest neighbor representations of a low resolution patch 

were searched in low dimensional manifold, and the weighted 

representations and high dimensional manifold are used to 

reconstruct the high resolution patch. But for low and high 

resolution patches, the neighbor relations would not always be 

preserved. To overcome the limitation, Chan improved 

neighbor embedding from several respects, such as residual 

neighbor embedding [3], edge detection and feature selection 

[4].Compared to the example-based method, neighbor 

embedding required less training samples and is less sensitive 

to noise. Ni proposed a SR method based on Super Vector 

Regression (SVR) [5]. By integrating additional constraints, 

they transformed the kernel learning from a positive 

semi-definite programming problem into a quadratic linear 

programming problem. In this method, samples were selected 

automatically and training set was not large. Moreover, it was 

effective in both spatial and DCT domain. The robustness to 

noise present in image was an advantage of this method. 

Nevertheless, the high computation complexity of non-linear 

SVR prohibits SR task with large-scale images. 

Recently, sparse representation and dictionary learning have 

become one of the most important tools to address a wide 

range of image processing problems including super 

resolution. Yang calculated sparse representations for raw 

image patches [6]. In learning phase, they sampled a large 

amount of pairs of image patches randomly from an outer 

image set. Joint features composed of low and high features 

extracted from high and low resolution patches were directly 

used as a pair of redundant dictionary. In reconstruction phase, 

features were extracted from low resolution image and its 

sparse representations were applied with high part of the 

redundant dictionary to recover a high resolution image patch. 

Since the sparse coding was determined accordingly through 

algorithm, it is not necessary to set the element number in 

advance whereas the neighbor size must be set in neighbor 

embedding. Compared with directly using image patched as a 

dictionary, Yang improved his own method by learning a 

dictionary to generate a more compact representation of patch 

pairs, reducing the calculation complexity significantly [7]. 

Yang‘s work, which first applied sparse representation in 

image super resolution, is a pioneer research in related field. 

However, because of the large variation of data, a single 

dictionary is not capable of representing data sparsely with a 

high precision. In addition, Lagrange Dual and Lasso of 

which efficiency were not satisfied were adopted to learn the 

dictionary. Again in framework of sparse representation, 

Zeyde proposed to train dictionary from the low resolution 

input image itself [8]. Unlike the strategy of joint dictionary 

learning proposed by Yang, Zeyde first learned the low 

resolution dictionary using K-SVD algorithm [9] and then 

obtained the high resolution dictionary with MOD algorithm 

[10]. Although both learning efficiency and reconstruction 

quality were improved, the method still learned a single 

dictionary and a dictionary must be relearned for each input 

low resolution image which undoubtedly dropped the 

reconstruction efficiency. Moreover, the heavy computation 

burden of K-SVD is also an annoying problem. Yang 

proposed SVR integrated with sparse representations [11]. 

The support vector repressors and image patch category were 

two crucial factors of this work and the computation 

complexity of it is substantially reduced than that of existing 

SVR based methods. 

To overcome the previous drawbacks in sparse representation 

framework, we propose multi-groups of coupled dictionary 

and its alternative learning algorithm. Our first contribution is 

the multi-groups of dictionaries. In principal subspace of low 

resolution features, Orthogonal Gaussian Mixture Models 

(OGMM) [12] is used to classify the low resolution image 

patch automatically according to their features. In a sequel, a 

coupled dictionary is learned by using low and high resolution 

patches in respective patch category space so that multiple 

coupled dictionaries are produced. During reconstruction, the 

sparse representations and reconstruction error of low 

resolution patch corresponding to low part of each coupled 

dictionary are calculated. Next, the high resolution patch is 

recovered using the calculated sparse representations and high 

part of the coupled dictionary that has least reconstruction 

error. In a brief, high frequency is complemented adaptively 

according to the local visual content. Another contribution is 
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the alternative learning of coupled dictionary. Alternative 

learning use low and high resolution data alternatively and 

MOD algorithm to guarantee low and high resolution 

dictionary are synchronized. At the same time, the learning 

efficiency is also improved greatly. 

2. FRAMEWORK AND ALGORITHM 

OF MULTI-DICTIONARY SCHEME 

Statistics learning theory [13] shows that a dramatic augment 

of training sample amount will definitely enhance the 

generalization of dictionary. However, the variation of data 

will also enlarge with many types of textures and edges 

appearing. Clearly, a single dictionary is not sufficient to 

represent data both sparsely and accurately. In other words, 

single dictionary is under-fitting. Hence, data is categorized 

into multiple groups based on its visual characteristics. After 

that, dictionary is learned in respective data group. This 

strategy will effectively reduce the bias of reconstruction error 

with sparse representation and considerably boost the overall 

performance of dictionary. 

The framework consists of two phases: learning phase and 

reconstruction phase, which have been shown in Fig 1 and Fig 

2 respectively. In learning stage, we randomly sample a large 

number of image patches from the low resolution images and 

residual images at corresponding positions, which residual 

image is difference between high resolution and low 

resolution image. Then, features are extracted from the 

residual and low resolution image jointly written as {pr, pl}. pl 

is used and clustered by solving OGMM, generating 

multi-groups of data. Upon each group of data, a coupled 

dictionary composed of residual part Dr and low-resolution 

part Dl is learned with alternative learning. In reconstruction 

phase, low resolution patch features are extracted first. Next, 

their sparse representations and corresponding reconstruction 

errors using Dl of each coupled dictionary is computed. 

Depending on the sparse representations and Dr of coupled 

dictionary corresponding to the least errors, the residual patch 

is estimated. Last, low resolution patch and residual patch are 

merged to generate a high resolution patch. The crucial goal 

of multiple dictionaries is to choose the most appropriate 

dictionary to reconstruct so as to improve the quality of 

reconstructed image. For alternative learning, residual data 

and low resolution data are learned alternatively with MOD 

algorithm. Consequently, both high learning efficiency and 

synchronization between two parts of coupled dictionary are 

obtained. 
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Fig 1: Overview of learning phase 
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Fig 2: Overview of reconstruction phase 

 

 

 



2.1 Learning phase 

2.1.1 Training samples generation 

Similar to other learning based methods, low and high 

resolution training images are produced artificially as follows: 

ASH Aj j

l hy y v                (1) 

Where j

hy is jth original image regarded as a high resolution 

image, H denotes a blurring operator, S denotes a down 

sampling operator, A denotes an interpolation process, v is an 

additive Gaussian white noise. After a series of operations, jth 

low resolution image j

ly is generated accordingly. 

2.1.2 Image Patch Classification based on 

OGMM in Principal Subspace 

 Features for image patch classification 

The edge features of low resolution patch are chosen for 

image patch classification. Each patch is filtered by 4 

high-pass filters , 1,2,3,4rf r  , which are differential filters 

with first and second order, horizontal and vertical directions 

respectively. From the four filtered images, four 

corresponding patches which are size of n n  and 

position at k , are extracted and concatenated into a 

complete feature vector k

lp . Assume n=81, the dimension of 

k

lp is 4*81=324. Obviously, if k

lp is directly adopted to 

classify patches or coupled dictionary learning and sparse 

coding, the computation complexity will rather high. Hence, 

the original feature space is first transformed into an 

orthogonal space with K-L transform; then the principal 

subspace is selected as the space in which image patch 

classification is accomplished. 

 OGMM in principal subspace and image 

patch classification 

In brief, OGMM models the mixtures of Gaussian distribution 

of the data in orthogonal space. Due to energy concentration 

along the principal axis that features distribute, OGMM 

achieves a more effective data distribution. Compared with 

full-variance Gaussian mixture model, OGMM substantially 

decreases the number of free parameters and thus reduces the 

computational and storage cost of the related calculations. Its 

formulation is defined as follows: 
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Where x denotes the original feature vector and d is the 

dimension of it; C denotes the number of Gaussian mixture 

components, wc, φc and ∑c denotes the weights, mean vector 

and diagonal covariance matrix of Gaussian components 

respectively,  is K-L orthogonal transform matrix. The 

parameters of OGMM can be resolved by Expectation 

Maximization (EM) algorithms. For the problem in this paper, 

x is k

lp ; since k

lp must be compressed, the dimensionality of 

  named principal subspace is in fact 324 ln .The value of 

ln is determined by required preserved energy and super 

resolution scale. For instance in our work, the required 

preserved energy is 99.9% and super resolution scale is 3, 

ln is about 48. EM algorithm is run to 

obtain  and 1 2
c c

c C  ˆ , , ,...,ˆ , which are likelihood 

parameters of each image patch category. For each input 

image patch feature k

lp , the likelihood |T k

l c c
p p   ˆ( , )ˆ  of 

each category is calculated by equation (3) and the category 

corresponding to the maximum likelihood is the patch 

belonging to. 
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2.1.3 Features for coupled dictionary learning 

and alternative learning  

Upon the classification results, coupled dictionary is learned 

with alternative learning from the residual and low resolution 

data of each category. 

 Features for coupled dictionary learning 

A coupled dictionary contains two parts: residual part and low 

resolution part. The former is learned from residual data, and 

the latter is learned from low resolution data which is 

compressed and projected adaptively upon its own 

subspace 1 2
c

c C  , , , . Certainly, the two parts of 

coupled dictionary must be synchronized naming ‗coupled‘. It 

is worth mentioning that why residual data other than high 

resolution data is utilized. ‗Residual‘ more emphasizes the 

http://www.nciku.cn/search/en/concentrate
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differences among subareas that contain more high frequency 

components such as edges and texture patches. It is reasonable 

that adopting residual data is capable of recovering more high 

frequency lost by low resolution image. 

 Alternative Learning 

Given residual data Pr
and low resolution data Pl

, a coupled 

dictionary is learned by running the following alternative 

learning. 

Step 1: 

The dictionary atom number is preset. The preset number of 

data from Pr
or Pl

are selected randomly as an initialization of 

dictionary denoted as (0)Da
. In following symbols, if Pb

 

and ( )Q n

a
refer to low resolution data and dictionary, Pb

 

and Db
refer to high resolution data and dictionary and vice 

versa. Let n denotes iteration number and its initial value is 1. 

Step 2: 

 Normalize ( 1)D n

a

 . 

 Utilize Pa
and normalized ( 1)D n

a

 , the sparse representation 

( )Q n

a
 is searched by orthogonal matching pursuit (OMP) 

algorithm [14].  

2
( 1)E(Q) min P D Qn

a a F

  ，s.t. 
0

,kq L k    (4) 

( ){Q } argminE(Q)n

a   

Where L denotes the sparsity. The reason that the dictionary 

has to be normalized is OMP algorithm requires Euclidean 

norm of atom to be 1. 

Step 3: 

 Utilize Pb
and pseudo-inverse of ( )Q n

a , ( )D n

b
is obtained by 

MOD algorithm: 

      
1

+
( ) ( ) ( ) ( ) ( )D P Q P Q Q Q

T T
n n n n n
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 ( )D =D n

r b
 Or ( )D D n

l b            (5) 

Where ( )Q n

a is a full-row rank matrix. 

 Exchange data and dictionary letting ( ) ( )D Dn n

a b  

and P Pa b . In addition, n=n+1. 

Step 4: 

Execute step2 and step3 alternately until the preset iteration 

number is reached. Finally, D̂l and Dl should be normalized to 

be D̂r
and D̂l

. 

In equation (5), sparse representations of residual data and 

low resolution data are used to get low resolution dictionary 

or sparse representations of low resolution data and residual 

data are used to get residual dictionary. The two computations 

are executed alternatively for the purpose of synchronizing the 

two dictionaries. That is to say, relying on identical sparse 

representations, such a coupled dictionary could be employed 

to approximate its own data with minimum or near minimum 

representation errors. Step 2 and step 3 are performed 

iteratively to further optimize the coupled dictionary. In 

alternative learning, initial sparse representation (1)Qa
is also an 

extreme important, for it will affect the performance of 

dictionary. Because the features of low resolution data rather 

than residual data are compressed, residual data is selected to 

initialize the dictionary (0)Dr
and (1)Qr

is obtained 

correspondingly. 

In addition, during reconstruction, the sparse representations 

using D̂l
need to be compensated with atom length of 

unnormalized dictionary
1D ( , )l md d    . The normalized 

version of it is 
1

ˆ ˆD̂ ( , )l md d  ，
1

ˆ ˆ 1md d   . Thus,  
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1
ˆ ˆQ Q /( , , )md d   ， 1,2,...,i m     (7) 

Where m denotes the atom number,  denotes the length of 

each atom, each element of each column of Q̂ is divided 

by 1 2
i

d i m , , , . In other words, Q̂ is obtained 

using D̂l
but Q̂ is required to estimate the residual data. Their 

relations are connected through equation (7). 

 Comparisons to other coupled dictionary 

learning approaches 

Other coupled dictionary learning approaches such as one 

proposed by Yang [7]. He combined the features of low and 

high resolution patch to learn the couple dictionary with 
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Lagrange Dual and Lasso algorithm. After the dictionary is 

learned, it is separated into high and low resolution parts. The 

dimension of joint feature is high, thus the computation 

efficiency is relatively low. Zeyde [8] first learned the low 

resolution dictionary using K-SVD algorithm, and then 

learned the high resolution dictionary by MOD algorithm. 

Apparently, the learning efficiency has been improved at cost 

of declining reconstruction quality. We propose to learn the 

coupled dictionary in alternative manner making them to be 

synchronized. The convergence speed of alternative learning 

is rapid such that only a few iterations are enough to get a 

good result. Compared with Yang‘s and Zeyde‘s methods, the 

proposed alternative learning has much higher efficiency and 

excellent reconstruction quality has been demonstrated in the 

experimental results. 

2.2 Reconstruction Phase 

    The reconstruction phase composes four steps described 

as follows: 

1) Input image I is enlarged to be low resolution image Il 

with scale s and bicubic interpolation algorithm. 

2) Il is filtered with the same four high-pass filters as in 

learning phase to produce a set of filtered 

images
1,2,3,4{ }r l rf I  .Four n n patches are extracted 

from the four filtered images in corresponding positions 

denoted as k . The four patches are merged into a 

feature vector k

lp , k=1, 2,…,N, where N refers to the total 

number of patches in Il. 

3.1) k

lp is projected into each subspace 
c of each 

patch category to generate compressed feature 

vector
c

k

lp , 1,2,...,c C .The sparse representation of it 

denoted as q
c

k

l is computed by D̂
cl

of each coupled 

dictionary and OMP algorithm. 

3.2) Representation error
2

2

ˆE D q
c c c

k k

c l l lp  is computed 

for each category. Let
min

qk

l and 
min

D̂r denote the sparse 

representations and residual part of couple dictionary that 

have gained the minimum representation errors. A 

residual image patch ˆ k

rp corresponding to k

lp is thus 

stimated with 
min

D̂r and
min

qk

l
. Notice that 

min
qk

l
must be 

compensated as done in equation (7). 

4) Position ˆ k

rp in their original orders producing residual 

image Ir and overlapping exist between patches. The 

pixel value of overlapped positions is an average of all 

values at those positions. The sum of Il and Ir are adopted 

as the reconstructed high resolution image Îh
. 

3. EXPERIMENTAL RESULTS AND 

ANALYSIS 

The same training image set as the Yang‘s [7] is selected as 

our training set. Altogether 80,000 patch pairs are sampled 

randomly from the training set. To cope with color image, 

RGB space is transformed into YCbCr space since Cb and Cr 

channels contain much less high frequency. It means that only 

Y channel is super-resolved and Cb-Cr channels are enlarged 

with simple bicubic interpolation algorithms. 

3.1 Objective Evaluation 

Four grayscale images and three color images in Kodak's true 

color image suite are chosen as test images. The up sample 

scale is 3, and the objective evaluation criterion is peak 

signal-to-noise ratio (PSNR, in dB).  

The compared methods are bicubic interpolation, Yang‘s[7], 

Zeyde‘s[8], single coupled dictionary with alternative 

learning(SD+AL), multi-groups of coupled dictionary with 

GMM and alternative learning (MD+OGMM+AL) 

respectively shown in Table. 1. In the four dictionary-based 

methods, the number of atom of each dictionary is all set 

1024.  

The boldface in table 1 shows that the method 

MD+OGMM+AL has obtained the highest PSNR on average 

level. 

3.2 Subjective Evaluation 

To compare super resolution reconstruction result from 

subjective evaluation given by human visual system, we select 

two color images named ―kitchen‖ and ―boat‖ with up sample 

scale 3. The super resolution results of several regions 

illustrated by red rectangles are emphasized in Fig 4, Fig 5, 

Fig 6 and Fig 7 respectively. All the demonstrated regions are 

their actual sizes. 

From Fig 4 and Fig 5, it can be observed that Yang‘s method 
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has good sharpness around salient edges but pseudo-edges and 

noise in local areas brought by reconstruction is also obvious. 

The same artifacts have happened in Zeyde‘s method. For 

(SD+AL) method, the reconstruction quality has been 

improved to certain degree. From the comparison of Fig 6 and 

Fig 7, (MD+OGMM+AL) is advantage over (SD+AL) 

because the edges reconstructed by the former look more 

natural and the sharpness is still preserved. Compared with 

other methods, the super resolution image reconstructed by 

the proposed multi-groups of dictionary has an appropriate 

visual quality since its whole noise is the lowest and the 

reconstructed edges demonstrate a good balance between 

noise and sharpness. To sum up, a best reconstruction has 

been obtained by the proposed approach. 

 

 
Fig 3: Seven test images including four grayscale images and three color images 

Table 1. Comparison of several super resolution methods in terms of PSNR 

Name/Method bicubic Yang Zeyde SD+AL MD+OGMM+AL 

Lena 30.61 31.05 31.19 31.54 31.85 

Baboon 21.14 21.27 20.99 21.14 21.21 

Peppers 31.11 31.62 32.05 32.32 32.41 

TextImage 14.89 15.13 14.95 14.99 15.00 

AverageGray 24.44 24.77 24.80 25.00 25.12 

— — — — — — 

kodim07 32.49 32.11 32.23 32.49 33.62 

kodim19 24.72 24.96 24.25 24.74 24.89 

kodim20 28.77 29.42 28.98 29.64 29.65 

AverageY 28.66 28.83 28.49 28.96 29.39 

— — — — — — 

AverageAll 26.25 26.51 26.38 26.69 26.95 
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kitchen  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig 4: The results of different methods. (a) bicubic (b) Yang et al. (c) Zeyde et al. (d) SD+AL (e) MD+OGMM+AL 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig 5: The results of different methods. (a) bicubic (b) Yang et al. (c) Zeyde et al. (d) SD+AL (e) MD+OGMM+AL 
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boat  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig 6: The results of different methods. (a) bicubic (b) Yang et al. (c) Zeyde et al. (d) SD+AL (e) MD+OGMM+AL 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig 7: The results of different methods. (a) bicubic (b) Yang et al. (c) Zeyde et al. (d) SD+AL (e) MD+OGMM+AL 

4. CONCLUSIONS 

Multi-groups of coupled dictionary and its alternative learning 

are proposed in this paper. In learning phase, OGMM is 

adopted to classify image patches in principal subspace of the 

low resolution features. Then, joint features composed of 

residual features and low resolution features compressed in 
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respective category space are learned by alternative learning 

to produce a coupled dictionary for each image patch category. 

In reconstruction phase, low resolution feature of each input 

image patch is first attempted to be reconstructed by using 

low resolution part of couple dictionary. Next, the dictionary 

that has gained least reconstruction errors is used to estimate 

the residual patch. Finally, the residual image and low 

resolution image are combined to generate a high resolution 

image. 

Multi-redundant dictionaries scheme is also applicable to 

image self-learning. The reason of choosing an external image 

set is as follows: 1) diversify the patch types for dictionary 

learning and increase the quantity of learning data; 2) prevent 

over-fitting due to the insufficient data caused by a too small 

input image. It is well known that over-fitting will deteriorate 

the performance of dictionary.3) the dictionary learned from a 

specific image is only proper for itself; hence dictionary needs 

to be relearn for each new image. Instead, general dictionary 

learned from an outer image set could be used to reconstruct 

arbitrary image without relearn. Further research maybe the 

adaptive strategy: online modify the general dictionary 

adaptively to a specific image so as to reach a good 

efficiency-effectiveness tradeoff. 

In fact, learning-based super-resolution reconstruction is a 

highly open problem. It includes image patch feature 

extraction, the feature compression, the atom number and 

learning iteration number for dictionary learning and etc. 

Currently, these issues are usually solved empirically and lack 

of theoretical analysis. In the proposed scheme, the more 

advanced image patch category model and reconstruction 

scheme are both worthy of further studying topics. 
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