
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.2, February 2012

1

MoHPBGA: Multi-objective Hierarchical Population

Balanced Genetic Algorithm using MapReduce

Poka Laxmi

Research Scholar
Department of Computer

Science, Vishwakarma Institute
of Technology, Pune, India

 Jayant Umale
Professor

Department of Computer
Science, Vishwakarma Institute

of Technology, Pune, India

Sunita Mahajan
Principal

Institute of Computer Science
Mumbai Education Trust,
Bandra, Mumbai, India

ABSTRACT

Use of heuristic methods is common to find the solutions to

the optimization problems for scientific and real time.

Problems such as Travelling Salesman (TSP) require more

accurate solution which is tried by various optimization

methods. Research in this direction shows the use of Genetic

algorithms (GA) as promising candidate and is preferred over

other optimization methods. Firstly due to the use of large

population and secondly large number of iterations GA tends

to be more accurate but inefficient with respect to

computation time. Variants of GA are formulated and

experimented so as to take care of execution time. We present

the review of approaches used to formulation of GA solutions

mainly parallel GA (PGA), distributed GA (DGA) and

hierarchical parallel GA (HPGA). Further this paper proposes

Multi objective Hierarchical Population Balanced Genetic

Algorithm (MoHPBGA) as the improved candidate which

uses map reduce framework for efficient use of population

mapping and synchronization of tasks.

General Terms

Multiobjective GA, Mapreduce, Hierarchical Parallel GA,

Popolation balancing in GA.

Keywords

Optimization, Genetic Algorithms, Parallel Computing,

Multiobjective problems.

1. INTRODUCTION
Genetic algorithms are stochastic search methods introduced

by J Holland in the 1970’s and inspired by the biological

evolution of living beings. So these algorithms belongs to the

larger class of evolutionary algorithms (EA), which generate

solutions to optimization problems using techniques inspired

by natural evolution, such as inheritance, selection, crossover

and mutation. The new generation evolves from the

population of existing individuals and continues to improve

over generations by eliminating weak individuals and using

best few for further generations. The participation of the

individual in generation process depends on its fitness. Fitness

is the criteria based on the goal of required improvement for

example lower cost of travelling time for the distances in

shortest distance problem derived from parameters affecting

distance properties. Multiple individuals stochastically

selected based on their fitness from the current population to

participate in crossover (recombination) and mutation

(randomly changing selected parameter value) to form a new

individuals. Process continues iteratively to produce further

generations and terminates when either desired number of

generations has been produced or a sufficient fitness level has

been reached with the population. An abstraction of a typical

GA is given as below [1] in the algorithm by the Fig. 1.

Fig 1: Algorithm for Generic Genetic Algorithm

1.1 Sequential GA Issues
As the GA executes sequentially by steps, as crossover and

mutation performed on pair of individuals and for large

population in consideration for these steps, the time required

to compute is also higher. Number of objectives to be satisfied

is the yet another factor that further delays the execution. Let

m is the number of objectives and n is the number of

individuals taking part in process then it amounts to O(mn)3,

which means to get more number of iterations for accuracy of

solution executing on large population will lead to very high

execution time of the order of cubical time.

Another issue with sequential implementation is its memory

utilization for storing large population. The run time memory

requirements are also higher since the population must be

available in memory for the operations of GA. Although GA

normally leads to optimal solution but at some instances

sequential GAs may get trapped in a sub-optimal region of the

search space thus becoming unable to find better quality

solutions.

Because of above mentioned issues the problems which

require quicker solutions resist the use of genetic algorithms

for computation. This is obvious because the genetic

algorithm does not find solutions using mathematical

representation of the problem, but it is more or less a

stochastic, discrete, non-linear, and a high-dimensional

seeking algorithm. The use of genetic algorithms can be

promoted by reduction of execution time to find quicker

solution. So, we summarize the efforts towards the various

implementations of GA in next section

2. RELATED WORK
GA was developed by John Holland (1975) over the course of

the 1960s and 1970s and finally popularized by one of his

students, David Goldberg, who was able to solve a difficult

problem involving the control of gas-pipeline transmission for

Algorithm 1: Algorithm for Generic Genetic Algorithm

Generate initial population, G(0);

Evaluate G(0); (apply fitness function)

t=1;

Repeat

Generate G(t) using G(t-1); (apply operators)

Evaluate (decode (G(t)));

t=t+1;

Until solution is found or termination.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.2, February 2012

2

his dissertation (Goldberg, 1989). Holland’s original work

was summarized in his book. He was the first to try to develop

a theoretical basis for GAs through his schema theorem. The

work of De Jong (1975) showed the usefulness of the GA for

function optimization and made the first concerted effort to

find optimized GA parameters. Goldberg has probably

contributed the most fuel to the GA fire with his successful

applications and excellent book (1989). Since then, many

versions of evolutionary programming have been tried with

varying degrees of success.

In the first International Conference of Genetic Algorithms

(ICGA), there were no papers about parallel GAs at all. This

situation changed in the second ICGA in 1987, where six

papers were published. From then on there has been a steady

flow of papers published in conferences and journals of GAs

and parallel computation. To reduce the computation load of

genetic search, a lot of methods for searching in parallel and

distributed manner have been proposed [9] [10] [29]. The

number of papers, dissertations and books on the theory of

these genetic algorithms has been increasing. Some of them

are briefly reviewed in the following.

In 1992, D. Abramson and J. Abela presented a paper in

which they discussed the application of a GA to the school

timetabling problem [3], and showed that the execution time

can be reduced by using a commercial shared memory

multiprocessor. The program code was written in Pascal and

run on an Encore Multimax shared memory multiprocessor.

The times were taken for a fixed number of generations (100)

so that the effects of relative solution quality could be ignored

and proved that the speedup was attained from a parallel

implementation of the program.

A PGA developed by Suh and Gucht [17], has been applied to

TSPs of growing size (100-1000 cities) problems. PGAs

without selection and crossover, so called independent

strategies were used. These algorithms consist of running an

unlimited number of independent sequential local searches in

parallel. PGAs with low amount of local improvement were

used and performed better in terms of quality solution than the

independent strategies. In terms of computational time, the

PGA showed nearly a linear-speedup for various TSPs, using

up to 90 processors. The algorithms were run on a BBN

Butterfly.

In 1998, Ranieri and Raffaele [25] discussed the results of the

application of parallel GA algorithms to the TSP. Both fine

grained and coarse grained parallel GAs which adopt the

selected genetic operators were designed and implemented on

a 128-node nCUBE 2 multicomputer. The tests showed that

the two point crossover finds better solutions, as does

replacement criteria. They used an innovative mapping

strategy for fine grained algorithm that makes the number of

solutions managed independent of the number of processing

nodes used. For the coarse grained GA it was observed that

the quality of solutions gets worse if the number of nodes

used were increased. Moreover, due to the sorting algorithm

used to order each sub population by fitness, the speedup of

the coarse grained GA was superlinear. Whereas, for fine

grained GA the quality of solutions does not get worse if the

number of the nodes used is increased, they showed good

scalability. A comparison between the fine and coarse grained

algorithms highlighted that fine grained algorithms represent

the better compromise between quality of the solution reached

and the execution time spent on finding it. Complete

performance results showing the behavior of Parallel Genetic

Algorithms for different population sizes, number of

processors used, migration strategies were reported.

In [31], the authors have very well presented a comparative

analysis of five different types of coarse grained PGAs. Four

conceptually different PGA approaches and one hybrid of two

of these approaches were compared using the TSP as an

example application problem. For fair comparisons, all PGAs

were developed based on the same baseline SGA,

implemented on the same 16 thin PEs of an IBM SP2 parallel

machine, and tested using the same set of initial populations

on the same set of TSP instances. As a result of the

experiments conducted in this study, a particular PGA that

combines a new sub tour technique with a known migration

approach was identified to be the best. The results showed

that the migration and the segmentation-migration approaches

were able to find solutions of similar high quality faster than

the other approaches.

Also one of the very fruitful studies was the dissertation of

Cant´u-Paz (2000) [8]. The dissertation brought many new

principles of the rational design of fast and accurate parallel

genetic algorithms. It helped many researchers to decide a

configuration of the many options of topologies, migration

rates, number and size of demes. The important findings were

brought to light as importance of accurate population sizing

for PGA, an equivalent scalability of single and multiple

demes, impracticability of isolated demes, improvement

quality and efficiency by migration, advantage of fully

connected topologies, studies of effects of topology and

optimal allocation computing resources.

The article [32] gives a brief overview of theoretical

advances, computing trends, applications and future

perspectives in parallel genetic algorithms. It is basically a

survey of past and recent developments in parallel genetic

algorithms. The information is segregated into two periods

before and after the year 2000 and in all chapters. The

relevant issues connected with parallel genetic algorithms

were highlighted. The survey hinted several views, whose

range from new genetic theories over parallel computing and

wide and various ranges of real-world applications to future

developments, challenges and perspectives for parallel

(genetic) metaheuristcs.

Apart from using PGAs for solving various problems, people

have also worked on implementing these PGAs on various

different platforms using different technologies. Some of such

works is described below and also presented in a tabulated

form in Table 1.

In 2004, the author [22] has presented his work by using a

master-slave paradigm on a Beowulf Linux cluster using MPI

programming library. With the help of this he has written a

pseudo code that first initializes the basic population and also

the number of nodes present in the cluster. Then it assigns the

fitness function to the slave or other nodes in the cluster. The

slave ones compute the fitness objective and do the mutation.

After this, they send back the result to the master where it

makes the final counterpart. This paper presented a view of

implementation and realization of algorithms on a parallel

architecture.

As MPI’s are associated with some drawbacks of unable to

handle heterogeneity, failures etc and that is why it not

suitable for cloud applications, another author [2] presented

his work of executing PGAs on a MapReduce model. This

model provides a parallel design pattern for simplifying

application developments in distributed environments. As this

model cannot be used to express PGA’s directly, they

presented an extension to MapReduce model through an

additional reduce phase for global selection, called once at the

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.2, February 2012

3

end of each iteration of the GA loop. To simplify handling

faults during execution, they made the master to replicate the

optimum individuals selected by MRPGA for each round of

evolvement in their architecture.

Table 1. Implementation of PGAs On Different Platforms

 Parame-
 ters Technology

/platform
Type of

PGA

Comments on
Performance

PGA
using MPI

[22]

Beowulf
Linux

Cluster and
MPI.

GPGA

Homogenous
cluster. Parallel
implementation

and
Performance

improvement.

PGA
using

CUDA[24
]

intel Core i7
and nVidia

graphics
cards: 8800
GTX, GTX

285 and
GTX 260-

SP216.

CPGA

Improved
Performance for

increasing
population size.

Slows for
smaller no. of

islands and
lower

population size.

PGA
using

MapReduc
e [2]

Aneka (.Net
based

enterprise
Grid

software
platform)
and C#

CPGA

Handles
heterogeneity
and supports
MapReduce.

Parallel genetic algorithms are usually implemented on

parallel machines or distributed systems. But Petr Pospichal,

Jiri Jaros, and Josef Schwarz [24] provided with a new view

of implementation of parallel genetic algorithms to

programmable graphics hardware found in commodity PC.

Their paper deals with the mapping of the parallel island

based genetic algorithm with unidirectional ring migrations to

nVidia CUDA software model. The proposed mapping was

tested using Rosenbrock’s, Griewank’s and Michalewicz’s

benchmark functions. Their results indicate that this approach

leads to speedups up to seven thousand times higher

compared to one CPU thread while maintaining a reasonable

results quality, which clearly shows that GPUs have a

potential for acceleration of GAs and allow solving much

complex tasks.

Although much work is reported about PGA models (and

implementations on different parallel architectures), involving

SOPs (single objective optimization problems), PGA models

could also be applied for multiobjective optimization

problems (MOPs) [5]. MOPs normally have several (usually

conflicting) objectives that must be satisfied at the same time.

The first multi-objective GA, called Vector Evaluated Genetic

Algorithms (or VEGA), was proposed by Schaffer [27].

Afterward, several major multi-objective evolutionary

algorithms were developed such as Multi-objective Genetic

Algorithm (MOGA) [12], Niched Pareto Genetic Algorithm

[15], Random Weighted Genetic Algorithm (RWGA)[23],

Nondominated Sorting Genetic Algorithm (NSGA) [28],

Strength Pareto Evolutionary Algorithm (SPEA) [33], Pareto-

Archived Evolution Strategy (PAES) [19], Fast Non-

dominated Sorting Genetic Algorithm (NSGA-II) [6], Multi-

objective Evolutionary Algorithm (MEA) [26], Rank-Density

Based Genetic Algorithm (RDGA) [20]. Although there are

many variations of multiobjective GA in the literature, these

cited GA are well-known and credible algorithms that have

been used in many applications and their performances were

tested in several comparative studies.

Apart from implementing GA by parallelization, researchers

have tried to implement them on distributed systems. For e.g.

in [29] the authors proposed a new distributed GA with a

distributed environment scheme. In this scheme, a whole

population is divided into several subpopulations, and the GA

parameters such as the mutation rate and the crossover rate in

each subpopulation were different from each other. The

migration operation was performed similarly as the

conventional distributed GA. They demonstrated the

effectiveness of the proposed scheme with 9 subpopulations

on a parallel computer, nCUBE2, with 64 processors and one

processor assigned to one population. The problem solved

was the maximization of the Rastrigin function. The results

were then compared with SPGA (single population GA) and

MPGA (multiple population GA), which showed a clear

performance gain in DEGA, which can be attributed to the

reason of various environments. Thus, they concluded that the

distributed environment GA is the fastest way to gain the

good solution under the given population size and uncertainty

of the appropriate crossover and mutation rates.

A similar kind of proof was given by Yiyuan Gong and Alex

Fukunaga [14], by proposing the use of an extremely simple,

randomized strategy for setting control parameters in a

distributed genetic algorithms, where a different, random set

of control parameter values (mutation rate, crossover rate,

population) were used on every processor in an island-model

distributed GA. This randomized, heterogeneous distributed

GA exploits the fact that, sufficiently sampling the space of

control parameter spaces can result in a near-optimal set of

control parameters being discovered (for a single processor).

Apart from proving that these Heterogeneous DGAs are a

good option for solving problems, the results also showed that

as the number of processors were increased, the relative

performance of the heterogeneous DGA improves and this is

because of the fact that with a sufficient number of

processors, it is likely that at least some of the processors will

end up being assigned a set of random control parameters

which performs particularly well on a given problem.

A totally different variant was proposed in [13], where the

author proposed a new architecture for distributed GAs, based

on distributed storage of the individuals in a persistent pool.

This approach was tailored for distributed systems in which

processors are loosely coupled, failure-prone and can run at

different speeds. They simulated the pool GA approach on

some of application problems which are continuous functions

and also to a real-world product lifecycle design problem,

using crossover and mutation operators and the results showed

clear advantage of using concurrent processing. They also

simulated crashes during execution of Pool GA. The results

indicated that the algorithm is tolerant up to half the

processors crashing at random times without significantly

affecting the performance.

Several hierarchical algorithms have also been suggested in

the recent past, e.g. in 1997; Herrera, Lozano and Moraga

discussed a paper on hierarchical distributed genetic

algorithms (HDGA) [11]. In this they presented a hierarchical

model of distributed genetic algorithm in which a higher level

distributed genetic algorithm joins simple distributed genetic

algorithms. Also with the union of hierarchical structure

presented and the idea of heterogeneous distributed genetic

algorithms, they proposed a heterogeneous hierarchical

Approa

ches

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.2, February 2012

4

distributed genetic algorithm and showed that the proposed

model consistently outperforms equivalent sequential genetic

algorithms and simple distributed genetic algorithms. This

paper was the first investigation on a basic implementation of

this idea.

Another variant of hierarchical algorithms is included in [21].

In this HGAs are explained in details and the advantages of a

multi-layered hierarchical topology are clearly shown. The

experiment was carried out in the field of computational fluid

dynamics (CFD) shape optimization. The optimization task

consists of reconstructing the shape of a converging-

diverging nozzle for a transonic flow involving a shock. The

optimization was presented by a real coded GA, with a single

population of size 20, then again tested using HGA (coarse

grained, so we can say it as DGA) with a grid of size 100 and

then finally tested for HGA with multiple layers i.e. grid of

size 100 at layer 1, 50 grid points at layer 2 and grid of size 25

at the bottom layer. They summed up the performances for

traditional Gas, hierarchical GAs (DGAs) and hierarchical

Gas with multiple models. They focused on the CPU time

needed by each of these 3 approaches and experiment and

showed that the hierarchical GAs are on an average 3 times

faster than either of the other approaches. Therefore they

concluded that GAs can handle well approximate models

within a hierarchical topology and thus these models of

different complexities can significantly speed-up an

optimization process.

Also in 2006, Lim, Y. Ong, Y. Jin, B. Sendhoff, and B. Lee,

proposed a Hierarchical Parallel Genetic Algorithm

framework (GE-HPGA) [4] based on standard grid

technologies. The framework offers a comprehensive solution

for efficient parallel evolutionary design of problems with

computationally expensive fitness functions, by providing

novel features that conceals the complexity of a Grid

environment through an extended GridRPC API and a

metascheduler for automatic resource discovery. To assess the

effectiveness of the framework, theoretical analysis on

maximum speed-up of GE-HPGA and the practical conditions

that must be fulfilled for any speed-up has been reported

3. PROPOSED WORK

3.1 Multiobjective Hierarchical

Population Balanced GA using

MapReduce (MoHPBGA)
It is very evident from the literature that various variants of

GAs, especially hierarchical GAs (HGAs) [11][21][4] are

better performers than the sequential ones. So we take into

account this form of GA, and propose how these HGAs can be

applied to a multiobjective optimization problem like

Travelling Tournament Problem (TTP) [18], which is a sports

timetabling problem that abstracts the important issues in

creating timetables where team travel is an important issue

using MapReduce [16][30], which is a software framework

that is used to support distributed computing on large data sets

on a clusters of computers. So in the following section we

present an architecture showing how a multiobjective problem

can be solved on this framework in a hierarchical way.

3.2 Proposed Architecture
As shown in Fig. 2, we propose to decompose GA using both

task (objective) and data (population) strategies. The structure

for decomposition will be hierarchical and all the local

clusters will offered the same set of population, which then

will be working on this population but each with a different

objective. The global level of decomposition will work by

decomposition of multiple GA tasks (objectives) which are

assigned to local decomposition level and the local level will

be responsible to decompose the offered population and run

parallel tasks on the local infrastructure- computing cluster.

The diagram shows the local and global level decomposition

of GA.

We propose to use MapReduce model of programming. The

MapReduce model provides a parallel design pattern for

simplifying application developments in distributed

environments. In MapReduce we can split a large problem

space into small pieces and parallelize the execution using

small tasks on the smaller space. This was proposed by

Google for easily harnessing a large number of resources in

data centers to process data-intensive applications. Hadoop

allows users to deligate tasks to the middleware and distribute

as per given strategy. This happens more transparently as

hadoop supports this by the implementation of low level

communication interfaces for cluster.

Fig 2: Proposed System Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.2, February 2012

5

3.3 Algorithm and Flowcharts
We propose the following algorithm for the above mentioned

architecture.

Fig 3: Proposed MoHPBGA Algorithm

Fig 4: Flowchart showing flow of operation on server side

Fig 5: Flowchart showing flow of operations on each

individual cluster

In our approach hierarchical decomposition takes place by

first decomposing the problem based on number of objectives

i.e. each objective Ki executes on individual clusters Ci and at

the second stage population balancing is done by parallel

decomposition of the offered population. If suppose P is the

offered population size to each cluster & N is the number of

nodes in the cluster, then each node gets a P/N number of

individuals for genetic evaluations. Then the results from all

the participating nodes in a cluster are combined and the best

results satisfying the given objective (Ki) is send to the higher

level for execution of multiobjective GA on server. Thus we

get an n-dimensional vector x, containing the individuals

satisfying an objective function individually. Now at this

stage on server, a final local GA is carried out on x to find x*,

satisfying a set of objective functions.

The algorithm and the flowcharts present the operations that

would be carried out to implement MoHPBGA. For

multiobjective optimization, given an n-dimensional decision

variable vector x={x1, x2 ...xn} in the solution space P, we

need to find a vector x* that either minimizes or maximizes a

given set of K objective functions (O) z(x*)={z1(x*), z2(x*)...

zk(x*)}

Algorithm 2: Multiobjective Hierarchical Population

Balanced GA using MapReduce (MoHPBGA)

1. Accept input (objectives) from the user.

2. Generate at random a population, P, of chromosomes i.e.

the solution space.

3. Decompose the problem based on objectives i.e.

assignment of one objective to one cluster (done by server

machine).

4. Parallel execution on each cluster, on given population

based on objective.

5. On an individual cluster:

5.1 Accept the population (P) and the objective (O).

5.2 Perform PGA on cluster.

5.2.1 Divide P into SP1, SP2….SPN

 subpopulations.

5.2.2 For SPi, i=1... N, execute in parallel the next

 steps on the available nodes (N).

5.2.2.1 Apply the selection mechanism and

 the genetic operators using

 MapReduce.

5.2.2.2 If the stop criteria not fulfilled, return

 to 5.2.2

5.3 Combine the results from the all the nodes.

5.4 Send the best results to the top i.e. server machine.

6. Gathering of best results from all clusters on server

machine.

7. Run a Local GA on server to get the best results

satisfying multiple objectives.

8. Display the Best or optimized final results.

Accept Objectives (O)

Generate Initial Population

Decompose Problem into GAs

based on objectives

Distribute Population on cluster

based on objectives

Cluster C1 Cluster C2
Cluster CM

Gather Results From Clusters

 Run Local GA

Display Best Results

STOP

START

START

Accept Population (P) &

Objective (O)

Perform P/N (N=No. of nodes in cluster)

Combine Results from nodes

Return Best Results to

Master

STOP

Mapper

(Fitness

evaluation)

Mapper

(Fitness

evaluation)

Mapper

(Fitness

evaluation)

Reducer

(Crossover

& Mutation)

Reducer

(Crossover

& Mutation)

Reducer

(Crossover

& Mutation)

Node N

(Execute GA)

Node1

(Execute GA)

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.2, February 2012

6

4. CONCLUSION AND FUTURE WORK
Genetic Algorithms are easy to apply to a wide range of

problems, from optimization problems like the travelling

salesperson problem, to inductive concept learning,

scheduling, and layout problems. The results can be very good

on some problems, and rather poor on others. Implementing

these GAs with modification have proven to be very useful,

especially hierarchical GAs, resulting in faster and more

robust algorithms.

MoHPBGA presented in this paper is a genetic algorithm

designed for hierarchical classification for multiobjective

problems. Our proposed method executes the instances of GA

on the clusters and uses the complete population for

optimization. Further the instance of GA on each cluster

executes using PGA on partitioning population given to the

cluster. Compared to other algorithms in the literature,

MoHPBGA has the advantage of dealing with both local and

global information simultaneously. Also, the hypothesis

shows the improvement of computation time compared to

earlier HPGA approaches.

As future work, we implement this concept of MoHPBGA on

Hadoop platform, which inherently supports for MapReduce

programming model along with the the performance analysis

of the system.

5. ACKNOWLEDGEMENT
I would like to acknowledge and extend my heartfelt gratitude

to the all the persons who have made the completion of this

paper possible. l owe my deep regards and honor to express

my gratitude to Mr. Bhushan Thakare, Manish Chandak,

Miss. Reshu Prowal, Madhuri Aher and all the faculty

members of VIT college for providing valuable support,

guidance, help and inspiration all through this paper.

6. REFERENCES
[1] Bart Ian Rylander, “Computational Complexity and the

Genetic Algorithm”, Doctoral Dissertation, University of

Idaho Moscow, ID, USA @2001, ISBN: 0-493-33514-5.

[2] Chao Jin, Christian Vecchiola and Rajkumar Buyya,

“MRPGA: An Extension of MapReduce for Parallelizing

Genetic Algorithms”, in Proceedings of the 4th IEEE

International Conference on e-Science 2008.

[3] D. Abramson and j. Abela, “A parallel Genetic Algorithm

for Solving the School Timetabling Problem”, in

Proceedings of the 15th Australian Computer Science

Conference, Hobart, Feb 1992, pp 1-11.

[4] D. Lim, Y. Ong, Y. Jin, B. Sendhoff, and B. Lee,

“Efficient Hierarchical Parallel Genetic Algorithms using

Grid Computing”, in Proceedings of the Future

Generation Computer System, 23(4):658–670, 2007.

[5] De Toro, F.; Ortega, J.; Fernandez, J.; Diaz, A.; “PSFGA:

A Parallel Genetic algorithm for Multiobjective

Optimization”, in Proceedings of the 10th Euromicro

Workshop on Parallel, Distributed and Network-based

Processing, 2002.

[6] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A

Fast and Elitist Multiobjective Genetic Algorithm:

NSGA-II”, IEEE Transactions on Evolutionary

Computation 6(2) : 182-197, 2002.

[7] E.Alba and J.M.Troya, “A Survey of Parallel Distributed

Genetic Algorithms”, Complexity 4(4), 31-52, 1999.

John Wiley and Sons, Inc.

[8] E.Cant´u-Paz, “Efficient and Accurate Parallel Genetic

Algorithms”, Kluwer Academic Publishers, Norwell,

MA, USA, 2000, ISBN: 978-0-7923-7221-9.

[9] Erick Cant`u-Paz, “A Survey of Parallel Genetic

Algorithms”, Calculateurs Paralleles, Reseaux et

Systems Repartis, 10(2):141-171, 1998.

[10] Erick Cant`u-Paz, David E. Goldberg, “Are Multiple

Runs of Genetic Algorithms Better than One?”, in

Proceedings of the 2003 International Conference on

Genetic and Evolutionary Computation (GECCO ’03).

[11] F.Herrera, M. Lozano, M. Lozano, “Hierarchical

Distributed Genetic Algorithms”, Technical Report

#DECSAI-97-01-03, Dept. Of Computer Science and

Artificial Intelligence, University of Granada, Spain,

1997.

[12] Fonseca, C.M. and Fleming, P.J, “Multiobjective Genetic

Algorithms”, in IEE Colloquium on Genetic Algorithms

for Control Systems Engineering (Digest No. 1993/130),

1993.

[13] Gautam Roy, et al, “A Distributed Pool Architecture for

Genetic Algorithms”, in Proceedings of the 2009 IEEE

Conference on Evolutionary Computation (CEC 2009).

[14] Gong, Y., Fukunaga, A, “Distributed Island-Model

Genetic Algorithms Using Heterogeneous Parameter

Settings”, in Proceedings of the IEEE Congress on

Evolutionary Computation (CEC), 2011.

[15] Horn, J., Nafpliotis, N., and Goldberg, D.E, “A Niched

Pareto Genetic Algorithm for Multiobjective

Optimization”, in Proceedings of the 1st IEEE

Conference on Evolutionary Computation. IEEE World

Congress on Computational Intelligence, 1994.

[16] J. Dean and S. Ghemawat. “MapReduce: Simplified

Data Processing on Large Clusters”, in Proceedings of

the 6th Conference on Symposium on Systems Design

and Implementation,OSDI ’04.

[17] J. Suh and D. Van Gucht, “Distributed Genetic

Algorithms”, Tech. Report 225, Computer Science

Department, Indiana University, Bloomington, 1987.

[18] Kelly Easton, Nemhauser George L., and Trick Michael

A, “The Traveling Tournament Problem Description and

Benchmarks”, in Proceedings of the 7th International

Conference on Principles and Practice of Constraint

Programming, CP’01.

[19] Knowles, J.D. and Corne, D.W., “Approximating the

nondominated front using the Pareto archived evolution

strategy”, Evolutionary Computation, 8(2):149-172,

2006.

[20] Lu, H. and Yen, G.G., “Rank-density-based

multiobjective genetic algorithm and benchmark test

function study”, IEEE Transactions on Evolutionary

Computation, 7(4):325-343, 2003.

[21] M. Sefrioui, K. Srinivas and J. Periaux, “Aerodyanmic

Shape Optimization using a Hierarchical Genetic

Algorithm”, European Conference on Computational

Methods in Applied Science and Engineering

(ECCOMAS 2000).

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.2, February 2012

7

[22] Muhammad Ali Ismail, “Parallel Genetic Algorithms

(pgas): master slave paradigm approach using mpi”, E-

Tech 2004.

[23] Murata, T. and Ishibuchi, H, “MOGA: multi-objective

genetic algorithms”, in Proceedings of the 1995 IEEE

International Conference on Evolutionary Computation,

Perth.

[24] Petr Pospichal, Jiri Jaros, and Josef Schwarz, “Parallel

Genetic Algorithm on the CUDA Architecture”, in

Proceedings of the Applications of Evolutionary

Computation, 6024 : 442-451, 2010.

[25] Ranieri Baraglia, Raffaele Perego, “Parallel Genetic

Algorithms for Hypercube Machines”, in Proceedings of

the 3rd international conference on vector and parallel

processing VECPAR’98.

[26] Sarker, R., Liang, K.-H., and Newton, C., “A new

multiobjective evolutionary algorithm”, European

Journal of Operational Research 140(1):12-23, 2002.

[27] Schaffer, J.D, “Multiple Objective optimization with

vector evaluated genetic algorithms”, in Proceedings of

the International Conference on Genetic Algorithm and

their applications. 1985.

[28] Srinivas, N. and Deb, K., “Multiobjective Optimization

Using Nondominated Sorting in Genetic Algorithms”,

Journal of Evolutionary Computation, 2(3): 221-248,

1994.

[29] T. Hiroyasu, M. Kaneko, K. Hatanaka, “A parallel

genetic algorithm with distributed environment scheme”,

in Proceedings of the 1999 IEEE International

conference on Systems, Man, and Cybernetics (SMC

'99).

[30] Verma, A. Llora, X. Goldberg, D.E. Campbell, R.H,

“Scaling Genetic Algorithms Using MapReduce”, in

Proceedings of the 9th International Conference on

Intelligent Systems Design and Applications, ISDA '09.

[31] Wang, L.; Maciejewski, A.A.; Siegel, H.J.;

Roychowdhury, V.P, “A comparative study of five

parallel genetic algorithms using the traveling salesman

problem”, in Proceedings of the 1st Merged International

Parallel Processing Symposium and Symposium on

Parallel and Distributed Processing, 1998.

[32] Zdenek Konfrst, “Parallel Genetic Algorithms:

Advances, Computing Trends, Applications and

Perspectives”, in Proceedings of the 18th International

Parallel and Distributed Processing Symposium

(IPDPS’04).

[33] Zitzler, E. and Thiele, L., “Multiobjective evolutionary

algorithms: A comparative case study and the strength

Pareto approach”, IEEE Transactions on Evolutionary

Computation, 3(4):257-271, 1999.

