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ABSTRACT 

Use of heuristic methods is common to find the solutions to 

the optimization problems for scientific and real time.  

Problems such as Travelling Salesman (TSP) require more 

accurate solution which is tried by various optimization 

methods. Research in this direction shows the use of Genetic 

algorithms (GA) as promising candidate and is preferred over 

other optimization methods.  Firstly due to the use of large 

population and secondly large number of iterations GA tends 

to be more accurate but inefficient with respect to 

computation time.  Variants of GA are formulated and 

experimented so as to take care of execution time.  We present 

the review of approaches used to formulation of GA solutions 

mainly parallel GA (PGA), distributed GA (DGA) and 

hierarchical parallel GA (HPGA).  Further this paper proposes  

Multi objective Hierarchical Population Balanced Genetic 

Algorithm (MoHPBGA)  as the improved candidate which 

uses map reduce framework for efficient use of population 

mapping and synchronization of tasks.      

General Terms 

Multiobjective GA, Mapreduce, Hierarchical Parallel GA, 

Popolation balancing in GA. 

Keywords 

Optimization, Genetic Algorithms, Parallel Computing, 

Multiobjective problems. 

1. INTRODUCTION 
Genetic algorithms are stochastic search methods introduced 

by J Holland in the 1970’s and inspired by the biological 

evolution of living beings. So these algorithms belongs to the 

larger class of evolutionary algorithms (EA), which generate 

solutions to optimization problems using techniques inspired 

by natural evolution, such as inheritance, selection, crossover 

and mutation. The new generation evolves from the 

population of existing individuals and continues to improve 

over generations by eliminating weak individuals and using 

best few for further generations. The participation of the 

individual in generation process depends on its fitness. Fitness 

is the criteria based on the goal of required improvement for 

example lower cost of travelling time for the distances in 

shortest distance problem derived from parameters affecting 

distance properties. Multiple individuals stochastically 

selected based on their fitness from the current population to 

participate in crossover (recombination) and mutation 

(randomly changing selected parameter value) to form a new 

individuals. Process continues iteratively to produce further 

generations and terminates when either desired number of 

generations has been produced or a sufficient fitness level has 

been reached with the population. An abstraction of a typical 

GA is given as below [1] in the algorithm by the Fig. 1. 

 

 

 

 

 

 

 

Fig 1: Algorithm for Generic Genetic Algorithm 

1.1 Sequential GA Issues 
As the GA executes sequentially by steps, as crossover and 

mutation performed on pair of individuals and for large 

population in consideration for these steps, the time required 

to compute is also higher. Number of objectives to be satisfied 

is the yet another factor that further delays the execution. Let 

m is the number of objectives and n is the number of 

individuals taking part in process then it amounts to O(mn)3, 

which means to get more number of iterations for accuracy of 

solution executing on large population will lead to very high 

execution time of the order of cubical time.  

Another issue with sequential implementation is its memory 

utilization for storing large population. The run time memory 

requirements are also higher since the population must be 

available in memory for the operations of GA. Although GA 

normally leads to optimal solution but at some instances 

sequential GAs may get trapped in a sub-optimal region of the 

search space thus becoming unable to find better quality 

solutions.  

Because of above mentioned issues the problems which 

require quicker solutions resist the use of genetic algorithms 

for computation. This is obvious because the genetic 

algorithm does not find solutions using mathematical 

representation of the problem, but it is more or less a 

stochastic, discrete, non-linear, and a high-dimensional 

seeking algorithm. The use of genetic algorithms can be 

promoted by reduction of execution time to find quicker 

solution. So, we summarize the efforts towards the various 

implementations of GA in next section  

2. RELATED WORK 
GA was developed by John Holland (1975) over the course of 

the 1960s and 1970s and finally popularized by one of his 

students, David Goldberg, who was able to solve a difficult 

problem involving the control of gas-pipeline transmission for 

Algorithm 1: Algorithm for Generic Genetic Algorithm 

Generate initial population, G(0); 

Evaluate G(0);  (apply fitness function) 

t=1; 

Repeat 

Generate G(t) using G(t-1);  (apply operators) 

Evaluate (decode (G(t))); 

t=t+1; 

Until solution is found or termination. 
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his dissertation (Goldberg, 1989). Holland’s original work 

was summarized in his book. He was the first to try to develop 

a theoretical basis for GAs through his schema theorem. The 

work of De Jong (1975) showed the usefulness of the GA for 

function optimization and made the first concerted effort to 

find optimized GA parameters. Goldberg has probably 

contributed the most fuel to the GA fire with his successful 

applications and excellent book (1989). Since then, many 

versions of evolutionary programming have been tried with 

varying degrees of success. 

In the first International Conference of Genetic Algorithms 

(ICGA), there were no papers about parallel GAs at all. This 

situation changed in the second ICGA in 1987, where six 

papers were published. From then on there has been a steady 

flow of papers published in conferences and journals of GAs 

and parallel computation. To reduce the computation load of 

genetic search, a lot of methods for searching in parallel and 

distributed manner have been proposed [9] [10] [29]. The 

number of papers, dissertations and books on the theory of 

these genetic algorithms has been increasing. Some of them 

are briefly reviewed in the following. 

In 1992, D. Abramson and J. Abela presented a paper in 

which they discussed the application of a GA to the school 

timetabling problem [3], and showed that the execution time 

can be reduced by using a commercial shared memory 

multiprocessor. The program code was written in Pascal and 

run on an Encore Multimax shared memory multiprocessor. 

The times were taken for a fixed number of generations (100) 

so that the effects of relative solution quality could be ignored 

and proved that the speedup was attained from a parallel 

implementation of the program. 

A PGA developed by Suh and Gucht [17], has been applied to 

TSPs of growing size (100-1000 cities) problems. PGAs 

without selection and crossover, so called independent 

strategies were used. These algorithms consist of running an 

unlimited number of independent sequential local searches in 

parallel. PGAs with low amount of local improvement were 

used and performed better in terms of quality solution than the 

independent strategies. In terms of computational time, the 

PGA showed nearly a linear-speedup for various TSPs, using 

up to 90 processors. The algorithms were run on a BBN 

Butterfly. 

In 1998, Ranieri and Raffaele [25] discussed the results of the 

application of parallel GA algorithms to the TSP.   Both fine 

grained and coarse grained parallel GAs which adopt the 

selected genetic operators were designed and implemented on 

a 128-node nCUBE 2 multicomputer. The tests showed that 

the two point crossover finds better solutions, as does 

replacement criteria. They used an innovative mapping 

strategy for fine grained algorithm that makes the number of 

solutions managed independent of the number of processing 

nodes used. For the coarse grained GA it was observed that 

the quality of solutions gets worse if the number of nodes 

used were increased. Moreover, due to the sorting algorithm 

used to order each sub population by fitness, the speedup of 

the coarse grained GA was superlinear. Whereas, for fine 

grained GA the quality of solutions does not get worse if the 

number of the nodes used is increased, they showed good 

scalability. A comparison between the fine and coarse grained 

algorithms highlighted that fine grained algorithms represent 

the better compromise between quality of the solution reached 

and the execution time spent on finding it. Complete 

performance results showing the behavior of Parallel Genetic 

Algorithms for different population sizes, number of 

processors used, migration strategies were reported. 

In [31], the authors have very well presented a comparative 

analysis of five different types of coarse grained PGAs. Four 

conceptually different PGA approaches and one hybrid of two 

of these approaches were compared using the TSP as an 

example application problem. For fair comparisons, all PGAs 

were developed based on the same baseline SGA, 

implemented on the same 16 thin PEs of an IBM SP2 parallel 

machine, and tested using the same set of initial populations 

on the same set of TSP instances. As a result of the 

experiments conducted in this study, a particular PGA that 

combines a new sub tour technique with a known migration 

approach was identified to be the best. The results showed 

that the migration and the segmentation-migration approaches 

were able to find solutions of similar high quality faster than 

the other approaches. 

Also one of the very fruitful studies was the dissertation of 

Cant´u-Paz (2000) [8]. The dissertation brought many new 

principles of the rational design of fast and accurate parallel 

genetic algorithms. It helped many researchers to decide a 

configuration of the many options of topologies, migration 

rates, number and size of demes. The important findings were 

brought to light as importance of accurate population sizing 

for PGA, an equivalent scalability of single and multiple 

demes, impracticability of isolated demes, improvement 

quality and efficiency by migration, advantage of fully 

connected topologies, studies of effects of topology and 

optimal allocation computing resources. 

The article [32] gives a brief overview of theoretical 

advances, computing trends, applications and future 

perspectives in parallel genetic algorithms. It is basically a 

survey of past and recent developments in parallel genetic 

algorithms. The information is segregated into two periods 

before and after the year 2000 and in all chapters. The 

relevant issues connected with parallel genetic algorithms 

were highlighted. The survey hinted several views, whose 

range from new genetic theories over parallel computing and 

wide and various ranges of real-world applications to future 

developments, challenges and perspectives for parallel 

(genetic) metaheuristcs. 

Apart from using PGAs for solving various problems, people 

have also worked on implementing these PGAs on various 

different platforms using different technologies. Some of such 

works is described below and also presented in a tabulated 

form in Table 1. 

In 2004, the author [22] has presented his work by using a 

master-slave paradigm on a Beowulf Linux cluster using MPI 

programming library. With the help of this he has written a 

pseudo code that first initializes the basic population and also 

the number of nodes present in the cluster. Then it assigns the 

fitness function to the slave or other nodes in the cluster. The 

slave ones compute the fitness objective and do the mutation. 

After this, they send back the result to the master where it 

makes the final counterpart.  This paper presented a view of 

implementation and realization of algorithms on a parallel 

architecture. 

As MPI’s are associated with some drawbacks of unable to 

handle heterogeneity, failures etc and that is why it not 

suitable for cloud applications, another author [2] presented 

his work of executing PGAs on a MapReduce model. This 

model provides a parallel design pattern for simplifying 

application developments in distributed environments. As this 

model cannot be used to express PGA’s directly, they 

presented an extension to MapReduce model through an 

additional reduce phase for global selection, called once at the 
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end of each iteration of the GA loop.  To simplify handling 

faults during execution, they made the master to replicate the 

optimum individuals selected by MRPGA for each round of 

evolvement in their architecture. 

Table 1.  Implementation of PGAs On Different Platforms 

   Parame- 
           ters Technology

/platform 
Type of 

PGA 

Comments on 
Performance 

 

PGA 
using MPI 

[22] 

Beowulf 
Linux 

Cluster and 
MPI. 

GPGA 

Homogenous 
cluster. Parallel 
implementation 

and 
Performance 

improvement. 

PGA 
using 

CUDA[24
] 

intel Core i7 
and nVidia 

graphics 
cards: 8800 
GTX, GTX 

285 and 
GTX 260-

SP216. 

CPGA 

Improved 
Performance for 

increasing 
population size. 

Slows for 
smaller no. of 

islands and 
lower 

population size. 

PGA 
using 

MapReduc
e [2] 

Aneka (.Net 
based 

enterprise 
Grid 

software 
platform) 
and C# 

CPGA 

Handles 
heterogeneity 
and supports 
MapReduce. 

 

Parallel genetic algorithms are usually implemented on 

parallel machines or distributed systems. But Petr Pospichal, 

Jiri Jaros, and Josef Schwarz [24] provided with a new view 

of implementation of parallel genetic algorithms to 

programmable graphics hardware found in commodity PC. 

Their paper deals with the mapping of the parallel island 

based genetic algorithm with unidirectional ring migrations to 

nVidia CUDA software model. The proposed mapping was 

tested using Rosenbrock’s, Griewank’s and Michalewicz’s 

benchmark functions. Their results indicate that this approach 

leads to speedups up to seven thousand times higher 

compared to one CPU thread while maintaining a reasonable 

results quality, which clearly shows that GPUs have a 

potential for acceleration of GAs and allow solving much 

complex tasks. 

Although much work is reported about PGA models (and 

implementations on different parallel architectures), involving 

SOPs (single objective optimization problems), PGA models 

could also be applied for multiobjective optimization 

problems (MOPs) [5]. MOPs normally have several (usually 

conflicting) objectives that must be satisfied at the same time. 

The first multi-objective GA, called Vector Evaluated Genetic 

Algorithms (or VEGA), was proposed by Schaffer [27]. 

Afterward, several major multi-objective evolutionary 

algorithms were developed such as Multi-objective Genetic 

Algorithm (MOGA) [12], Niched Pareto Genetic Algorithm 

[15], Random Weighted Genetic Algorithm (RWGA)[23], 

Nondominated Sorting Genetic Algorithm (NSGA) [28], 

Strength Pareto Evolutionary Algorithm (SPEA) [33], Pareto-

Archived Evolution Strategy (PAES) [19], Fast Non-

dominated Sorting Genetic Algorithm (NSGA-II) [6], Multi-

objective Evolutionary Algorithm (MEA) [26], Rank-Density 

Based Genetic Algorithm (RDGA) [20]. Although there are 

many variations of multiobjective GA in the literature, these 

cited GA are well-known and credible algorithms that have 

been used in many applications and their performances were 

tested in several comparative studies. 

Apart from implementing GA by parallelization, researchers 

have tried to implement them on distributed systems. For e.g. 

in [29] the authors proposed a new distributed GA with a 

distributed environment scheme. In this scheme, a whole 

population is divided into several subpopulations, and the GA 

parameters such as the mutation rate and the crossover rate in 

each subpopulation were different from each other. The 

migration operation was performed similarly as the 

conventional distributed GA. They demonstrated the 

effectiveness of the proposed scheme with 9 subpopulations 

on a parallel computer, nCUBE2, with 64 processors and one 

processor assigned to one population. The problem solved 

was the maximization of the Rastrigin function. The results 

were then compared with SPGA (single population GA) and 

MPGA (multiple population GA), which showed a clear 

performance gain in DEGA, which can be attributed to the 

reason of various environments. Thus, they concluded that the 

distributed environment GA is the fastest way to gain the 

good solution under the given population size and uncertainty 

of the appropriate crossover and mutation rates. 

A similar kind of proof was given by Yiyuan Gong and Alex 

Fukunaga [14], by proposing the use of an extremely simple, 

randomized strategy for setting control parameters in a 

distributed genetic algorithms, where a different, random set 

of control parameter values (mutation rate, crossover rate, 

population) were used on every processor in an island-model 

distributed GA. This randomized, heterogeneous distributed 

GA exploits the fact that, sufficiently sampling the space of 

control parameter spaces can result in a near-optimal set of 

control parameters being discovered (for a single processor). 

Apart from proving that these Heterogeneous DGAs are a 

good option for solving problems, the results also showed that 

as the number of processors were increased, the relative 

performance of the heterogeneous DGA improves and this is 

because of the fact that with a sufficient number of 

processors, it is likely that at least some of the processors will 

end up being assigned a set of random control parameters 

which performs particularly well on a given problem. 

A totally different variant was proposed in [13], where the 

author proposed a new architecture for distributed GAs, based 

on distributed storage of the individuals in a persistent pool. 

This approach was tailored for distributed systems in which 

processors are loosely coupled, failure-prone and can run at 

different speeds. They simulated the pool GA approach on 

some of application problems which are continuous functions 

and also to a real-world product lifecycle design problem, 

using crossover and mutation operators and the results showed 

clear advantage of using concurrent processing. They also 

simulated crashes during execution of Pool GA. The results 

indicated that the algorithm is tolerant up to half the 

processors crashing at random times without significantly 

affecting the performance. 

Several hierarchical algorithms have also been suggested in 

the recent past, e.g. in 1997; Herrera, Lozano and Moraga 

discussed a paper on hierarchical distributed genetic 

algorithms (HDGA) [11]. In this they presented a hierarchical 

model of distributed genetic algorithm in which a higher level 

distributed genetic algorithm joins simple distributed genetic 

algorithms. Also with the union of hierarchical structure 

presented and the idea of heterogeneous distributed genetic 

algorithms, they proposed a heterogeneous hierarchical 

Approa 

ches 
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distributed genetic algorithm and showed that the proposed 

model consistently outperforms equivalent sequential genetic 

algorithms and simple distributed genetic algorithms. This 

paper was the first investigation on a basic implementation of 

this idea.  

Another variant of hierarchical algorithms is included in [21]. 

In this HGAs are explained in details and the advantages of a 

multi-layered hierarchical topology are clearly shown. The 

experiment was carried out in the field of computational fluid 

dynamics (CFD) shape optimization. The optimization task 

consists of reconstructing the shape of a converging- 

diverging nozzle for a transonic flow involving a shock. The 

optimization was presented by a real coded GA, with a single 

population of size 20, then again tested using HGA (coarse 

grained, so we can say it as DGA) with a grid of size 100 and 

then finally tested for HGA with multiple layers i.e. grid of 

size 100 at layer 1, 50 grid points at layer 2 and grid of size 25 

at the bottom layer. They summed up the performances for 

traditional Gas, hierarchical GAs (DGAs) and hierarchical 

Gas with multiple models. They focused on the CPU time 

needed by each of these 3 approaches and experiment and 

showed that the hierarchical GAs are on an average 3 times 

faster than either of the other approaches. Therefore they 

concluded that GAs can handle well approximate models 

within a hierarchical topology and thus these models of 

different complexities can significantly speed-up an 

optimization process. 

Also in 2006, Lim, Y. Ong, Y. Jin, B. Sendhoff, and B. Lee, 

proposed a Hierarchical Parallel Genetic Algorithm 

framework (GE-HPGA) [4] based on standard grid 

technologies. The framework offers a comprehensive solution 

for efficient parallel evolutionary design of problems with 

computationally expensive fitness functions, by providing 

novel features that conceals the complexity of a Grid 

environment through an extended GridRPC API and a 

metascheduler for automatic resource discovery. To assess the 

effectiveness of the framework, theoretical analysis on 

maximum speed-up of GE-HPGA and the practical conditions 

that must be fulfilled for any speed-up has been reported 

3. PROPOSED WORK 

3.1 Multiobjective Hierarchical 

Population Balanced GA using 

MapReduce (MoHPBGA) 
It is very evident from the literature that various variants of 

GAs, especially hierarchical GAs (HGAs) [11][21][4] are 

better performers than the sequential ones. So we take into 

account this form of GA, and propose how these HGAs can be 

applied to a multiobjective optimization problem like 

Travelling Tournament Problem (TTP) [18], which is a sports 

timetabling problem that abstracts the important issues in 

creating timetables where team travel is an important issue 

using MapReduce [16][30], which is a software framework 

that is used to support distributed computing on large data sets 

on a clusters of computers. So in the following section we 

present an architecture showing how a multiobjective problem 

can be solved on this framework in a hierarchical way. 

3.2 Proposed Architecture 
As shown in Fig. 2, we propose to decompose GA using both 

task (objective) and data (population) strategies. The structure 

for decomposition will be hierarchical and all the local 

clusters will offered the same set of population, which then 

will be working on this population but each with a different 

objective. The global level of decomposition will work by 

decomposition of multiple GA tasks (objectives) which are 

assigned to local decomposition level and the local level will 

be responsible to decompose the offered population and run 

parallel tasks on the local infrastructure- computing cluster. 

The diagram shows the local and global level decomposition 

of GA. 

We propose to use MapReduce model of programming. The 

MapReduce model provides a parallel design pattern for 

simplifying application developments in distributed 

environments. In MapReduce we can split a large problem 

space into small pieces and parallelize the execution using 

small tasks on the smaller space. This was proposed by 

Google for easily harnessing a large number of resources in 

data centers to process data-intensive applications. Hadoop 

allows users to deligate tasks to the middleware and distribute 

as per given strategy. This happens more transparently as 

hadoop supports this by the implementation of low level 

communication interfaces for cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Proposed System Architecture 
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3.3 Algorithm and Flowcharts 
We propose the following algorithm for the above mentioned 

architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Proposed MoHPBGA Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Flowchart showing flow of operation on server side 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Flowchart showing flow of operations on each 

individual cluster 

In our approach hierarchical decomposition takes place by 

first decomposing the problem based on number of objectives 

i.e. each objective Ki executes on individual clusters Ci and at 

the second stage population balancing is done by parallel 

decomposition of the offered population. If suppose P is the 

offered population size to each cluster & N is the number of 

nodes in the cluster, then each node gets a P/N number of 

individuals for genetic evaluations. Then the results from all 

the participating nodes in a cluster are combined and the best 

results satisfying the given objective (Ki) is send to the higher 

level for execution of multiobjective GA on server. Thus we 

get an n-dimensional vector x, containing the individuals 

satisfying an objective function individually. Now at this 

stage on server, a final local GA is carried out on x to find x*, 

satisfying a set of objective functions. 

The algorithm and the flowcharts present the operations that 

would be carried out to implement MoHPBGA. For 

multiobjective optimization, given an n-dimensional decision 

variable vector x={x1, x2 ...xn} in the solution space P, we 

need to find a vector x* that either minimizes or maximizes a 

given set of K objective functions (O) z(x*)={z1(x*), z2(x*)... 

zk(x*)} 

Algorithm 2: Multiobjective Hierarchical Population 

Balanced GA using MapReduce (MoHPBGA) 

1.  Accept input (objectives) from the user. 

2.  Generate at random a population, P, of chromosomes i.e. 

the solution space. 

3.  Decompose the problem based on objectives i.e. 

assignment of one objective to one cluster (done by server 

machine). 

4.  Parallel execution on each cluster, on given population 

based on objective. 

5.   On an individual cluster: 

5.1 Accept the population (P) and the objective (O). 

5.2 Perform PGA on cluster. 

5.2.1 Divide P into SP1, SP2….SPN    

         subpopulations. 

5.2.2 For SPi, i=1... N, execute in parallel the next    

         steps on the available nodes (N). 

5.2.2.1 Apply the selection mechanism and  

             the genetic operators using    

             MapReduce.  

5.2.2.2 If the stop criteria not fulfilled, return  

             to 5.2.2 

5.3 Combine the results from the all the nodes. 

5.4 Send the best results to the top i.e. server machine. 

6.   Gathering of best results from all clusters on server 

machine. 

7.   Run a Local GA on server to get the best results 

satisfying multiple objectives. 

8.   Display the Best or optimized final results. 

 

Accept Objectives (O) 

Generate Initial Population 

Decompose Problem into GAs 

based on objectives 

Distribute Population on cluster 

based on objectives 

Cluster C1 Cluster C2 
Cluster CM 

Gather Results From Clusters 

              Run Local GA 

Display Best Results 

STOP 

START 

 
START 

Accept Population (P) & 

Objective (O) 

Perform P/N (N=No. of nodes in cluster) 

Combine Results from nodes 

Return Best Results to 

Master 

STOP 

Mapper 

(Fitness 

evaluation) 

Mapper 

(Fitness 

evaluation) 

 

Mapper 

(Fitness 

evaluation) 

Reducer 

(Crossover 

& Mutation) 

Reducer 

(Crossover 

& Mutation) 

Reducer 

(Crossover 

& Mutation) 

Node N 

(Execute GA) 

Node1 

(Execute GA) 
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4. CONCLUSION AND FUTURE WORK 
Genetic Algorithms are easy to apply to a wide range of 

problems, from optimization problems like the travelling 

salesperson problem, to inductive concept learning, 

scheduling, and layout problems. The results can be very good 

on some problems, and rather poor on others. Implementing 

these GAs with modification have proven to be very useful, 

especially hierarchical GAs, resulting in faster and more 

robust algorithms.  

MoHPBGA presented in this paper is a genetic algorithm 

designed for hierarchical classification for multiobjective 

problems. Our proposed method executes the instances of GA 

on the clusters and uses the complete population for 

optimization. Further the instance of GA on each cluster 

executes using PGA on partitioning population given to the 

cluster.  Compared to other algorithms in the literature, 

MoHPBGA has the advantage of dealing with both local and 

global information simultaneously. Also, the hypothesis 

shows the improvement of computation time compared to 

earlier HPGA approaches.   

As future work, we implement this concept of MoHPBGA on 

Hadoop platform, which inherently supports for MapReduce 

programming model along with the the performance analysis 

of the system. 
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