On Strongly- $\alpha\delta$ -Super-Irresolute Functions in Topological Spaces

R. Devi Principal, Kongunadu Arts and Science College- Coimbatore V. Kokilavani
Assistant Professor,
Dept. of Mathematics,
Kongunadu Arts and Science
College- Coimbatore

*P. Basker
Assistant Professor,
Dept. of Mathematics,
Kalaivani College of
Technology-Coimbatore
*Corresponding Author

ABSTRACT

In this paper a new class of sets called $\alpha\delta$ -closed set is introduced and its properties are studied. Further the notion of $T_{\alpha\delta}$ -Space and $\alpha\delta$ -continuity, Super- $\alpha\delta$ -continuity, $\alpha\delta$ -irresoluteness, Strongly- $\alpha\delta$ -super-irresoluteness are introduced. Further, we obtain some characterizations and some properties.

Keywords

 $\alpha\delta$ -closed set, $\widetilde{T_{\alpha\delta}}$ -Space, $\alpha\delta$ -continuity, Super- $\alpha\delta$ -continuity, $\alpha\delta$ -irresoluteness, Strongly- $\alpha\delta$ -super-irresoluteness

1. INTRODUCTION

The importance of general topological spaces rapidly increases in many fields of applications such as data mining[17]. Information systems are basic tools for producing knowledge from data in any real-life field. Topological structures on the collection of data are suitable mathematical models for mathematizing not only quantitative data but also qualitative ones.

Levine [10], Mashhour et al.[12], Njastad [13], Velicko [18] and Park JH et al. [15] introduced semi-open sets, pre-open sets, α -open sets, δ -closed sets and δ -semi-closed sets respectively. Levine [11] initiated the study of so-called gclosed sets, Bhattacharaya and Lahiri [3], Arya and Nour [2], R.Devi et al. [4, 5] introduced semi-generalized closed (briefly sg-closed) sets, generalized semi-closed (briefly gsclosed) sets, generalized α -closed (briefly $g\alpha$ -closed) sets and α -generalized closed (briefly αg -closed) sets. Dontchev and Ganster [7], Dontchev et al. [6], Park JH et al. [16] and Jin Han Park et al. [8] introduced and studied the concept of δq closed sets which is a slightly stronger form of g-closedness properly placed between δ -closedness and g-closedness and introduced the notion of $T_{3/4}$ -Spaces as the spaces where every δg -closed set is δ -closed set, $g\delta$ -closed and δg^* -closed sets, δgs -closed sets, $g\delta s$ -closed sets. Lellis Thivagar et al. [9] introduced and studied the concept of $\delta \hat{g}$ -closed sets and notion of $\hat{T}_{3/4}$ -Space as the spaces where every $\delta \hat{g}$ -closed set is δ -closed. M.E.Abd El-Monsef et al. [1] introduced $\alpha \hat{g}$ closed sets and notion of $T_{\alpha\hat{g}}$ -Space as the spaces where every $\alpha \hat{g}$ -closed set is α -closed. The aim of this paper is to study the notion of $\alpha\delta$ -Closed set and its various characterizations are given in this paper. Applying these sets, we obtain a new space which is called $\widetilde{T_{\alpha\delta}}$ -Space. Further the notion of $\alpha\delta$ -continuity and $\alpha\delta$ -irresoluteness are introduced.

Throughout the present paper, spaces X and Y always mean topological spaces. Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A)), The δ -interior [18] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $Int_{\delta}(A)$. The subset A is called δ -open [18] if $A = Int_{\delta}(A)$, *i.e.*, a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subset (X, \tau)$ is called δ -closed [18] if $cl_{\delta}(A) = \{x / x \in U \in \tau \Rightarrow$ where $A = cl_{\mathcal{S}}(A)$. int $(cl(U)) \cap A \neq \emptyset$. The family of all δ -open (resp. δ closed) sets in X is denoted by $\delta O(X)$ (resp. $\delta C(X)$). A subset A of X is called semiopen [10] (resp. α -open [13], δ semiopen [15]) if $A \subset cl(int(A))$ (resp. $A \subset int(cl(int(A)))$, $A \subset cl(Int_{\delta}(A))$) and the complement of a semiopen (resp. α -open, δ -semiopen) are called semiclosed (resp. α closed, δ -semiclosed). The intersection of all semiclosed (resp. α -closed, δ -semiclosed) sets containing A is called the semi-closure (resp. α -closure, δ -semiclosure) of A and is denoted by scl(A) (resp. $\alpha cl(A)$, $\delta - scl(A)$). Dually, semiinterior (resp. α -interior, δ -semi-nterior) of A is defined to be the union of all semiopen (resp. α -open, δ -semiopen) sets contained in A and is denoted by sint(A) (resp. aint(A), δ sint(A)). Note that δ - $scl(A) = A \cup int(cl_{\delta}(A))$ and δ $sint(A) = A \cup cl(Int_{\delta}(A)).$

We recall the following definition used in sequel.

Definition 1.1. Let (X, τ) be a Topological space then A is

- (a) a generalized closed [11] (g-closed) set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (b) a semi-generalized closed [3] (sg-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (c) a generalized semi-closed [2] (gs-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)
- (d) an α -generalized closed [5] (αg -closed) set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .
- (e) an δ -generalized closed [7] (δg -closed) set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (f) a δg^* -closed [6] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ) .
- (g) a δgs -closed [16] if δ -scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ).

- (h) a generalized δ -semiclosed [8] ($g\delta s$ -closed) set if δ - $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (i) a \hat{g} -closed set [9] if $cl(A) \subset U$ whenever $A \subset U$ and U is semi-open in (X, τ) .
- (j) a $\delta \hat{g}$ -closed [9] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- (k) a $\alpha \hat{g}$ -Closed[1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- (1) The complement of a g-closed set (resp. sg-closed, gs-closed, αg -closed, δg -closed, δg^* -closed, δgs -closed, $g\delta s$ -closed, $g\delta s$ -closed, δg -closed, αg -closed) is called a g-open (resp. sg- open, gs-open, αg -open, δg -open, δg^* -open, δgs -open, $g\delta s$ -open,

Definition 1.2. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (a) super-continuous [14] (resp. g-continuous [11], sg-continuous [3], gs-continuous [2], αg -continuous [5], δg -continuous [7], δg^* -continuous [6], δgs -continuous [16], $g\delta s$ -continuous [8], \hat{g} -continuous [9], $\delta \hat{g}$ -continuous [9], $\alpha \hat{g}$ -continuous [1]) if $f^{-1}(V)$ is δ -closed set (resp. g-closed, sg-closed, gs-closed, αg -closed, δg -closed, δgs -closed) in (X, τ) for every closed set V of (Y, σ) .
- (b) δ -irresolute [14] if $f^{-1}(V)$ is δ -closed set in (X, τ) for every δ -closed set V of (Y, σ) .

Definition 1.3. A space (X, τ) is called a

- (a) $T_{3/4}$ -Space [7] if every δg -closed set in it is δ -closed.
- (b) $T_{\alpha\hat{g}}$ -space [1] if every $\alpha\hat{g}$ -closed set in it is α -closed.
- (c) $\hat{T}_{^{3}/_{4}}$ –space [9] if every $\delta \hat{g}$ -closed set in it is δ -closed.

2. BASIC PROPERTIES OF $\alpha\delta$ -CLOSED SETS

Definition 2.1. A subset A of a space (X, τ) is called $\alpha\delta$ -closed set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in (X, τ) .

Remark 2.2. For a subset of a space, from definitions stated above, we have the following diagram of implications:

A. $\alpha\delta$ -closed, B. δ -closed, C. δg^* -closed, D. δgs -closed, E. δg -closed, F. $\delta \hat{g}$ -closed,

G. $g\delta s$ -closed, H. $\alpha \hat{g}$ -closed, I. αg -closed,

J. gs-closed, K. g-closed

None of these implications is reversible as shown by the following examples.

Example 2.3.

- (a) Let $X = \{a, b, c, d\}$ and $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}, \{a, c, d\}\}$, set $A = \{a, b, c\}$ then A is g-closed (resp. gs-closed, αg -closed, δg -closed) but not a $\alpha \delta$ -closed in (X, τ) .
- (b) Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$, set $A = \{a\}$ then A is $g\delta s$ -closed but not a δg -closed in (X, τ) .
- (c) Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$, set $A = \{b, c\}$ then A is $\alpha \delta$ -closed but not a δ -closed in (X, τ) .

Example 2.4.

- (a) The converse of B implies F and F implies H is not true as shown in [9].
- (b) The converse of B implies E is not true as shown by [7].
- (c) The converse of C implies D is not true as shown by [16].
- (d) The converse of E implies C is not true as shown by [8].

Proposition 2.5. If *A* is a $\alpha\delta$ -closed set in a space (X, τ) and $A \subseteq B \subseteq cl_{\delta}(A)$ then *B* is also a $\alpha\delta$ -closed.

Proof: Let U be a αg -open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$ Since A is $\alpha \delta$ -closed set, $cl_{\delta}(A) \subseteq U$ Also since $B \subseteq cl_{\delta}(A)$, $cl_{\delta}(B) \subseteq cl_{\delta}(cl_{\delta}(A)) = cl_{\delta}(A)$. Hence $cl_{\delta}(A) \subseteq U$. Therefore B is also $\alpha \delta$ -closed.

Proposition 2.6. The finite union of $\alpha\delta$ -closed set is $\alpha\delta$ -closed set.

Proof: Let $\{A_i/i = 1,2,3...n\}$ be a finite class of $\alpha\delta$ -closed subsets of a space (X, τ) . Then for each αg -open set U_i in X containing A_i , $cl_{\delta}(A_i) \subseteq U_i$, $i \in \{1,2,3...n\}$. Hence $\bigcup_i A_i \subseteq \bigcup_i U_i = V$ since arbitrary union of αg -open set in (X, τ) is also αg -open set in (X, τ) , V is αg -open set in (X, τ) . Also $\bigcup_i cl_{\delta}(A_i) = cl_{\delta}(\bigcup_i A_i) \subseteq V$. Therefore $\bigcup_i A_i$ is $\alpha\delta$ -closed set in (X, τ) .

Proposition 2.7. Let A be a $\alpha\delta$ -closed set of (X, τ) then $cl_{\delta}(A) - A$ doesn't contain a nonempty αg -closed set.

Proof: Suppose that A is $\alpha\delta$ -closed set, Let U be a αg -closed set contained in $cl_{\delta}(A)-A$. Now U^c is αg -open set of (X, τ) such that $A\subseteq U^c$. Since A is $\alpha\delta$ -closed set of (X, τ) , then $cl_{\delta}(A)\subseteq U^c$. Thus $U\subseteq (cl_{\delta}(A))^c$. Also $U\subseteq cl_{\delta}(A)-A$. Therefore $U\subseteq (cl_{\delta}(A))^c\cap (cl_{\delta}(A))=\varphi$. Hence $U=\varphi$.

Proposition 2.8. If A is αg -open and $\alpha \delta$ -closed subset of (X, τ) , then A is δ -closed subset of (X, τ) .

Proof: Since *A* is αg -open and $\alpha \delta$ -closed, $cl_{\delta}(A) \subseteq A$. Hence *A* is δ -closed.

Theorem 2.9. Let A be $\alpha\delta$ -closed set of (X, τ) . Then A is δ -closed iff $cl_{\delta}(A) - A$ is αg -closed set.

Proof: *Necessity:* Let A be a δ -closed subset of X. Then $cl_{\delta}(A) = A$ and so $cl_{\delta}(A) - A = \varphi$ which is αg -closed set.

Sufficiency: Since A is $\alpha\delta$ -closed, by Proposition 2.8, $cl_{\delta}(A)-A$ doesn't contain a nonempty αg -closed set. But $cl_{\delta}(A)-A=\varphi$. That is $cl_{\delta}(A)=A$. Hence A is δ -closed.

Theorem 2.10. The intersection of $\alpha\delta$ -closed set and a δ -closed set is always $\alpha\delta$ -closed set.

Proof: Let A be a $\alpha\delta$ -closed and B be δ -closed. If U be a αg -open set with $A \cap B \subseteq U$, then $A \subseteq U \cup B^c$, and so $cl_\delta(A) \subseteq U \cup B^c$. Now $cl_\delta(A \cap B) \subseteq cl_\delta(A) \cap B \subseteq U$. Hence $A \cap B$ is $\alpha\delta$ -closed.

Theorem 2.11. A subset A of (X, τ) is $\alpha\delta$ -open iff $U \subset Int_{\delta}(A)$ whenever U is αg -closed and $U \subset A$.

Proof: Obvious.

Theorem 2.12. If a subset A of (X, τ) is $\alpha\delta$ -open, then U = X whenever U is αg -open and $Int_{\delta}(A) \cup (X - A) \subset U$.

Proof: Let U be an αg -open set, such that $Int_{\delta}(A) \cup (X - A) \subset U$, Then $X - U \subset (X - Int_{\delta}(A)) \cap A$, $ie., (X - U) \subset cl_{\delta}(X - A) - (X - A)$. Since X - A is $\alpha \delta$ -closed by *Theorem* 2.10, $X - U = \varphi$ and hence U = X.

Theorem 2.13. If A is a $\alpha\delta$ -open subset of (X, τ) and $Int_{\delta}(A) \subset B \subset A$, whenever B is $\alpha\delta$ -open.

Proof: Let $U \subset B$ and U be an αg -closed subset of X, Since A $\alpha \delta$ -open and $U \subset A$, $U \subset Int_{\delta}(A)$ and then $U \subset Int_{\delta}(B)$. Hence B is $\alpha \delta$ -open.

Theorem 2.14. If a subset A of (X, τ) is $\alpha\delta$ -closed, then $cl_{\delta}(A) \setminus A$ is $\alpha\delta$ -open.

Proof: Let $U \subset cl_{\delta}(A) \setminus A$, where U be $\alpha\delta$ -closed in X. Then by *Proposition 2.7*, $U = \varphi$ and so $U \subset Int_{\delta}(cl_{\delta}(A) \setminus A)$. This show that $cl_{\delta}(A) \setminus A$ is $\alpha\delta$ -open.

3. ON $\widetilde{T_{\alpha\delta}}$ -SPACES

Definition 3.1. A space (X, τ) is called $\widetilde{T_{\alpha\delta}}$ -space if every $\alpha\delta$ -closed set in it is an δ -closed.

Theorem 3.2.

- (a) Every $T_{\frac{3}{4}}$ –Space is a $\widetilde{T_{\alpha\delta}}$ –Space.
- (b) Every $T_{\alpha\delta}$ -Space is a $T_{\alpha\hat{g}}$ -Space.
- (c) Every $\hat{T}_{3/4}$ –Space is a $T_{\alpha\delta}$ –Space.

Proof: The proof is straight forward.

The converse of the above theorem is not true as shown in the following example.

Example 3.3.

- (a) Let $X = \{a, b, c, d\}$ and $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}, \{a, c, d\}\}$. Then (X, τ) is a $\widetilde{T_{\alpha\delta}}$ -Space but not a $T_{3/4}$ -Space and $\widehat{T}_{3/4}$ -Space.
- (b) Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then (X, τ) is a $T_{\alpha\hat{g}}$ -Space but not a $\widetilde{T_{\alpha\delta}}$ -Space.

Theorem 3.4. For a topological space, (X, τ) the following conditions are equivalent,

- (a) (X, τ) is a $\widetilde{T_{\alpha\delta}}$ -Space.
- (b) Every singleton $\{x\}$ is either αg -closed (or) δ -open.

Proof: (a) \Rightarrow (b) Let $x \in X$. Suppose $\{x\}$ is not a αg -closed set of (X, τ) . Then $X - \{x\}$ is not a αg -open set. Thus $X - \{x\}$ is an αg -closed set of (X, τ) . Since (X, τ) is a $\widetilde{T_{\alpha \delta}}$ -Space, $X - \{x\}$ is an δ -closed set of (X, τ) , *i.e.*, $\{x\}$ is δ -open set of (X, τ) .

(b) \Rightarrow (a) Let A be an $\alpha\delta$ -closed set of (X, τ) . Let $x \in cl_{\delta}(A)$ by (ii), $\{x\}$ is either αg -closed $(\text{or})\delta$ -open.

Case (i): Let $\{x\}$ be αg -closed. If we assume that $x \notin A$, then we would have $x \in cl_{\delta}(A) - A$ which cannot happen according to Proposition 2.8. Hence $x \in A$.

Case (ii): Let $\{x\}$ be δ -open. Since $x \in cl_{\delta}(A)$, then $\{x\} \cap A \neq \varphi$. This shows that $x \in A$. So in both cases we have $cl_{\delta}(A) \subseteq A$. Trivially $A \subseteq cl_{\delta}(A)$. Therefore $A = cl_{\delta}(A)$ or equivalently A is δ -closed. Hence (X, τ) is a $\widetilde{T_{\alpha\delta}}$ -Space.

Theorem 3.5. In a $T_{\frac{3}{4}}$ -Space every $\alpha\delta$ -closed set is δ -closed.

Proof: Let X be $T_{\frac{3}{4}}$ —Space. Let A be $\alpha\delta$ -closed set in X. We know that $\alpha\delta$ -closed set is δg -closed. Since X is $T_{\frac{3}{4}}$ —Space, A is δ -closed.

4. SUPER- $\alpha\delta$ -CONTINUOUS AND STRONGLY- $\alpha\delta$ -SUPER-IRRESOLUTE FUNCTIONS

Definition 4.1. A function $f:(X, \tau) \to (Y, \sigma)$ is called $\alpha\delta$ -continuous if $f^{-1}(V)$ is $\alpha\delta$ -closed set in (X, τ) for every closed set V of (Y, σ) .

Definition 4.2. A function $f:(X, \tau) \to (Y, \sigma)$ is called Super-αδ-continuous if $f^{-1}(V)$ is αδ-closed set in (X, τ) for every δ-closed set V of (Y, σ) .

Definition 4.3. A function $f:(X, \tau) \to (Y, \sigma)$ is called $\alpha\delta$ -irresolute if $f^{-l}(V)$ is $\alpha\delta$ -closed set in (X, τ) for every $\alpha\delta$ -closed set V of (Y, σ) .

Definition 4.4. A function $f:(X, \tau) \to (Y, \sigma)$ is called Strongly- $\alpha\delta$ -super-Irresolute (briefly, $S\alpha\delta$ -super-Irr) if $f^{-1}(V)$ is δ -closed set in (X, τ) for every $\alpha\delta$ -closed set V of (Y, σ) .

Clearly, $f:(X, \tau) \to (Y, \sigma)$ is $\alpha\delta$ -continuous (resp. $\alpha\delta$ -irresolute) if and only if $f^{-1}(V)$ is $\alpha\delta$ -open in (X, τ) for every open (resp. $\alpha\delta$ -open) set V of (Y, σ) .

Theorem 4.4. For a function $f:(X, \tau) \to (Y, \sigma)$, we've the following implications.

- (a) Every super-continuous is $\alpha\delta$ -continuous
- (b) Every $\alpha\delta$ -continuous is $\delta\hat{g}$ -continuous (resp. δg -continuous, δg^* -continuous, $g\delta s$ -continuous, δgs -continuous, $\alpha\hat{g}$ -continuous, αg -continuous, gs-continuous, gs-continuous).

Proof: Obvious.

None of the implication is reversible as shown by the following example.

Example 4.5.

- (a) Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity. Then $f^{-1}(\{b, c\})$ is $\alpha \delta$ -continuous but not a Supercontinuous. Since $f^{-1}(\{b, c\})$ is not a δ -closed set in (X, τ) .
- (b) Let $X = \{a, b, c, d\}$ and $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}, \{a, c, d\}\}$ and $\sigma = \{X, \varphi, \{d\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity. Then $f^{-1}(\{a, b, c\})$ is $\delta \hat{g}$ -continuous, δg -continuous, δg -continuous, σg -continuous, σg -continuous, σg -continuous, σg -continuous and σg -continuous but not a σg -continuous. Since σg -continuous are σg -continuous but not a σg -continuous.

Theorem 4.6. If $f:(X, \tau) \to (Y, \sigma)$ is αg -continuous and δ -closed function, then f(A) is $\alpha \delta$ -closed set in (Y, σ) for every $\alpha \delta$ -closed A of (X, τ) .

Proof: Let A be $\alpha\delta$ -closed in X. Let $f(A) \subset V$, where V be any αg -open in Y. Since f is αg -continuous, then $f^{-1}(V)$ is αg -open in X and $A \subset f^{-1}(V)$. Then we've $cl_{\delta}(A) \subset f^{-1}(V)$. and so $f(cl_{\delta}(A)) \subset V$. Since f is δ -closed, $f(cl_{\delta}(A))$ is δ -closed in Y and hence $cl_{\delta}(f(A)) \subset cl_{\delta}(f(cl_{\delta}(A))) \subset V$. This shows that f(A) is $\alpha\delta$ -closed in Y.

Theorem 4.9. Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (z, \eta)$ be two functions. Then

- (a) If f is $\alpha\delta$ -continuous and g is continuous, then $g \circ f$ is $\alpha\delta$ -continuous.
- (b) If f is Super- $\alpha\delta$ -continuous and g is super-continuous, then $g \circ f$ is $\alpha\delta$ -continuous.
- (c) If f is $\alpha\delta$ -irresolute and g is $\alpha\delta$ -irresolute , then $g \circ f$ is $\alpha\delta$ -irresolute
- (d) If f is $\alpha\delta$ -irresolute and g is super- $\alpha\delta$ -continuous, then $g \circ f$ is $\alpha\delta$ -continuous.

Proof:

- (a) Let V be a closed set in (Z, η) . Since g is continuous, $g^{-1}(v)$ is closed set in (Y, σ) . Since f is $\alpha\delta$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\alpha\delta$ -closed set in (X, τ) . Therefore $g \circ f$ is $\alpha\delta$ -continuous.
- (b) Let V be a closed set in (Z, η) . Since g is Supercontinuous, $g^{-1}(v)$ is δ -closed set in (Y, σ) . Since f is Super- $\alpha\delta$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\alpha\delta$ -closed set in (X, τ) . Therefore $g \circ f$ is $\alpha\delta$ -continuous.
- (c) Let V be $\alpha\delta$ -closed set in (Z, η) . Since g is $\alpha\delta$ -irresolute, $g^{-1}(v)$ is $\alpha\delta$ -closed set in (Y, σ) . Since

f is $\alpha\delta$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\alpha\delta$ -closed set in (X, τ) . Therefore $g \circ f$ $\alpha\delta$ -irresolute.

(d) Let V be δ -closed set in (Z, η) . But every δ -closed set is $\alpha\delta$ -closed set. Since g is Super- $\alpha\delta$ -continuous, $g^{-1}(v)$ is $\alpha\delta$ -closed set in (Y, σ) . Since f is $\alpha\delta$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\alpha\delta$ -closed set in (X, τ) . Therefore $g \circ f$ is $\alpha\delta$ -irresolute.

Theorem 4.10.

- (a) Every $S\alpha\delta$ -super-Irr map is $\alpha\delta$ -irresolute.
- (b) Every $S\alpha\delta$ -super-Irr map is Super- $\alpha\delta$ -continuous.
- (c) Every $\alpha\delta$ -Irresolute function is Super- $\alpha\delta$ -Continuous.

Proof: (a) Let V be $\alpha\delta$ -closed set in (Y, σ) . Since f is $S\alpha\delta$ -super-Irr, $f^{-1}(V)$ is δ -closed set in (X, τ) . But every δ -closed set is $\alpha\delta$ -closed. Hence $f^{-1}(V)$ is $\alpha\delta$ -closed set in (X, τ) . Thus the function f is $\alpha\delta$ -irresolute.

(b) Let V be δ -closed set in (Y, σ) . Since f is $S\alpha\delta$ -super-Irr, $f^{-1}(V)$ is δ -closed set in (X, τ) . But every δ -closed set is $\alpha\delta$ -closed. Hence $f^{-1}(V)$ $\alpha\delta$ -closed set in (X, τ) . Thus the function f is Super- $\alpha\delta$ -continuous map

(c) Let $f: X \to Y$ be $\alpha\delta$ -Irresolute, Let V be any δ -closed set in Y. Then by *Remark 2.2.* V is $\alpha\delta$ -closed set. Since f is $\alpha\delta$ -Irresolute, Then inverse image $f^{-1}(V)$ is $\alpha\delta$ -closed set in X. Therefore f is Super- $\alpha\delta$ -continuous.

The converse of the above theorem is not true as shown in the following example.

Example 4.11. Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity. Then $f^{-1}(\{b, c\})$ is $\alpha \delta$ -irresolute (resp. Super- $\alpha \delta$ -continuous) but not a $S\alpha \delta$ -super-Irr. Since $f^{-1}(\{b, c\})$ is not a δ -closed set in (X, τ) .

Example 4.11. Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{b\}, \{c\}, \{b, c\}, \{c, a\}\}$ and $\sigma = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity. Then $f^{-1}(\{c\})$ is Super- $\alpha\delta$ -continuous but not a $\alpha\delta$ -Irresolute. Since $f^{-1}(\{c\})$ is not a $\alpha\delta$ -closed set in (X, τ) .

Theorem 4.12. If a map $f:(X, \tau) \to (Y, \sigma)$ be a $\alpha\delta$ -Irresolute and δ -closed. Then A is $\alpha\delta$ -closed in (X, τ) implies f(A) is $\alpha\delta$ -closed in (Y, σ) .

Proof: Let A be a $\alpha\delta$ -closed set in (X, τ) . Let U be any αg -open subset of (Y, σ) such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$. Since f is an $\alpha\delta$ -Irresolute map, then $f^{-1}(U)$ is a αg -open subset of (X, τ) . Since A is $\alpha\delta$ -closed and $f^{-1}(U)$ is a αg -open subset of (X, τ) containing A, then $cl_{\delta}(A) \subseteq f^{-1}(U)$.

That is $f(cl_{\delta}(A)) \subseteq U$. Now $cl_{\delta}(f(A)) \subseteq cl_{\delta}(f(cl_{\delta}(A))) = f(cl_{\delta}(A)) cl_{\delta}(A) \subseteq U$, since f is a δ -closed map. Hence f(A) is a $\alpha\delta$ -closed subset of (Y, σ) .

Theorem 4.13. Let $f:(X, \tau) \to (Y, \sigma)$ be a function

- (a) If $\alpha\delta$ -Irresolute and X is a $\widetilde{T_{\alpha\delta}}$ -Space, then f is δ -Irresolute.
- (b) If $\alpha\delta$ -Continuous and X is a $\widetilde{T_{\alpha\delta}}$ -Space, then f is Super-Continuous.

Proof: (a) Let V be δ -closed in Y. Since f is $\alpha\delta$ - Irresolute, $f^{-1}(V)$ is $\alpha\delta$ -closed set in X. Since X is $\widetilde{T_{\alpha\delta}}$ -Space, $f^{-1}(V)$ is δ -closed set in X. Hence f is δ -Irresolute.

(b) Let V be closed in Y. Since f is $\alpha\delta$ -Continuous, $f^{-1}(V)$ is $\alpha\delta$ -closed set in X. Since X is $\widetilde{T_{\alpha\delta}}$ -Space, $f^{-1}(V)$ is δ -closed set in X. Hence f is Super-Continuous.

Theorem 4.14. Let $f: X \to Y$ be a function, then the following are equivalent,

- (a) The function f is $\alpha\delta$ -continuous
- (b) For each point $x \in X$ and each open set V of Y with $f(x) \in V$, there exists a $\alpha\delta$ -open set U of X such that $x \in U$, $f(U) \subset V$.

Proof:(a) \Rightarrow (b) Let $f(x) \in V$ Then $x \in f^{-1}(V) \in \alpha \delta O(X)$, Since f is $\alpha \delta$ -continuous. Let $U = f^{-1}(V)$ Then $x \in X$ and $f(U) \subset V$.

(b) \Rightarrow (a) Let V be an open set of Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exists an $\alpha\delta$ -open set U_x of X such that $x \in U_x$ and $f(U) \subset V$. Now $x \in U_x \subset f^{-1}(V)$ and $f^{-1}(V) = \bigcup U_x$. Then $f^{-1}(V)$ is $\alpha\delta$ -open set in X. Therefore, f is $\alpha\delta$ -continuous.

5. REFERENCES

- [1] Abd El-Monsef M. E, Rose Mary S and Lellis Thivagar M, On $\alpha \hat{g}$ -closed sets in topological spaces
- [2] Arya S. P and Nour T, Characterizations of s-normal spaces, Indian Pure Appl. Math., 21(8)(1990) 717-719.
- [3] Bhattacharrya.P and Lahiri B. K, Semi-generalized closed sets in topology, Indian J. Math., 29(1987) 375-382.

- [4] Devi R, Maki H and Balachandran K, Generalized αclosed sets in topology, Bull. Fukuoka Univ. Ed Part III, 42, pp. 13-21,(1993).
- [5] Devi R, Maki H and Balachandran K, Associated topologies of generalized α-closed sets and α generalized closed sets, Mem.Fac.Sci.Kochi Univ. Ser. A Math. 15(1994), 51–63.
- [6] Dontchev. J, Arokiarani. I and Balachandran. K, On generalized δ-closed sets and almost weakly Hausdorff spaces, O & A in General Topology 18 (2000), 17-30.
- [7] Dontchev.J and Ganster.M, On δ -generalized closed sets and $T_{\frac{3}{4}}$ -spaces, Mem. Fac.Sci. Kochi Univ Ser. A Math. 17(1996), 15-31.
- [8] Jin Han Park, Dae Seob Song, Reza Saadati, On generalized δ -semiclosed sets in topological spaces Chaos, Soliton and Fractals 33(2007) 1329-1338.
- [9] Lellis Thivagar M, Meera Devi B and Hatir E, $\delta \hat{g}$ closed sets in topological spaces, Gen. Math Notes, 1(2)(2010), 17-25.
- [10] Levine N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, pp 36-41, (1963).
- [11] Levine N, Generalized closed sets in topology, Rend. Circ. Math. Palermo, (2) 19, pp. 89-96; (1970).
- [12] Mashhour A. S, Abd El Monsef M. E, and El Deep S. N, On precontinuous and weak precontinuous mappings, Proc. Math.Phys.Soc. Egypt (1982), no. 53, 47–53.
- [13] Njastad O, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961–970.
- [14] Noiri T, *On δ-continuous functions*, J. Korean Math. Soc. 16 (1979/80), no. 2, 161-166.
- [15] Park J. H, Lee B. Y and Son M. J, On δ -semiopen sets in topological space, J. Indian Acad. Math. 19, (1997), 59-67.
- [16] Park J. H,Song D.S and Lee B.Y, On δgs-closed sets and almost weakly Hausdorff spaces, in press.
- [17] Pawlak Z, Rough sets: Theoretical aspects of reasoning about data. System theory, knowledge engineering and problem solving, vol.9. Dordrecht: Kluwer; 1991.
- [18] Velicko N. V, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103–118.