
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

16

A Time-minimization Dynamic Job Grouping-

based Scheduling in Grid Computing

Manoj Kumar Mishra
School of Comp. Engg.

KIIT UNIVERSITY,
Bhubaneswar, Odisha, India

Prithviraj Mohanty
School of Comp. Engg.

KIIT UNIVERSITY,
Bhubaneswar, Odisha, India

G. B. Mund

School of Comp. Engg
KIIT UNIVERSITY,

Bhubaneswar, Odisha, India

ABSTRACT

Grid computing is the novel framework that offers a flexible,

secure and high performance computing, on demand for

solving high compute-intensive applications with large

number of independent jobs. However, user jobs developed

for grid might be small and of varying lengths according to

their computational needs and other requirements. Certainly,

it is a real challenge to design an efficient scheduling strategy

to achieve high performance in grid computing. But there

exists some grouping based job scheduling strategy that

intends to minimize total processing time by reducing

overhead time and computation time, and on the other hand

maximizing resource utilization than without grouping based

scheduling. The purpose of the study is to analyze and achieve

better performance by extending the concept of grouping

based job scheduling. Therefore, this paper proposes “A

Time-Minimization Dynamic Grouping-Based Job Scheduling

in Grid Computing” with the objective of minimizing

overhead time and computation time, thus reducing overall

processing time of jobs. The work is verified through various

observations made in different simulated grid environments.

The results obtained shows that the proposed grouping-based

scheduling algorithm is on average, comparable to, or even

better than, other grouping based scheduling algorithms.

Keywords—
Grid computing; Job grouping; Job scheduling

1. INTRODUCTION
The idea of Grid Computing was first envisioned by Leonard

Kleinrock in 1969, when described: “like electric and

telephone utilities, spread of computer utilities will service

individual homes and offices across the country” [1, 2]. The

term “Grid” was used during mid-90’s to symbolize a

proposed distributed computing infrastructure for advanced

science and engineering projects [3]. The word “Grid” refers

to systems and applications that integrate resources and

services distributed across multiple control domains.

Computational grids provide large-scale resource sharing,

such as personal computers, clusters, MPPs, Data Base, and

online instructions, which may be cross-domain, dynamic and

heterogeneous [4]. If one considers the internet as a network

of communication, grid computing can be considered a

network of computation [5]. Grid offers a next generation

high performance computing platform analogous to a power

Grid that supplies consistent, pervasive, dependable,

transparent access to electricity irrespective of where it is

generated [6]. And its development involves sharing,

exchange, discovery, aggregation, selection and efficient

management of resources distributed across multiple

administrative domains, organizations and enterprises. This

enables the users to compute large scale applications in

science, engineering and business, by utilizing the increased

access to geographically spread and dynamically available

processing powers, storage devices, data, computational

services, scientific instruments, and other computational

resources. This paper defines “Grid Computing” as an

abstraction that provides a high performance computing

environment by offering transparent, scalable, economical and

authorized resources to the registered users on demand, hiding

most of its underlying details and complexities from the

outside world.

 To realize the full potential of grid computing, grid

middleware needs to support various services such as security,

uniform access, resource management, job scheduling,

application composition, economic computation, and

accounting. Though, a range of essential services are to be

integrated to accomplish a real grid environment, among them

scheduler is one of the most critical service component of the

grid middleware. Since, it is responsible for selecting best

suitable machines or computing resources with a goal of

maximizing resource utilization and scheduling jobs, in a

manner that meets user and application requirements, in terms

of overall processing time, processing cost or any other

constraints imposed upon by the user. Various scientific and

business organizations tend to have increased number of

applications with large number of independent jobs,

scheduling of these jobs onto the grid is significantly more

difficult and complicated than scheduling applications in

traditional supercomputer because of the heterogeneous

,dynamic and diverse nature of the Grid resources. Therefore,

optimal scheduling of various jobs onto grid is not easy to

attain, since optimal scheduling of heterogeneous jobs in

heterogeneous environments is known to be NP-Complete

problem [7]. In order to ensure the efficiency and better

performance of job scheduling, an effective and near optimal

scheduling mechanism has to be developed and implemented

to cater the needs of the grid users. In traditional parallel

computing system, the communication cost is considered to

be insignificant as homogeneous computing nodes are

interconnected in a geographically small area network for

instance LAN [8]. However, the grid resources are

heterogeneous, dynamic, geographically scattered and may be

connected over high latency networks. This results significant

communication cost and can’t be ignored. Therefore, the

communication cost has become a decisive factor of

performance measurement and must be taken into

consideration while scheduling jobs onto the grid. When a job

is submitted to a grid resource for execution, it is transmitted

over the networks incurring a communication cost. An

application with large number of fine-grained jobs when

submitted individually to the grid resources over the networks

incurs a communication overhead that is more than the total

computation time of each job at the resource. Moreover, this

also leads to poor utilization of communication network and

uneven utilization of the resources. Therefore, jobs can be

grouped at the scheduling level according to the processing

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

17

capabilities of the available resources, and proceed with the

job scheduling and deployment activities [9]. This grouping

based job scheduling strategy reduces communication time

resulting increase in computation-communication ratio

(CCR), which encourages distributing grouped jobs for

processing on remote resources [10]. But it is yet to be tested

where jobs may be fine-grained but their length differs

considerably from one another. And scheduling can be done

when one resource or more than one resource is available at

the time of scheduling. Hence, scheduling should be

addressed by developing a grouping strategy suitable to both

type of grid environment. The motivation of this paper is to

develop an enhanced grouping based job scheduler and grid

resource allocation algorithm that must be efficient and

effective in reducing the total processing time of jobs.

The rest of this paper is organized as follows. Section 2

analyzes related works in the field of parallel and distributed

memory system and grid computing systems. Section 3

describes the grid system and scheduling components

(broker). Section 4 presents proposed dynamic grouping-

based job scheduling model. Section 5 analyses simulation

results made through various observations and section 6 gives

conclusion and future work and lastly, the references.

2. RELATED WORK
In this section, some of the representative research works on

job scheduling in parallel and distributed computing systems

and Grid computing environment have been reviewed to

explore the relevance of these works.

Sarkar’s algorithm (1989), addresses the scheduling

problem of a given directed acyclic weighted graphs (DAG’s)

on unbounded number of completely connected processors.

Sarkar proposed a two-step method for scheduling with

communication. (1) Perform clustering i.e. mapping of the

tasks of a DAG onto clusters, with the constraint that all tasks

in a cluster must execute in the same processor. (2) Merge and

schedule the clusters when the number of processors is

smaller than the number of clusters. Sarkar’s primary goal is

the minimization of the parallel time cost function on an

unbounded number of processors[11]. Likewise, in scheduling

Directed Acyclic Graph (DAG) on multiprocessors, as

reported in Gerasoulis and Yang (1992), tasks are grouped

into clusters to reduce communication and dependencies

among them. The intention of this clustering is to reduce the

inter-task communication and as a result, time for parallel

execution is minimized [12]. The paper by Yang and

Gerasoulis (1994) has addressed the scheduling problem of a

given directed acyclic weighted graphs (DAG’s) on

unbounded number of completely connected processors. The

parallel time in executing a clustered DAG is determined by

the critical path of the scheduled DAG, called dominant

sequence (DS), which is different from the critical path of the

clustered DAG. The main idea behind the DSC algorithm is to

perform a sequence of edge zeroing steps with the goal of

reducing the length of a DS at each step. The objective of this

scheduling is to allocate tasks onto the processors and then

order their execution so that task dependence is satisfied and

parallel time is minimized. GLB by Radulescu, A. and van

Gemund, A. (1998) describes a new approach for cluster

mapping step, called Guided Load Balancing scheduling

algorithm for distributed-memory systems and is intended as a

second step in the multi-step class of scheduling algorithms.

In such a method, three steps can be defined: (1) clustering,

(2) cluster mapping and (3) task ordering.). GLB is a compile

time scheduling algorithm for distributed-memory systems

[13]. In distributed memory systems, tasks are also grouped

together to reduce communication and processing time as

presented in James, Hawick and Coddington (1999) [14]. In

grid computing, there are some works on grouping based job

scheduling as discussed below. The work in Buyya, Date, et.

al. (2004), attempted to reduce overhead time while

scheduling large number of fine-grained jobs onto remote

resources for analyzing massive data generated in medical

science to study human brain activity. In order to eliminate

the overhead associated with fine-grained tasks, coarse-

grained jobs or meta-jobs are created by gathering a suitable

number of jobs at the user-level, and submitting these

gathered jobs to the scheduler for deployment [15]. The

scheduling strategy in [15] creates significant programming

burden on the application developer. The shortcoming of the

approach in [15] encourages the authors N. Muthuvelu,

Junyan Liu et. al. (2005) to suggest of creating course grained

jobs at the scheduling level rather than at programming level.

The approach is to group the jobs at the scheduling level

according to the processing capabilities of the available

resources reducing the transmission overhead and maximizing

the resource utilization [16]. The paper by Ng Wai Keat, Ang

Tan Fong, (2006) investigates the use of bandwidth-awareness

and job grouping concept in a scheduling framework to

improve the performance of job scheduling. The Bandwidth-

aware scheduling schedules the jobs by considering both

computational capabilities and the communication capabilities

of the resources. It uses network bottleneck bandwidth of

resources to determine the priority of each resource. The

scheduler selects the first resource according to its priority

and groups independent fine-grained jobs together based on

chosen resources processing capability. These job groups are

formed to maximize the resource utilization and to reduce

network latency [17]. In Quan Liu, Yeqing (2009) Liao, the

fine-grained jobs are grouped into forming coarse-grained

jobs and allocated to the available resources according to their

processing capabilities in MIPS and bandwidth in Mb/s. The

grouping algorithm integrates Greedy algorithm and FCFS

algorithm to improve the processing of Fine-grained jobs.

Algorithm maximizes the resource utilization and reduces the

total processing time [18]. The work by M.K.Mishra, R.

Sharma, et. al. (2010) mainly focuses on grouping based job

scheduling taking into account memory constraint, expected

execution and transfer time at the job level rather than at

group level in grid system. It supports dynamic grid

environment and reduces processing and communication time.

It is low cost algorithm and complexity is bounded by

О(nlogn) [19].

 This study focuses and evaluates an extension to dynamic

job grouping based scheduling, which aims to reduce overall

processing time of applications by minimizing the job

allocation overhead and computation time.

3. THE GRID SYSTEM: A GENERIC

VIEW

3.1 Grid-Model
A generic grid computing system infrastructure G in this work

is assumed to be the collection of R heterogeneous resources

and participation of set of U users connected over high-speed

interconnection networks. More formally, the collection of

resources is represented as {R1, R2…, Rr}. Each resource Ri

owns a set of computing nodes, represented as R= {C1, C2…,

Cc} and belongs to a local domain, i.e. a LAN (Local Area

Network). Each computing node Cj is composed of a number

of processors Pk and represented as C= {P1, P2…, Pp}.Where

i≥ 1, j≥ 1and k≥ 1. Hence, the resulting grid resource can be a

computing system having a single processor, shared memory

multiprocessors (SMP)/ Parallel Processing Systems (PPS), or

a distributed computing system/distributed memory cluster of

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

18

computers. Multiprocessor systems are defined as computer

systems that have several processors sharing a single set of

peripherals including the memory. These processors are not

autonomous. Distributed Computing Systems, consist of

several autonomous processors having their own operating

system, with their own local policies. A single processor

system or SMP type grid resource provides time-shared

environment and the distributed memory multiprocessor

systems such as clusters provides a space-shared environment.

A cluster/multiprocessor system consists of P processors and

let the computation speed of processor j is equal to mj units. A

common unit for measuring capacity can be specified in terms

of the rating of standard benchmarks such as million of

instruction per second (MIPS) and SPEC. The total capacity

of a computing node is defined as Ci in 



p

1k k
PMIPS

 and that of Grid resource is defined as Ri in 



c

1j j
CMIPS

The Grid Scheduler: The main objective of a scheduler in

most systems often is to design a scheduling policy for

mapping of submitted jobs to the resources with the goal of

maximizing throughput, efficiency, resource utilization,

minimizing job completion times, communication overhead

and cost or both time-cost etc. In order to achieve the above

mentioned objective in high performance computing

environment like Grid should provide a comprehensive and

versatile environment and a well defined set of steps to tackle

the process of scheduling [20], which is described in the

following steps:

Resource discovery: One of the most and first important

goals of the scheduler is to identify a list of authorized

resources that can be made available to the registered users.

Grid Information Service: Most Scheduling algorithms

interact with grid information service (GIS) to obtain the

initial list of authorized resources, called resource pool. Some

of these resources might be meeting the certain minimum

requirements of the application such as hardware platform,

operating system, RAM or secondary storage space, etc.

Resource selection: Once the information regarding the

available resources in the resource pool is obtained, the next

task of the scheduler is to select those resources that are

expected to meet time, cost or both time-cost and any other

additional constraints enforced by the user. To facilitate user’s

requirements the scheduler has to gather dynamic information

about resource accessibility, system workload, network

performance, and price of the resources etc. Economic

environment, like GRACE (Grid Architecture for

Computational Economy) [21] offers a set of trading

protocols, which enables users and resource owners to

negotiate the cost according to the expected starting time, the

usage period, the amount of memory or storage requirement

etc.

Job scheduling: The job scheduling problem is defined as the

process of making decision for scheduling set of independent

jobs onto best possible matching dynamic resources and

services that satisfies requirements of jobs and the constraints

imposed by users. In grid computing environment, this is the

stage where jobs of applications are allocated to selected

physical resources based on user’s requirement, resource

availability and grid facilities. The scheduling in grid

environment has to satisfy a number of constraints on

different problems. So, optimal scheduling is a NP-complete

problem [7] and different heuristics may be used to reach an

 Fig 1: Resources connected across network

(R denotes combined resources in MIPS available in a cluster)

Fig 2: The Grid Model

optimal or near-optimal solution [22]. In user’s point of view,

the objective of the scheduling can be classified into three

different categories as minimizing processing time or

minimizing cost or both and similarly in resource’s point of

view, goal of resource allocation is to optimize the use of

resources, maximize the revenue or both. For example, the

Nimrod/G broker [23] permits the users to specify a budget

constraint, a deadline constraint, or both, and also it

incorporates three adaptive scheduling algorithms for cost

 - - - - - -

 R R

 R

 R

The Internet

SMP
(Cluster)

Cluster

 (SMP)

One

processor

system

 INTERNET

GRID BROKER

Rr R1

R

1

 RESOURCE LAN

C1 Cc

P1 Pp P1
Pp

USER

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

19

optimization, time optimization, or conservative time

optimization, within given time and budget constraints.

Monitoring and reliability: Geographically diverse and

dynamic nature of grid makes it difficult to reach the

objectives where environmental conditions are subject to

unpredictable changes such as system or network failures,

system performance degradation, addition or deletion of

machines, variations in the cost and computing capability of

resources, etc. That is why, it is most important to monitor the

tasks running on the nodes of the grid over time and to check

reliability factors.

Designing of the Scheduler: Grid scheduling problem can

formally be represented by a set of the given jobs, user and

resources. Designing of the scheduler involves matching of

application needs of the users with availability of the suitable

resources and addressing the concern of the quality of the

match. The scheduler design should be meet some predefined

and desired objectives, ensuring the quality of service.

Problem Formulation: Applications submitted to the grid

within a time period T consists of several jobs with different

characteristics denoted as J = {J1, J2 ,..., Jj}, which do not

require communication with each other and, that belong to a

user U = {U1,U2 ,...,Uu},where j≥1and u≥1 . Each job can

necessarily be partitioned into smaller tasks which can run

independently in parallel to other tasks and denoted by Tlq,

that is, Jl = {Tl1, Tl2, Tl3, .. ., Tlt}. Where l specifies the job-id

and is greater than 1, and t ≥1. Applications developed for

grid environment can be described by a set of Jl independent

jobs with associated workloads, expressed in millions of

instructions (MI) and a set of R resources with associated

speed, expressed in million instructions per second. In this

case, the jobs are grouped according the ability of the remote

resources. Also, matching job groups are to be dispatched

onto the suitable resources, with the objective of minimizing

overhead, processing time of the jobs and maximizing

resource utilization. The localized communication cost among

the tasks at the resource is assumed to be insignificant in

comparison to grid. Thus an instance of the problem consists

of a registered user, number of jobs, resources, MI of the jobs

and MIPS of the resources.

4. DYNAMIC GROUPING- BASED

JOBSCHEDULER
The job scheduler is a service that resides in a user machine as

depicted in figure 2 and figure 3. Therefore, entire grouping–

based scheduling activity can be summarized in the following

steps.

Step-1: When the user creates a list of Gridlets or jobs in the

user machine, these jobs are sent to the job scheduler for

scheduling activity.

Step-2: The job scheduler obtains information about the

available registered resources from the Grid Information

Service (GIS).

Step-3, 4: Based on this information, the scheduler opts for

the resources in line with resource selection strategy.

Step-4, 5: The job scheduler prepares job-groups according to

the characteristics of selected resources based on the job

grouping strategy. The size of a grouped job depends on the

processing requirement of individual jobs in the group

expressed in Million Instructions. The scheduling process is

performed iteratively until jobs and resources are available.

Step 6: The grouped jobs are sent to the dispatcher as soon as

the jobs are put into various groups based on the schedule

made during the matching of jobs with resources.

Step 7: The dispatcher then forwards the job-groups to their

respective resources for computation. The dispatcher also

Fig 3: Grouping-based job scheduling model

collects the results of the processed jobs from the resources

through input ports.

The resource selection along with job-grouping by the

scheduler is based on some efficient and low cost strategy

agreed upon by both the users and resource providers as

described in the following section. The grid structure is

illustrated in figure 2 and figure 3 depicts the design of the job

scheduler and its interactions with other entities.

4.1 Job Grouping and Resource Selection

Strategy

Grouping of jobs in this paper is based on a resource selection

and job grouping strategy. Jobs are grouped according to the

ability of the selected resource. Therefore, during job

grouping the following conditions must be satisfied:

 1 Chunksize*IPSResource_M_MIGroupedjob 

 2 1k where,
k

1i i
JOB_MIGroupedjob 




Where, MI (Million Instruction) is job’s required

computational power, MIPS (Million Instruction per Second)

is processing capability of the resources and Chunk_Size is

user defined time, used to measure total amount of

accumulated MI of jobs that can be completed within a

 1 2

 222

Gridlet

Scheduler

 3

4

4

 5

 6

 7

 7

 Grid Information Service

User input

Resource Information Table

Gridlets

Grouping strategy

Resources in descending order

Grid resource 1

 Gridlet group 1

Grid resource 2

 Gridlet group 2

Grid resource r

 Gridlet group r

Gridlets in descending

order

 Gridlet MI Resource MIPS Chunk size

Resource MI

Grid Information Collector

Dispatcher

Total no of jobs

Average MI rate of job

MI deviation

Percentage/without any

particular Deviation

Overhead Time

Grid resource 1 Chunk size 1

 Grid resource 2 Chunk size 2

Grid resource r Chunk size r

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

20

specific time window are put together into a group, much like

granularity size defined in [9].

To evaluate the total processing time of an application, an

analytical performance model is defined in terms of overhead

time and computation time of the grouped jobs. Let TCTG, be

the computation time, and TOHT be the overhead time of a

Groupedjob.

Therefore,

 




k

1i
3

 i
tTCTGm

where ti denotes the computation time of jobj of mth job group,

k is the number jobs in the group and executing at resource Rr

satisfying equation 1. The overhead time TOHT of a job group

is the summation of communication time and startup time.

Communication time TCOMM is equal to time taken to submit a

group job to resources plus time taken to receive processed

Gridlet(s). Likewise, startup time Ts is the sum of time taken

by the scheduler for Gridlet Grouping and the time that

elapses between the arrival of the grouped job at the resource

and execution start time of the grouped job i.e. local

scheduling. The overhead time TOHT is incurred only once at

the group level rather than job level, i.e. in contrast to non

grouping based job scheduler.

Hence, overhead time TOHT for mth job group is

 4 TTT smCOMMmOHTm 

 and processing time of mth grouped job is,

 5 TTT OHTmCTGmPTGm 

where m≥1. Thus, total processing time of all grouped job is,

 6
n

1m
TT PTGTOTAL 


 m

Where n is the number of job groups

and  7 T/T 1OHTmCTGm 
Eq. (7) specifies that overhead time of the grouped jobs

should not exceed computation time of the grouped jobs.

These are the main parameters to be evaluated to analyze the

performance a job scheduler.
4.2 The Grouping Strategy
The resources and jobs are sorted out in descending order of

their processing power and job length respectively. The

resources are taken one after another in FCFS order from the

reverse sorted resource list. Once a resource is selected in this

manner, jobs are added into job group according to the

processing capability of this resource by alternatively taking

jobs from front end i.e. job with higher length and then rear

end of the job list i.e. job with smaller length. It should be

noted that the front end and rear end pointers are updated to

point to the next job in the list. While grouping the jobs taken

in order of the grouping strategy from the job list, the above

strategy falls into one of the two cases given below.

Case1. At some stage in grouping, if given condition in eq. 1

fails, while adding a job into the group from front end of the

job list, then it is removed from the group and if possible jobs

are taken from the rear end of the list till it satisfies the eq. 1.

Case2. If condition in eq. 1 fails while adding a job from rear

end of the job list during the grouping operation, then it stops

grouping for that resource removing the last job that was

added and sends the job group to the dispatcher. Then, it takes

next highest resource to perform another job grouping. The

above job grouping process is repeated for each resource

taken in given order as long as either resources or jobs exist.

Fig 4 presents a grouping example.

The purpose of this grouping strategy is as follows.

1) To reduce the overhead time.

2) To maximize number of jobs into the group by taking

highest computational resource.

3) To start the grouping process with the addition of a job that

involves bigger computational need.

4) To ensure a well combination of bigger and smaller jobs

added into the group.

Example:

The proposed job grouping and scheduling algorithm

presented next is illustrated through an example. Figure 4

demonstrates an example of job grouping and scheduling

scenario where the jobs and resources are created randomly to

imitate grid environment. Each job is represented with its

JOB_ID and corresponding MI. Similarly each of 5 resources

taken is associated with its RESOURCE_ID and

corresponding MIPS. These jobs and the resources are sorted

out in descending order of their MI and MIPS respectively.

 In this example 15 user jobs with varying processing

requirements (MI) are grouped into five job groups according

to the processing capabilities (MIPS) of the available

resources and the Chunk_size. Resource MI is calculated as:

RMI=MIPS*Chunk_Size and the Chunk_Size is taken as 10.

So, the first job-group, i.e. GROUPED_JOB1 is created for

the resource with highest MIPS i.e. RESOURCE_ID 3 and

MIPS of 30, which is equivalent to MI of 300 taken in FCFS

order from the sorted resource list. Before grouping, the job

group is initialized to zero. The jobs are added into according

to the grouping strategy as mentioned and (the first job is

always taken from the front end of the reverse sorted job list

i.e. with job-ID 10 and MI 150 is added into the group and

total MI of the job group becomes 150, which is less than

resource MI of 300. The next is taken from the rear end of the

job list i.e. with job-ID 14 and MI of 2 and after adding it to

the job list, the total MI becomes 150+2=152, which is still

less than 300. Next the third job i.e. the front job with job-ID

5 and MI of 120 is added making the job group

150+2+120=272, which is also less than 300. Then, the next

job is added from the rear end of the list i.e. job-ID 13 and job

MI of 5, which makes the job group 150+2+120+5=277, it is

also less than 300. Then, the fifth job with job-ID 1 and MI of

114 is taken for addition but it becomes greater than 300, so

the job is removed from the job group. If possible, the

remaining gap between the selected resource and the job

group is taken from the rear end only, till it satisfies the

equation 1 as mentioned in analytical modeling (the grouping

strategy). Therefore, the sequence of jobs with their ID and

MI added to job group-1 are <10,150>, <14, 2>, <5,120>,

<13, 5>, <15, 8> and <4, 10>. Similarly other job groups i.e.

group 2, 3, 4 and 5 are formed according to resources i.e. with

resource ID 5, 1, 4, and 2 taken in FCFS order from the

reverse sorted list and submitted to the respective resources

for computation.

Algorithm:

1. The scheduler receives the Gridlet_List, J [] created by

the user.

2. Sort the Gridlets according to their Gridlet_Length in

decreasing order.

3. The scheduler receives the Resource_List, R [].

4. Sort the Resources in decreasing order according to their

MIPS.

5. Set the resource number i to 1.

6. Get the MIPS of the Resource i.

7. Resource_MI=R[i] x Chunk_Size.

8. Set the Grouped_Gridlet_Length to zero.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

21

Fig.4 Grouping Strategy: Example

9. //head and tail pointer pointing to the first and last

Gridlets in the Gridlet_List respectively.

10. While (Grouped_Gridlet_Length is less than or equal to

Resource_MI, R[i] and there are ungrouped Gridlets in

the Gridlet_List and unused Resources in Resource_List

R[])

BEGIN

10.1 – Set Grouped_Gridlet_Length to the summation of

previous Grouped_Gridlet_Length and current

Gridlet_Length pointed by the head pointer.

- If Grouped_Gridlet_Length is less than or equals

to Resource_MI

- update the head pointer.

else

-Deduct the last Gridlet added to the

Grouped_Gridlet_Length.

- Set Grouped_Gridlet_Length to the

summation of previous

Grouped_Gridlet_Length and current

Gridlet_Length pointed by the tail pointer.

- If Grouped_Gridlet_Length is less than

Resource_MI

 - update tail pointer.

 - Go to step 10.1

else

-Deduct the last Gridlet added to

Grouped_Gridlet_Length.

-Stop grouping.

 END

11. Set a new ID for the Grouped_ Gridlet.

12. Submit the Grouped_Gridlet to Resource, R[i].

13 Increment i (for next resource in Resource-List) and goto

step 6.

14 Get the processing time and total Communication Time.

Display the details of the processed Grouped_Gridlet to

the user through GUI

Explanation:- After receiving the Gridlet list and resource

list, the Gridlets and resources are sorted according to the

decreasing order of their MI and MIPS respectively by the

JOB_ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MI 114 95 30 10 120 35 91 50 65 150 85 15 5 2 8

RESOURCE_ID 1 2 3 4 5

MIPS 20 10 30 15 25

JOB_ID
10 5 1 2 7 11 9 8 6 3 12 4 15 13 14

MI

150 120 114 95 91

85

65 50 35 30 15 10 8 5 2

Chunk Size=10

RMI=MIPS*10

RESOURCE_ID

RMI 200

1

300

3

GROUPED JOB_ID

MI 156 295

GROUPED JOB_1

GROUPED JOB_3

GROUPED JOB_4

 224

65

GROUPED JOB_5

 135

4

150

5

250

2

100

GROUPED JOB_2

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

22

scheduler (in step-1 to 4). Then, the resources are selected one

by one in FCFS order from the reverse sorted resource list and

their equivalent MIs are obtained by multiplying with the

given Chunk_Size (step-5 to 7). In step-8, and 9, the grouped

job MI is initialized to zero and the two pointers head and tail

are initialized to point to the first job and last job of the

Gridlet list respectively. The grouping strategy is

implemented in step 10 and 10.1. While adding and extracting

the jobs to and from the group, the head and tail pointers are

updated accordingly. In steps 11 and 12, the resource ID will

be set for the grouped Job and is sent to the corresponding

resource for computation. In step-13, next resource is selected

for another grouped job. The above grouping-based

scheduling of jobs continues till jobs and resources are

available. Steps 14 and 15 generate the report of processing

time and communication time after successful execution of

the grouped jobs.

5. SIMULATION ENVIRONMENTS

AND THE RESULTS
GridSim [24] has been used to create the simulation of grid

computing environment. The simulation is conducted in

heterogeneous environment to verify the improvement of

proposed model over other scheduling models. The

scheduling algorithm is implemented on a laptop with Core 2

Duo T5750 processor and 2 GB RAM. The inputs to the

simulations are total number of randomly generated jobs with

and without MI deviation percentage, resource MIPS,

different Chunk_Size and Gridlet processing overhead time.

Simulations are conducted using ten resources of different

MIPS, where each resource is composed of some machines

and each machine contains one or more processing elements

(PEs). Resources associated with different Chunk_Size such

as 10, 20, 30, 40, and 50 are taken for various observations.

The details of the resource list are shown in table-1.

The MIPS of each resource is computed as follows:

Resource MIPS=Total_PE*PE_MIPS, where Total_PE=Total

number of PEs at the resource, PE_MIPS=MIPS of PE.

In this simulation, the total processing time is obtained in sim

seconds by adding together the overhead time and

computation time of the each grouped Gridlet. The processing

overhead time of each grouped Gridlet is set to 10 seconds.

The purpose of this Simulation is to analyze and compare the

performance difference between two scheduling algorithms:

“A Dynamic Job Grouping-Based Scheduling” (DJGBS) and

proposed “A Time-Minimization Dynamic Job Grouping-

Based Scheduling algorithm” (TMDGBJS). The scheduling

and grouping strategy of DJGBS is adopted from [9].

Simulations:

A variety of simulation environments are created to study the

behavior and performance of the proposed grouping-based

scheduling approach in comparison to DJGBS in

heterogeneous and dynamic grid environments. The results

are obtained through various observations under all possible

grid environments with different Chunk_Size and different MI

percentage deviation. Also different Chunk_Size is taken for

different resources in Simulation Environment:-3. As is

illustrated total MIPS is the main factor to constrain the sizes

of coarse-grained jobs.

Simulation Environment:-1 (Jobs are created with

deviation of 20%)

In this simulation jobs are created with average MI of 200 and

deviation of 20%. Chunk_Size of 10, 20 and 30 are taken for

observation 1, observation 2 and observation 3 respectively to

analyze the processing time of submitted Gridlets.

Observation 4 is performed over different Chunk_Size to

study the processing time of two scheduling algorithm with

average MI of 200. Observation 5 is conducted to compare the

overhead time of two grouping based scheduling algorithms.

Table-1 Resource List

Resource

Name

No of Nodes,

(PEs)

Chunk_Size Resource

(MIPS)

R1 1,(4) 10-50,5 200

R2 1,(3) 10-50,10 150

R3 1,(5) 10-50,15 250

R4 2,(5&5) 10-50,20 500

R5 2,(3&3) 10-50,25 300

R6 2,(5&3) 10-50,30 400

R7 3,(4,3&3) 10-50,35 550

R8 3,(4,3&2) 10-50,40 450

R9 2,(4&3) 10-50,45 350

R10 3,(4,4&4) 10-50,50 600

Observation:-1
The Figure-4 given below represents the processing time of

two algorithms for the Chunk_Size 10 with different user jobs

of average MI 200 with deviation of 20%.

Observation:-2

The Figure-5 corresponds to the processing time of two

algorithms for the Chunk_Size 20 with different user jobs of

average MI 200 with a deviation of 20%.

Observation:-3
The observation in Figure-6 signifies the processing time of

two algorithms for the Chunk_Size 30 with different user jobs

of average MI 200 with deviation of 20%.

Observation:-4

The Figure-7 illustrates the behavior of TMDGJS and DJGBS

algorithms in terms of processing time for 160 Gridlets with

different Chunk_Sizes.

Observation:-5

The Figure-8 depicts a sample of overhead time incurred by

the two scheduling algorithms mentioned above for the

Chunk_Size of 30 with different jobs of average MI 200 and a

deviation of 20 %. The overhead time of 10 sim seconds is

considered for all the resources.

The performance gain of the proposed scheduling algorithm

over DJGBS in simulation environment 1 is from 4.5%

to18.3% in terms of processing time and from 4.2% to 8.4%

in terms of overhead time.

Fig 4: Processing time with Chunk_Size=10

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

User Jobs/Gridlets

P
ro

c
e
s
s
in

g
 T

im
e
(i
n
 s

im
 s

e
c
)

TMDGBJS

DJGBS

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

23

Fig 5: Processing time with Chunk_Size=20

Fig 6: Processing time with Chunk_Size=30

Fig 7: Processing time with different Chunk_Sizes

Fig 8: Overhead time with Chunk_Size=30

Simulation Environment: -2 (Jobs are created without any

particular deviation percentage)

This simulation is intended to analyze the performance of the

proposed scheduling algorithm and DJGBS in an environment

where all Gridlets are created without any particular deviation

percentage. Evaluation of processing time with respect to

different number of Gridlets for Chunk_Sizes 10, 20, 30 are

shown in observation 1, observation 2 and observation 3

respectively. Processing time for a fixed number of Gridlets

without any particular deviation for different Chunk_Sizes is

considered in observation 4. Similarly overhead time of both

the algorithms is presented in observation 5.

Observation:-1

The Figure-9 given below depicts the processing time of two

algorithms, where the jobs are created randomly without any

specific deviation percentage with Chunk_Size of 10.

Observation:-2

The Figure-10 given below depicts the processing time of two

scheduling algorithms, with Chunk_Size of 20.

Observation:-3

Similarly, the Figure-11 illustrates the processing time of two

algorithms for different number of randomly created user jobs

within a Chunk_Size of 30.

Observation:-4

The Figure-12 depicts the processing time comparison of two

algorithms for processing 160 numbers of Gridlets with

different Chunk_Size.

Observation:-5

The figure-13 given below describes the overhead time of two

algorithms for the different number of user jobs, where the

jobs are created randomly without any particular deviation

percentage within Chunk_Size of 30. The overhead time of 10

sim seconds is considered for all the resources. From the

above observations in simulation environment 2, it can be

seen that the performance enhancement in case of processing

time is almost 4% to 22.48% and overhead time is 4.1% to

8.8%.

Simulation Environment:-3

This simulation takes different Chunk_Size for different

resources. The Figure-14 shows the processing time of two

scheduling algorithms for the different Gridlets. Here the

Chunk_Sizes are taken from 5 to 50 with 5 unit of sim second

increment for each of the resources starting from R1 to R10 as

shown in table-1. The Performance enhancement in case of

processing time is 3.6% to 14.1%.

Fig 9: Processing time with Chunk_Size=10

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

User Jobs/Gridlets

P
ro

c
e
s
s
in

g
 t

im
e
(i
n
 s

im
 s

e
c
)

TMDGBJS

DJGBS

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

User Jobs/Gridlets

p
ro

c
e
s
s
in

g
 T

im
e
(i
n
 s

im
 s

e
c
)

TMDGBJS

DJGBS

10 20 30 40 50
0

100

200

300

400

500

600

700

800

Granularity Size

P
ro

c
e
s
s
in

g
 T

im
e
(s

im
 s

e
c
)

 TMDGBJS

DJGBS

80 160 240 320 400 480
0

20

40

60

80

100

User Jobs/Gridlets

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
(s

im
 s

e
c
)

TMDGBJS

DJGBS

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

User Jobs/gridlets

P
ro

c
e
s
in

g
 t

im
e
(s

im
 s

e
c
)

TMDGBJS

DJGBS

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

24

Fig 10: Processing time with Chunk_Size=20

Fig 11: Processing time with Chunk_Size=30

Fig 12. Processing time with different Chunk_Size

Fig 13: Communication time with Chunk_Size=30

Fig 14: Processing time with different Chunk_Size for

different Resources

6. CONCLUSION AND FUTURE WORK
Extensive simulation and the evaluation in varied grid

environments are conducted to study and compare the

behavior of the proposed TMDGJS and DJGBS. The

simulation results have shown that the proposed scheduling

algorithm is able to achieve the desired objectives in grid

environment. The comparative study done through various

observations shows that the proposed TMDGJS gives better

performance than DJGBS in terms of processing time and

overhead time. The complexity of the of the proposed

dynamic job scheduling algorithm is О(nlogn) considering

sorting of resources and Gridlets according to their MIPS and

MI respectively, without which it will run in linear time. The

overall performance improvement is up to 22.5% and 8.8% in

terms of processing and overhead time respectively.

In future, this work can be extended to design a high

performance cost-time scheduling for grid system to realize a

real grid environment.

7. REFERENCES
[1] Jeremy M. Norman (edited), From Gutenberg to the

Internet: A Sourcebook on the History of Information

Technology: 2005, pp. 870.

[2] L.Klienrock,“UCLA press release,” 1969,

http://www.lk.cs.ucla.edu/LK/Bib/REPORT/ press.html

[3] I.Foster, and C. Kesselman, Globus: a metacomputing

infrastructure toolkit, International Journal of High

Performance Computing Applications, Vol. 2, pp. 115–

128, 1997.

[4] Ian Foster and Carl Kesselman, “The Grid: Blueprint for

a New Computing Infrastructure,” Elsevier Inc.,

Singapore, Second Edition, 2004.

[5] Myer, Thomas, “Grid Computing: Conceptual Flyover

for Developers”, May 2003 ,http://www-

106.ibm.com/developerworks/library/gr-fly.html

gridsrc.pdf

[6] M. Baker, R. Buyya, D. Laforenza, “Grids and Grid

Technologies for Wide-area Distributed Computing”.

SoftwarePractice & Experience, Vol 32, No. 15,

2002,pp. 1437 -1466

[7] D. Bernstein, M. Rodeh and I. Gertner, “On the

Complexity of Scheduling Problems for

Parallel/Pipelined Machines“, IEEE Transactions on

Computers, vol. 38, p. 1308, 1998.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

User Jobs/Gridlets

P
ro

c
e
s
s
in

g
 T

im
e
(i
n
 s

im
 s

e
c
)

TMDGBJS

DJGBS

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

User Jobs/Gridlets

P
ro

c
e
s
s
in

g
 t

im
e
(i
n
 s

im
 s

e
c
)

TMDGBJS

DJGBS

10 20 30 40 50
0

100

200

300

400

500

600

700

800

Granularity Size

P
ro

c
e
s
s
in

g
 T

im
e
(i
n
 s

im
 s

e
c
)

TMDGBJS

DJGBS

80 160 240 320 400 480
0

10

20

30

40

50

60

70

80

90

100

User Jobs/Gridlets

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
(i
n
 s

im
 s

e
c
)

TMDGBJS

DJGBS

0 50 100 150 200 250 300 350 400
200

400

600

800

1000

1200

1400

1600

1800

2000

User Jobs/ Gridlets

P
ro

c
e
s
s
in

g
 T

im
e
(i
n
 S

im
 s

e
c
)

TMDGBJS

DJGBS

http://www-106.ibm.com/developerworks/library/gr-fly.html%20gridsrc.pdf
http://www-106.ibm.com/developerworks/library/gr-fly.html%20gridsrc.pdf
http://www-106.ibm.com/developerworks/library/gr-fly.html%20gridsrc.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.16, February 2012

25

[8] S. You, H. Kim, D. Hwang, S. Kim, “Task Scheduling

Algorithm in GRID Considering Heterogeneous

Environment”, in The 2004 International Conference on

Parallel and Distributed Processing Techniques and

Applications (PDPTA'04), Monte Carlo Resort, Las

Vegas, Nevada, USA, June 21 - 24, 2004, pp. 240-245.

[9] N. Muthuvelu, Junyan Liu, N.L.Soe, S.venugopal,

A.Sulistio, and R.Buyya, “A dynamic job grouping-

based scheduling for deploying applications with fine-

grained tasks on global grids,” in Proc of Australasian

workshop on grid computing, vol. 4, pp. 41–48, 2005.

[10] Gray, J. (2003): Distributed Computing

Economics.Newsletter of the IEEE Task Force on

Cluster Computing, 5(1), July/August

[11] Sarkar, V. (1989): Partitioning and Scheduling Parallel

Programs for Execution on Multiprocessors, Cambridge,

MIT Press.

[12] Gerasoulis, A. and Yang, T. (1992): A comparison of

clustering heuristics for scheduling directed graphs on

multiprocessors. Journal of Parallel and Distributed

Computing, 16(4):276-291.

[13] Radulescu, A. and van Gemund, A. (1998): GLB: A

Low-Cost Scheduling Algorithm for Distributed-

Memory Architectures. Proc. of the Fifth International

Conference on High Performance Computing(HiPC 98),

Madras, India, pp. 294-301, IEEE Press

[14] James, H. A., Hawick, K. A. and Coddington, P. D.

(1999): Scheduling Independent Tasks on

Metacomputing Systems. Proc. of Parallel and

Distributed Computing (PDCS ’99), Fort Lauderdale,

USA

[15] Buyya, R., Date, S., Mizuno-Matsumoto, Y., Venugopal,

S. and Abramson, D. (2004): Neuroscience

Instrumentation and Distributed Analysis of Brain

Activity Data: A Case for eScience on Global Grids.

Journal of Concurrency and Computation: Practice and

Experience

[16] Jeremy M. Norman (edited), From Gutenberg to the

Internet: A Sourcebook on the History of Information

Technology: 2005, pp. 870

[17] Ng Wai Keat, Ang Tan Fong, “Scheduling Framework

For Bandwidth-Aware Job Grouping-Based Scheduling

In Grid Computing”, Malaysian Journal of Computer

Science, vol. 19, No. 2, pp. 117-126, 2006

[18] Quan Liu, Yeqing Liao, “Grouping-based Fine-grained

Job Scheduling in Grid Computing”, IEEE First

International Workshop on Educational technology And

Computer Science, vol.1, pp. 556-559, 2009.

[19] M.K.Mishra, R. Sharma, V. K. Soni, B. R. Parida, R. K.

Das(2010): A Memory-Aware Dynamic Job Scheduling

Model in Grid Computing. International Conference on

Computer Design and Applications, 2010 IEEE, vol.1-

545.

[20] Schopf, J.: A General Architecture for Scheduling on the

Grid. Submitted to special issue of JPDC on Grid

Computing (2002).

[21] Buyya, R., Abramson, D., Giddy, J.: An Economy

Driven Resource Management Architecture for Global

Computational Power Grids. International Conference on

Parallel and Distributed Processing Techniques and

Applications (2000).

[22] Abraham A., Buyya R., Nath B.: Nature's Heuristics for

Scheduling Jobs on Computational Grids. International

Conference on Advanced Computing and

Communications (2000).

[23] Abramson, D., Buyya, R., Giddy, J.: A Computational

Economy for Grid Computing and its Implementation in

the Nimrod-G Resource Broker. Future Generation

Computer Systems Journal, Volume 18, Issue 8, Elsevier

Science (2002) 1061-1074.

[24] R. Buyya and M. Murshed, Gridsim :A toolkit for the

modeling and simulation of distributed management and

scheduling for grid computing, 2002

