
International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.14, February 2012 

22 

Comprehensive Study on Computational Methods 

for K-Shortest Paths Problem 

 
Kalyan Mohanta 

B. P. Poddar Institute of 
Management & Technology 

Kolkata, India 
 

 

ABSTRACT 

The application domains like network connection routing, 

highway and power line engineering, robot motion planning 

and other optimization problems require the computation of 

shortest path. Computations of K-shortest paths provide more 

(K-1) numbers of backup shortest paths for consideration, 

which enable the applicability of additional constraints on the 

particular domains. For instance, a biologist can determine the 

best of an alignment from the available instances of biological 

sequence alignments generated from more than one shortest 

paths computation.  The purpose of this paper is to provide a 

comprehensive review of existing algorithms available for K-

shortest paths computation. It will be useful for researcher to 

implement the effective K-shortest paths computation based 

on their matching computational requirements over the 

domain of their interest. 
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1. INTRODUCTION 
Finding the K-shortest paths in a network (without negative 

loop) is a classical problem to compute not only the shortest 

path from the origin to sink, but also determine more (K-1) 

shortest paths for K > 1. The algorithms available to solve the 

problem can be classifiable into two categories based on the 

type of computable path:  (a) Algorithms to compute K-

shortest paths without any loop, and (b) Algorithms to 

compute K-shortest paths that may have loops. 

Bock, Kantner, and Haynes [1], Pollack [2], Clarke, 

Krikorian, and Rausan [3], Sakarovitch [4], Azevedo at. al. 

[5,6,7], Dreyfus [8], Eppstein [9], Shier [10,11,12], Yen [13], 

Martin at. al. [14] and others propose K-shortest path 

algorithms without any loop. Hoffman and Pavely [15], 

Bellman and Kalaba [16], Sakarovitch [4], Martins al. al. 

[17,18] and others propose algorithms to compute K-shortest 

paths that may have loops. 

This review is carried out to explore the basic types of the 

algorithms available for computing loop less K-shortest paths 

between a pair of nodes in a network and to reflect their 

computational procedure and computational complexity.  It 

also explains the computational advantages over simple 

version of some algorithms by using techniques of path 

representations like “implicit path” [9], “sorted forward star 

form” [19] and others.  

The notations and definitions used throughout this review are 

shown in Section 2. Section 3 explains the representation of 

paths in K-shortest paths algorithms. Review of the available 

K-shortest path algorithms from the computational viewpoints 

are explained in section 4. A comparison on computational 

complexity of available K-shortest paths algorithms is given 

in section 6. Some applications of K-shortest paths algorithm 

are explained in section 7. 

2. PRELIMINARIES 
Let G =  N, A  denotes an input network with n nodes and m 

edges, where N =  v1 , v2 , … , vn  the finite set of n nodes, and 

A =  e1 , e2, … , em  is the finite set of m edges. With no loss 

of generality, let G is a directed network and every edge ek  is 

an ordered pair  i, j  of nodes from the network.  

Lat a path from source i to destination j is denoted byPij . The 

K-shortest paths from some source to destination are 

represented with the nonempty set π = {π1 , π2 , … , πK } of K-

paths in order.  

Let the cost of any edge denoted by  c ek  , is a real number 

associated with the edgeek  and let the cost of any path p is 

defined as c p =  cij(i,j)ϵp . 

3. REPRESENTATION OF PATHS 
Computing K-shortest paths from a network requires nodes to 

store more than one path information in the form of path cost 

from the source. Particularly the source and the destination 

node should store K-path information.  Information’s may 

store in the label of each node with the K-tuple of storage.  

For example πij
k  may be used to store K different paths from 

node i to node j for k=1, 2, … , K.  

Due to the unavailability of any a-prior information about the 

size of K for every nodes, a particular allocation of K size 

result unused storage, which also reflected in space 

complexity of applicable algorithms.  

To avoid the K-tuple storage technique a method of relabeling 

of nodes is available which assign unique natural numbers 

every time nodes are revisited. Formally a relabeling function 

may define as𝑓: ℕ → 𝑁, where ℕ is the set of natural numbers 

and 𝑁 is the set of nodes. Relabeling function is easily 

implementable using list-type data structure with storing all 

the generated natural numbers against the entry of a node. 

4. REVIEW OF K-SHORTEST PATHS 

ALGORITHMS 
Available algorithms to compute loop-less K-shortest paths 

are classifiable into three categories: Algorithms based on 

brute-force method, algorithms based on Optimality Principle 

and algorithms based on path deviation. These three types of 

loop-less K-shortest paths computing algorithms are explained 

next. 
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4.1 Algorithms based on brute-force 

method 
Brute-force methods of computations are not efficient as it 

will test for all the possibilities. A brute-force type algorithm 

to compute K-shortest path is nonfinite for the input network 

with loop (implies the paths in the network are not finite). It is 

next going to review some of the available algorithms, which 

compute K-shortest paths in a brute-force method.    

Bock, Kantner, and Haynes [1] present an enumeration 

algorithm to enumerate all possible paths from the origin to 

the destination in a network. The resulting paths are required 

to sort for selection of first K numbers of shortest paths. 

This algorithm suffers from the disadvantages of large amount 

of computation and memory requirements. Computational 

complexity of this algorithm never depends on the size of K, 

as all the possible paths are computed irrespective of required 

K size. 

Pollack [2] presents a method of finding the Kth  shortest 

paths, which is required to calculate the (K-1) shortest paths 

first. It utilizes a method of temporarily setting the cost of 

each edge in each of the 1st, 2nd,...,(K − 1)th  shortest paths 

into infinity and then calculate the shortest path from the re-

labeled network, which turn into the Kth  shortest path. 

The computational complexity of Pollack’s algorithm 

increases exponentially with the value of K as the 

computation of Kth  shortest path requires all the (K-1) paths 

to be calculated first. For example, if the first (K-1) shortest 

paths have n arcs in average, then the algorithm computes 

nK−1 operations before the computation of Kth  shortest path. 

Sakarovitch [4] presents an algorithm to compute K shortest 

paths by computing more than K paths from the source to 

destination with or without loops first, and then the output of 

the first stage is scanned to obtain the K shortest paths without 

any loop. 

It is hard to specify a computational upper bound for the 

Sakarovitch’s algorithm, as it depends on the network 

structure and the computation of K shortest paths on any 

network with loop is slower than its loop-free representation.  

4.2 Algorithms based on Optimality 

Principle 
The Optimality Principle for shortest path problem is 

extended for the K-shortest path problems, which asserts that 

the kth  shortest path is formed by jth  shortest paths, for j ≤ k 

[20]. The available K-shortest paths algorithms based on 

Optimality Principle rank all the K shortest paths. Some of the 

available algorithms are reviewed with their computational 

example next. An example input network is shown as figure 1, 

which will be used to exemplify the algorithms next.  
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Fig 1: The network to exemplify the algorithms 

The path ranking algorithms based on Optimality Principle are 

used to compute paths from the example input network for K 

= 2 from source s = 1 to destination t = 5. The results are 

shown as figure 2, figure 3, and figure 4in step-by-step.  
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Fig 2: First three steps of path ranking computation 

The algorithms start the calculation of K shortest path from 

the source node s = 1 and form a paths tree rooted at s. A list L 

is maintained throughout the computation to maintain the 

node list, which to be visited next by the algorithms. The 

pictorial explanation describes the re-visitation of nodes by 

making as-many-as primes with the node number. Total path 

cost is shown as extra label with every visiting of nodes.  The 

dashed circle and nodes represent calculated path, which is 

removed later for its higher cost. The algorithms continue 

with adding nodes (adjacent nodes of the presently visiting 

node) and labeling relative path (starting from s) to the nodes 

within the paths tree. The algorithm stops with the condition 

of L =  Φ (no more node is available to visit) and K = 2. The 

obtained K shortest paths are ranked with K = 1 and K = 2. 

The final tree of paths rooted at s denotes all the paths 

computed irrespective of required K. The class of algorithms 

used to exemplify the computation are proposed by Shier 

[10,11,12].  These types of algorithms are referred as “Label 

Correcting” algorithm [20], as labels are corrected (by 

marking with dashed circles) in a situation of lower cost path 

available to reach any node. The theoretical complexity is not 

polynomial for worst case analysis for the particular type of 

algorithms since it is impossible to establish a polynomial 

upper bound for the number of labels required for each node 

in computation time. The “Label correcting” algorithms 

follow the notion of generalization of the Bellman-Ford-

Moore form for the shortest path problem [21,22,23].   

3'’

4'2' 3'

1

5'

L= {4',3'’,5',5'’}

Step - 4

0

3 4 2

6 9

5'’

6

3'’

4'2' 3'

1

5'

3 4 2

6 9

5'’

6

L= {3'’,5',5'’,3'’’,5'’’}

Step - 5

5 6

3'’

4'2' 3'

1

5'

3 4 2

6 9

5'’

6 5 6

8

L= {5',5'’,3'’’,5'’’,5'’’’}

Step - 6

0

0

3'’’ 5'’’

3'’’ 5'’’

5'’’’

 
Fig 3: Next 3 steps of path ranking computation 
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The efficiency of this type of algorithms is improved by 

manipulating L (the data structure to store node list) in a way 

as follows in Dijkstra’s algorithm for computing shortest path 

[24].  The improved class of algorithm is referred as “Label 

Setting” algorithm in [20]. The “Label Setting” algorithms 

choose the next node to visit from the node list L, for which 

the path cost from the source is minimum among all other 

nodes in L. 
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Fig 4: Last 2 steps of path ranking computation 

The improved algorithm become efficient to compute K-

shortest paths based on the shortest sub paths only, which also 

excludes the computation of the possible all paths as appear in 

“Label Correcting” algorithms and hence no correction of 

labels are required at all. 

Dreyfus [8], Martins and Santos [18] and others [5,6,7,17] are 

propose this form of algorithms. The computational and space 

complexity of the algorithm is both 𝒪 Km . 

4.3 Algorithms based on path deviation 
The Optimality Principle asserts that “there is a shortest path 

formed by shortest sub-paths”, which is further extended for 

K-shortest path problem. Optimality Principle with K-shortest 

path problem asserts that the kth  shortest path is formed by jth  

shortest paths, for j ≤ k [20]. 

Yen’s [13] algorithm is designed with direct implementation 

of the assertion. The algorithm starts with the 1st shortest 

path π1.  To compute the 2nd shortest path π2, the 1st shortest 

path will be utilized to find out a node  vi on the path of  π1 

such that the cost  c s, i + c(i, t) is lowest for all i , and the 

first edge of the path Pit  is not used in the path π1. The special 

node viis known as “deviation node” and the path pit  will be 

used as deviation path to construct the 2nd shortest path. A 

path list L is maintained along with the computation to access 

already computed paths. The algorithm will continue the 

process of utilizing previous paths to compute the new path.    

A computational example is shown as figure 5, which uses the 

input network shown as figure 1 to compute K-shortest paths 

for K=2.  
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Fig 5: Computational example of Yen’s algorithm 

The computation starts with the shortest path p1 as shown in 

step 1. In step 2, the algorithm will search a deviation node on 

the path p1 to compute a deviation path.  Considering node 1 

as the deviation node, the resulting deviation paths are 

calculated as 1-3-5 with path cost 6 and 1-2-5 with path cost 

9. So 1-3-5 is the minimum cost deviation path (no lower cost 

paths are available considering node 4 as deviation node) will 

be added as the second shortest path p2. The algorithm 

terminates with K=2. The tree available in step 2 is the K-

shortest paths tree rooted at starting node s.   

Computational complexity and space complexity of Yen’s 

algorithm are 𝒪 Kn3 and 𝒪 n2 + Kn respectively [13].  

To improve the performance of the algorithm, a shortest paths 

tree from all nodes to the destination node is useful to provide 

readily available shortest paths for the calculation of path cost 

from the deviation node to the destination. A reverse 

orientation tree is shown as figure 6 formed by shortest paths 

from all nodes to the destination node.  
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Fig 6: Shortest paths tree in reverse orientation 

The computational complexity of Yen’s algorithm reduced 

to 𝒪 Kn , when the shortest paths tree from all nodes to the 

destination node is determined separately. Further 

improvements in computational complexity are observed with 

the Martin, Pascoal, and Santos’ algorithm [20] and the new 

implementation of Yen’s algorithm [25] through the support 

of edge arrangement in sorted forward star form [19] and 

implicit representation of paths proposed by Eppstein[9]. 

𝒪 Kn + m log m is the reported improved computational 

complexity [20] of the newer implementation of the Yen’s 

algorithm.  

5. COMPARISON OF AVAILABLE 

ALGORITHMS 
The available algorithms for computing K-shortest paths are 

compared with their time and space complexity. The 

comparison is shown as table 1 within the appendix. 

6. APPLICATIONS OF K-SHORTEST 

PATHS ALGORITHM 
The computation of shortest path included in the situations in 

which an actual path is desired as output, such as network 

connection routing, highway and power line engineering, 

robot motion planning and others. Many optimization 

problems and complicated matrix searching techniques , such 

as knapsack problem, construction of optimal inscribed 

polygon, sequence alignment in molecular biology, length-

limited Huffman coding and others can be solved using 

shortest path problems [9].  

Computation of K-shortest paths find out not only the shortest 

path but rank more (K-1) shortest paths, which implies about 

the availability of more (K-1) numbers of backup shortest 

paths for consideration. Availability of backup options 

enables the users to apply additional constraints. For example, 

route selection in power transmission line [9,26] should 

connect the endpoints directly.  But to provide some 
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community support the typical solution is to compute several 

shortest paths and then choose the optimum among them 

considering the criterion. 

K-shortest paths computing enable the users to determine the 

sensitivity of an optimal solution by varying the problem’s 

parameters. For instance, a biologist can determine the best of 

an alignment from the available instances of biological 

sequence alignments generated from more than one shortest 

paths computation. 

7. CONCLUSION 
Current research trend on optimization problem in various 

domains should be able to incorporate more number of 

constraints through the use of efficient multiple shortest paths 

computation methods. This paper emphasizes on K-shortest 

paths based multiple shortest path computation technique with 

the detail of the available computationally efficient 

algorithms. 
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Appendix 

Table 1. Comparison of available algorithms 

Algorithm Type of algorithm Time complexity Space complexity 

Bock, Kantner, and Haynes’ 

Brute-force 

Difficult to specify 

Pollack’s 𝒪 mK  𝒪 m2 + Km  

Sakarovitch’s Difficult to specify 

Shier’s Label correcting Difficult to specify 

Dreyfus’ 
Label setting 

𝒪 Km  𝒪 Km  

Martins and Santos’ 𝒪 Km  𝒪 Km + n  

Yen’s 
path deviation 

𝒪 Kn3  𝒪 n2 + Kn  

Martin, Pascoal, and Santos’ 𝒪 Kn + m log m  Not reported 

 


