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ABSTRACT 

Soft handoff in CDMA cellular system increases system 

capacity as compared to hard handoff as interference is 

reduced by transmitting signals as lower power level. A 

CDMA cellular system involving voice and data calls is 

considered in this paper. The model proposed in this paper is 

for data and voice services (Bi-class). It is based on 

reservation for handoff voice and data calls along with call 

queuing scheme for handoff data calls. Preemptive priority 

scheme is used for handoff voice calls over ongoing data 

calls. Upper channel limits are set for new voice as well as 

data calls to give priority to handoff calls. For better resource 

management and efficient call admission to originating and 

handoff calls, Neuro-fuzzy call admission controller is 

designed. This controller uses the adaptable feature of soft 

handoff threshold parameters to accommodate important 

voice and data calls. The proposed ASNFC controller is 

compared with the two variants of Bi-class CAC scheme.   
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1. INTRODUCTION 
The emergences of 3G technologies and development in 

advance mobile communication technologies have enabled the 

users to use multi-service features on same network. CDMA 

(Code division multiple access) , which is a multiple access 

technique has emerged as one of the better techniques in 

providing these services due to flexibility in transmission rates 

and better handover features. Handoff is the process of 

transferring a MS (Mobile station) from one BS (Base station) 

or channel to other. When a mobile station during active call 

moves from one cell to another, radio resources need to be 

transferred to new base station. Macro diversity is provided in 

CDMA cellular network by this characteristic of soft handoff 

[1]. In previous papers, we have modeled two dimensional 

markov model for Bi-class services mainly voice and data 

services (new as well as handoff calls) for CDMA cellular 

network .These models uses partial channel reservation 

policies for both type of services. These models were 

analyzed for variation in reserved channels for voice calls and 

soft handoff threshold parameters. The main aim of this paper 

is to give a comparative analysis of proposed Neuro-fuzzy 

CAC with previously proposed analytical models for Bi-class 

services sharing the common channels in the network. The 

two types of services considered here are voice and data calls. 

Real time services like voice calls can not tolerate long delays 

and need continuous connection. Whereas non real time calls 

like data calls can tolerate delays and can be buffered till 

resources are available [3]. 

2. SOFT HANDOFF THRESHOLDS 
The main purpose of a soft handover scheme is to assure that 

there is connectivity with the previous BS while the new BS 

has been assigned to take control over the communication link 

during the travel of MS. For initiating the soft handoff 

mechanism in CDMA cellular network, pilot signal strength 

in form of chip-energy-to-interference ratio (EC/Io) is 

measured by MS for each BS. These received pilots from 

different MS are stored in four different sets mainly: active, 

neighbor, candidate and remaining [2]. 

 

Fig 1: Soft Handoff region in CDMA Cellular Network 

Threshold parameters settings named as T_ADD and 

T_DROP are set depending on soft handoff coverage area and 

BS transmitting power to shift received pilots in any of the 

four sets stated above. A pilot in the neighbor or remaining set 

is moved to the candidate set, if its EC/Io is greater than 

T_ADD. A pilot in the active or candidate set is moved to the 

neighbor set, if its EC/Io falls below T_DROP for a period of 

T_TDROP seconds [2]. These two levels of threshold are 

chosen to avoid abrupt call transfer during the travel. Due to 

fact that adjacent cells in cellular system are overlaid, handoff 

queuing scheme came into picture. The Fig.1 above shows the 

variation in soft handoff coverage area for change in threshold 

parameters. As MS moves away from parent BS, the received 

signal strength decreases and when it gets worsen than 

threshold value T_DROP, the handoff procedure is initiated 

and MS is handed over to next BS. When received signal 

strength is between T_ADD and T_DROP, the MS is 

connected to multiple BS. During the period the MS is in soft 

handoff coverage area, it is connected to both the BS. This 
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situation is similar to a call entering in a queue and waiting for 

a free channel. The capacity of queue for handling data 

handoff calls can be varied by varying the two threshold 

parameters [1] [2]. 

3. STOCHASTIC MODEL 
We have considered an analytical model of a single cell in a 

cellular wireless communication network [3]. For the CDMA 

cellular network, let ‘C’ be the limited amount of code 

channels available in the channel pool. Full channel 

availability is made for both voice handoff calls and data 

handoff calls. The number of channels made available for new 

voice call and new data call is limited by two upper channel 

limits for each set of calls. The upper channel limit for new 

voice call is given by ‘Uvn’ and for new data call it is ‘Udn’. 

Whenever a new voice or data call requests for channel and if 

number of channels in use for these services currently is equal 

to the upper limit allocated to them, then the requesting new 

call is blocked. For handling the data handoff calls, queuing 

scheme is used. A data handoff request is put in the queue if 

BS finds that all channels in target cell are occupied. If a 

channel is released when the queue for data handoff requests 

is not empty, the channel is assigned to request on the top of 

the queue. The queue for data handoff call can be realized due 

to nature of soft handoff coverage area.  

 

Fig 2: Bi-class Model (Preemptive scheme) 

Queuing scheme is considered for data handoff calls as they 

are non-real time calls and delay can be tolerated for these 

types of services. The queue capacity is decided by the setting 

of the two soft handoff threshold parameters mentioned 

previously. Larger is the difference in these parameters, 

greater is the queue capacity. A finite queue with capacity ‘N’ 

and FIFO (First in First out) characteristic is assumed at the 

Base Stations. The System model with limits for new calls 

and finite queue for data handoff call is shown in Fig.2 [4] [5]. 

  

3.1 Traffic Model 
For the analytical model, following assumptions are taken into 

consideration. 

i) The total arrival rate of voice traffic is given by λv = λvn + 

λvh. 

ii) The total arrival rate of data traffic is given by λd = λdn + 

λdh. 

iii) The channel holding time is considered to be 

exponentially distributed with mean rate ‘µ’.  

iv) For new voice and data calls upper limits for channel 

utilization is set by setting value of Uvn and Udn. 

v)  The sum of upper limits for new voice and data call is less 

than total number of code channels available. ie 

                 Unv+Und<<C                                                           

(1)  

 vi) Finite buffer capacity is assumed for data handoff calls 

and it depends on soft handoff threshold parameters.  

vii)  Preemptive scheme is used for handoff voice call.  

3.2 Model Analysis 
We can define the state of system by (Cv,Cd), where Cv is the 

total number of voice calls (both new and handoff calls) and 

Cd is the number of data calls ( being served as well as 

handoff data call waiting in queue). Through this assumption, 

(Cv,Cd) is a two dimensional Markov chain[3].The state 

transition diagram for the model is shown in Fig.3.The total 

number of voice call (both new and handoff) in any state 

varies form 0 to C. Similarly total number of data calls (new 

and handoff) varies from 0 to C+N. Since it is finite two 

dimensional birth-death model, sum of all state probabilities 

P(Cv,Cd) is equal to ‘1’[4].  

For determining the steady state probabilities, the generalized 

equation for Multi-class model which is continuous time 

homogenous Markov chain can be accordingly modified [5]. 

By using the relations for the steady state probabilities 

P(Cv,Cd), the performance parameters can be calculated for 

the proposed model. The blocking probability of new voice 

call can be calculated by determining the condition when the 

number of channels occupied by new voice call has reached 

the set upper limit Uvn. 

vn
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      (2)                         

The blocking probability of new data call is that probability 

when the busy channels for ongoing data calls equal the upper 

set limit Udn. 
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Handoff Voice call dropping probability is given by the 

situation when all the ‘C’ channels are busy and no channel is 

available to serve the incoming handoff voice request. 
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Similarly, the handoff data call dropping probability can be 

evaluated by the situation when all channels are busy and no 

slot is available in the data handoff queue. 

dh
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Where Rvn,Rdn,Rvh and Rdh represents relative mobility for  

new voice, new data, handoff voice and handoff data calls[5].             

 

 

M,0 

M-1,0 

Uvn,0 

1,0 

0,0 0,1 0,Udn 0,M 0,M+N 

M,N 

M-1,1 

Uvn,1 

1,1 

M-1,N+1 

Uvn,Udn 

1,Udn 

Uvn,M+N-Uvn 

1,M 1,M+N-1 

Cv,Cd 

Channel in use 

for voice calls 
Channel in use 

for data calls 

Last state in 

each row 

μ 

μ 

μ 

μ 

μ μ μ μ μ 

2μ 

2μ 

2μ 

μ 

             

λv 

             

λv 

             

λv 

             

λv 

             

λv 

             

λv 

λvh 

λvh 

λvh 

   λd 

   λd 

   λd 

   λd 

   λd 

   λd 

   λd 

   λd 

λdh 

λdh 

λdh 

λdh 

λdh 

λdh 

Udn*μ Mμ Mμ Mμ Mμ 

Udn*μ (M-1)μ (M-1)μ 

(Udn-1)μ (M-Uvn)μ 

λdh 

 (Uvn+1)*μ 

 Uvn*μ 

2μ 

 (M-1)μ 

Mμ 

λvh 

Mμ 

Mμ 

(M-1)μ 

   (Uvn+1)*μ 

Uvn*μ 

2μ 

Uvn*μ 

2μ 

.   .    .   .     .    

.   .    .    .     .  
…

…

. 

…

…

. 

…

…

. 

…

…

. 

…

…

. 

…

…

. 

.   .    .   .     .    

.   .    .    .     .  

.   .    .   .     .    

.   .    .    .     .  

…

…

. 

.  . . . 

.  . . . .  . . . 

.  . . . 

.  . . . .  . . . 

.  . . . .  . . . 

2μ 

 Uvn*μ 

 (Uvn+1)*μ 

 (M-1)μ 

.  . . . 

λvh 

λvh 

λvh 

λvh 

λvh 

λvh 

                                             Fig 3: Two dimensional Markov chain for Bi-class Model 

 

             

λv 



International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.14, February 2012 

18 

 

4. ASNFC DESIGN 

The Neuro-fuzzy model developed uses the training data from 

the analytical model and termed as Adaptive Soft handoff 

based Neuro-Fuzzy Call Admission Controller (ASNFC). 

ASNFC uses new voice blocking probability (Pvn), handoff 

data dropping probability (Phd) and handoff voice call traffic 

(Thv) as input linguistic variables. The output linguistic 

variables are handoff data call queue capacity (N) and new 

voice call threshold (Uvn). Five layer neuro-fuzzy controller 

architecture is used to design the ASNFC [6]. The structure of 

a neuro-fuzzy system is similar to a multi-layer neural 

network.  In general, a neuro-fuzzy system has input and 

output layers, and three hidden layers that represent 

membership functions and fuzzy rules. Each layer in the 

ASNFC system is associated with a particular step in fuzzy 

inference process. Trapezoidal as well as triangular 

membership functions are used to define input-output 

linguistic variables. The terms used to define input linguistic 

variables are; Pvn (0.0001 to 1.0) = {Low (L), Medium (M), 

High (H)}, Phd(0.0001 to 1.0)= {Low (L), Medium (M), High 

(H)}, and Thv( 0 to 100 erlang)= {Slow (S), Moderate (M), 

Fast (F)}. The output linguistic variables used are: handoff 

data call queue capacity ‘N’ (0 to 20) = {Low (L), Medium 

(M), High (H)}, and new voice call threshold ‘Uvn’ (0 to 10) 

= {Low (L), Medium (M), High (H)}. Triangular membership 

function for center variables and trapezoidal membership 

function for variables on extremities are chosen as analysis 

using these types of functions is practical and easy.The details 

of five layers as shown in Fig.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rule base (total possible rules = 33 = 27) for ASNFC is 

shown in table no.1. 

Each neuron in the defuzzification layer represents a single 

output of the neuro-fuzzy system. It takes the output fuzzy 

sets clipped by the respective integrated firing strengths and 

combines them into a single fuzzy set. This neuro-fuzzy 

system applies standard defuzzification methods, the CoG 

technique. 

Table 1: Rule base for ASNFC 

RULE 

No. 

IF THEN 

Pdh Pvn Thv N Uvn 

R1 High High Slow High High 

R2 High High Moderate Medium High 

R3 High High Fast Medium High 

R4 High Medium Slow High Medium 

R5 High Medium Moderate High Medium 

R6 High Medium Fast High Medium 

R7 High Low Slow High  Low 

R8 High Low Moderate High Low 

R9 High Low Fast High Medium 

R10 Medium High Slow Medium 

High 

High 

R11 Medium High Moderate Medium Medium 

---------- 

 

---------- 
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Weights ‘WRX’ 
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                  Fig 4: Structure of ASNFC Controller 
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R12 Medium High Fast Medium High 

R13 Medium Medium Slow High Medium 

R14 Medium Medium Moderate Medium Low 

R15 Medium Medium Fast Medium Low 

R16 Medium Low Slow Medium Medium 

R17 Medium Low Moderate Medium Medium 

R18 Medium Low Fast Medium Low 

R19 Low High Slow Low High 

R20 Low High Moderate Low High 

R21 Low High Fast Low High 

R22 Low Medium Slow Low  Medium 

R23 Low Medium Moderate Low Medium 

R24 Low Medium Fast Low Low 

R25 Low Low Slow Low Low 

R26 Low Low Moderate Low Medium 

R27 Low Low Fast Low Low 

 

4.1 Training of ASNFC 
A total of 27 rules have been developed depending on 

different combinations of input-output linguistic parameters. 

As all the rules might not be realistic in a practical scenario, 

so the weights associated with individual rules have to be 

modified.  

When input and output linguistic values are applied during 

training of the Neuro-fuzzy model, the system automatically 

generates a complete set of fuzzy IF-THEN rules. As expert 

knowledge is not embodied in the system this time, the initial 

weights between Layer 3 and Layer 4 are all set to value 1.0. 

After training those rules are eliminated whose certainty 

factors are less than a sufficiently small number, i.e 0.1.The 

weights are modified through learning or training process. For 

training of the model, backpropogation algorithm has been 

used. The training continues until the sum of squared errors is 

less than 0.001[7]. 

For the training of the proposed neuro-fuzzy controller the 

training data set obtained from the analytical model 

mentioned in section 3 is used: 

Table 2: Rule base for ASNFC model after training 

 

R. 

No 

IF THEN Wt  

after 

Trainin

g 

Pdh Pvn Thv N Uvn 

R4 High Mediu

m 

Slow High Mediu

m 

0.54 

R6 High Mediu

m 

Fast High Mediu

m 

0.73 

R8 High Low Modera

te 

High Low 0.92 

R1

3 

Mediu
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Mediu
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Slow High Mediu
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0.68 

R1

5 

Mediu
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Mediu
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Fast Mediu
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Low 0.75 

R1

9 

Low High Slow Low High 0.83 

R2

0 

Low High Modera

te 

Low High 0.35 

R2

4 

Low Mediu

m 

Fast Low Low 0.53 

 
 

5. RESULTS AND DISCUSSION 
The proposed Neuro-fuzzy CAC model is compared with two 

variants of Bi-class CAC Analytical model. One model 

considers Preemptive policy for handoff voice calls whereas 

other considers non-preemptive policy [4]. The simulation and 

analytical results are obtained using MATLAB. All the 

models are analyzed for the input data ie C=64, Uvn=10, 

Udn=10 and N=6. 
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 Fig: 5 New voice blocking probability v/s total voice 

traffic 

The variation in handoff voice dropping probability for 

change in voice traffic is shown in Fig 6. The results obtained 

for Bi-class CAC (Preemptive) model are superior as 

compared to other two models. This is due to the fact that in 

preemptive scheme, the channel occupied by ongoing handoff 

call is released for handoff voice call when all channels are 

occupied.  

0 20 40 60 80

10
-4

10
-3

10
-2

 Bi-class CAC Preemptive(Analytical)

 Bi-class CAC Preemptive(Simulation)

 Bi-class CAC Non Preemptive(Analytical)

 Bi-class CAC Non Preemptive(Simulation)

 ASNFC(Simulation)

Total voice traffic

H
an

d
o
ff

 v
o
ic

e 
ca

ll
 d

ro
p
p
in

g
 p

ro
b
ab

il
it

y

 Fig 6: Handoff voice dropping probability v/s total voice 

traffic 

 

Fig 7 shows the variation in new data call blocking for 

variation in total data traffic. The data call blocking 

probabilities offered by ASNFC model are lower as compared 

to the stochastic model. This is due to the fact that the neuro-

fuzzy model dynamically adjusts the upper channel limit (Udn) 

reserved for the new data calls in case of arrival of heavy data 
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traffic. There is a decrement in data call dropping probability 

by 25% for a traffic load of 80 erlang.  
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 Fig 7: New data call blocking probability v/s total data 

traffic 

 
Fig 8 gives a comparative analysis of handoff data dropping 

probability w.r.t incoming data traffic for the two models. The 

ASNFC model has the ability of modifying the soft handoff 

coverage area by changing the soft handoff threshold 

parameters. Due to this fact, it can dynamically increase the 

handoff data queue capacity to provide services to more calls. 

There is an improvement in handoff data dropping probability 

by 55%. The variation in handoff data call dropping 

probability for change in voice traffic is illustrated in Fig 9. 
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 Fig 8: Handoff data call dropping probability v/s data 
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The result shows that handoff data call dropping probability is 

immune to arrival voice traffic in case of ASNFC model. It 

increases in case of Bi-class (Preemptive) model as channel to 

incoming handoff voice traffic is made available in by 

releasing channel from an ongoing data call and putting it in 

queue.  
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 Fig:9 Handoff data call dropping probability v/s voice 

traffic 

Fig 10 shows the effect of incoming traffic on forced 

termination probability of data calls. The Bi-class CAC 

models (preemptive and non-preemptive) have more forced 

termination of data calls as the handoff queue size can not be 

dynamically varied. The probability of forced termination is 

largest in case of preemptive model as ongoing data call has 

to release channel for incoming handoff voice call. The result 

is that the waiting period for accessing free channel as well as 

probability of forced termination increases. The percentage 

channel utilization by the two schemes is visualized in fig 11. 

As the neuro-fuzzy algorithm makes dynamical fuzzy 

decision of the threshold values, so it provides better cell 

utilization for same values of incoming traffic. 
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 Fig :10 Forced termination probability of data call v/s 

total traffic 
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6. CONCLUSION 
The Bi-class stochastic models for call admission control of 

voice and data calls in CDMA cellular network are developed 

and analyzed for variation in handoff call queue size, 

incoming traffic and channel reserved for new voice and data 

calls. Two models are considered which uses non-preemptive 

and preemptive scheme for handling handoff voice calls. 

These models are also compared with Adaptive Soft handoff 

based Neuro-Fuzzy Call Admission Controller (ASNFC). The 

training of ASNFC model is done using dataset obtained from 

the Bi-class stochastic model. On analysis and simulation ,the 

results showed that the neuro-fuzzy model due to its adaptable 

nature of adjusting the soft handoff coverage region offer 

better results for the performance measure parameters. The 

performance parameters used for comparative analysis and 

simulation were new voice and data call blocking probability, 

handoff voice and data call dropping probability, forced 

termination probability of handoff data call and percentage 

channel utilization. 
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