τ*-Generalized Homeomorphism in Topological Spaces

S. Eswaran Assistant Professor of Mathematics KPR Institute of Engineering and Technology Coimbatore, Tamilnadu, India – 641 407

Abstract

A.Pushpalatha et al [11] introduced the concept of τ^* -g-closed set in topological spaces. S.Eswaran and A.Pushpalatha [6] introduced and studied the properties of τ^* -generalized continuous maps and τ^* -gc-irresolute maps in topological spaces. In this paper, we introduce and study a new class of maps called τ^* -generalized open maps and the notion of τ^* -generalized homeomorphism and τ^* -gc- homeomorphism in topological spaces.

General Terms

2000 Mathematics Subject Classification: 54A05.

Keywords

 τ^* -g-open map, τ^* -g-homeomorphism, τ^* -gc-homeomorphisms

1. INTRODUCTION

The concept of the closed sets in topological spaces has been generalized to generalized closed sets by Levine [7]. Using the topology τ^* introduced by Dunham [5], Pushpalatha et al [11] introduced τ^* generalized closed sets and examined its properties. In [6], Eswaran and Pushpalatha defined the notion of τ^* -generalized continuous maps and a space called τ^* -T_g space. Using generalized closed sets, Balachandran et al [1] introduced and studied the notion of generalized continuous maps. Thivagar [14] defined and studied maps namely strongly α -open, strongly semiopen, strongly preopen, quasi α -open, quasi semiopen, quasi preopen. Mashhour et al [9], Biswas [2], Mashhour et al [10] and Cammaroto et al [3] defined and studied the maps preopen, semiopen, α -open and semipreopen respectively.

Generalized homeomorphisms via generalized closed sets and gc-homeomorphisms in terms of preserving generalized closed sets were first introduced by Maki, Sundaram and Balachandran [8]. Devi et al [4] introduced and studied sghomeomorphism, gs- homeomorphism, sgc-homeomorphism gsc- homeomorphism

The purpose of this paper is to introduce and study the notion of τ^* -g-open map, τ^* -g-homeomorphism and τ^* -gc-homeomorphisms in topological spaces.

Throughout this paper (X, τ^*) and (Y, σ^*) (or simply X and Y) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of a space (X, τ^*), cl (A), cl^{*}(A) and A^c represent closure of A, closure* of A and complement of A respectively.

N. Nagaveni Associate Professor in Mathematics Coimbatore Institute of Technology Coimbatore, Tamilnadu, India – 641 014

2. PRELIMINARIES

Since we use the following definitions and results, we recall them.

Definition 2.1. A subset A of a topological space (X, τ) is called generalized closed [7] (briefly g-closed) in X if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X. A subset A is called generalized open (briefly g-open) in X if its complement A^c is g-closed.

Definition 2.2. For the subset A of a topological X,

(i)the generalized closure operator cl^{*} [5] is defined by the intersection of all g- closed sets containing A.

(ii) the topology τ^* [5] is defined by $\tau^* = \{G : cl^*(A^c) = A^c\}$

Definition 2.3. A subset A of a topological space X is called τ^* -generalized closed set [11] (briefly τ^* -g-closed) if $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^* -open. The complement of τ^* -generalized closed set is called the τ^* -generalized open set (briefly τ^* -g-open).

Definition 2.4. A topological space (X, τ^*) is called τ^*-T_g space [6] if every τ^* -g-closed set in X is g-closed in X.

Definition 2.6. A map $f: X \to Y$ is called

- i) generalized continuous [1] (g-continuous) if the inverse image of every closed set in Y is g-closed in X
- ii) semigeneralized continuous [13] (sg-continuous) if $f^{1}(V)$ is sg-closed set in X for each closed subset V of Y
- sg-irresolute [13] if f¹(V) is sg-closed set in X for each sg-closed set in Y.

Definition 2.7. A map $f: X \to Y$ is called τ^* -generalized continuous [6] (briefly τ^* -g-continuous) if the inverse image of every g-closed (or g-open) set in Y is τ^* -g-closed (or τ^* -g-open) in X.

Definition 2.8. A map $f: X \to Y$ is called a

- i) generalized open map [8](g-open) if f(U) is g-open in Y for every open set U in X.
- ii) strongly α -open [10] if the image of each α -open set in X is a α -open set in Y

- iii) strongly semiopen [15] if the image of each semiopen set in X is semiopen in Y
- iv) strongly preopen [15] if the image of each preopen set in X is a preopen set in Y
- v) quasi α -open [15] if the image of each α -open set in X is open set in Y.
- vi) quasi semiopen [15] if the image of each semiopen set in X is open set in Y.
- vii) quasi preopen [15] if the image of each preopen set in X is open set in Y.
- viii) preopen [9] if f(U) is preopen in Y for each open set U in X.
- ix) semiopen [2] if f(U) is semiopen in Y for each open set U in X.
- X) α -open [10] if f(U) is α -open in Y for each open set U in X.
- xi) semipreopen [3] if f(U) is semipreopen in Y for each open set U in X
- xii) presemiopen [15] if f(U) is semiopen in Y for each semiopen set U in X

Definition 2.9. A bijection map $f: X \to Y$ is called a

- i) generalized homeomorphism [8](g-homeomorphism) if f is both g-continuous and g-open.
- ii) semi-generalized homeomorphism [4] (sg-homeomorphism) if f is both sg-continuous and sg-open map
- iii) generalized semi homeomorphism [4] (gs-homeomorphism) if f is both gs-continuous and gs-open
- iv) sgc-homeomorphism [4] if both f and f ⁻¹ are sg-irresolute map
- v) gsc- homeomorphism [4] if both f and f $^{-1}$ are gs-irresolute

Remark 2.10. In [12], it has been proved in Theorem 3.2 that every closed set is τ^* -g-closed

Remark 2.11. In [12], it has been proved in Theorem 3.4 that every g-closed set is τ^* -g-closed

3. τ*-GENERALIZED OPEN MAP IN TOPOLOGICAL SPACES

In this chapter, we introduce the notion of τ^* -generalized open mp and study some of their properties. We also investigate its relationship with some existing mappings.

Definition 3.1. A map $f: X \to Y$ is said to be τ^* -generalized open map (briefly τ^* -g-open map) if for each g-open set U in X, f (U) is a τ^* -g-open set in Y

Theorem 3.2. Every open map is τ^* -g-open map but not conversely.

Proof: Let $f: X \to Y$ be an open map. Let U be any open set in X. Since f is an open map, f(U) is open in Y. Since every open set is g-open, U is g-open in X. By Remark 2.10, f(U) is τ^* -g-open in Y. Therefore f is a τ^* -g-open map.

The converse of the theorem need not be true as seen from the following example.

Example 3.3. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : X \to Y$ be an identity map. Then f is τ^* -g-open map. But it is not an open map. Since for the open set $V = \{b\}$ in X, $f(V) = \{b\}$ is not open in Y.

Theorem 3.4. Every g-open map is τ^* -g-open map but not conversely.

Proof: Let $f: X \to Y$ be a g-open map. Let U be any open set in X. Since open set implies g-open set, U is g-open in X. Also, since f is a g-open map, f(U) is g-open set in Y. By remark 2.11, f(U) is τ^* -g-open set in Y. Therefore f is a τ^* -g-open map.

The converse of the theorem need not be true as seen from the following example.

Example 3.5. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Let $f: X \rightarrow Y$ be an identity map. Then f is τ^* -g-open map. But it is not a g-open map. Since for the open set $V = \{a, b\}$ in X, $f(V) = \{a, b\}$ is not g-open in Y.

Theorem 3.6. For any bijection $f : X \rightarrow Y$, the following statements are equivalent:

(a) The inverse map $f^{-1}: Y \to X$ is τ^* -g-continuous.

(b) f is a τ^* -g-open map

(c) f is a τ^* -g-closed map.

Proof: (a) \implies (b). Let G be any g-open set in X. Since f^{-1} is τ^* -g-continuous, the inverse image of G under f^{-1} is

 τ^* -g-open in Y. That is $(f^{-1})^{-1}(G) = f(G)$ is τ^* -g-open in Y and so f is a τ^* -g-open map. Hence (a) \Rightarrow (b).

(b) \implies (c) Let F be any g-closed set in X. Then F^c is g-open in X. Since f is a τ^* -g-open map, $f(F^c)$ is τ^* -g-open in Y. But $f(F^c) = Y - f(F)$. Therefore Y - f(F) is τ^* -g-open in Y and so f(F) is τ^* -g-closed in Y. Hence, f is a τ^* -g-closed map. Thus, (b) \implies (c).

(c) \implies (a) Let F be any g-closed set in X. Since f is a τ^* -g-closed map, f(F) is τ^* -g-closed in Y. But f(F) = $(f^{-1})^{-1}(F)$. Therefore the inverse map f^{-1} is τ^* -g-continuous. Thus (c) \implies (a). Hence (a), (b) and (c) are equivalent.

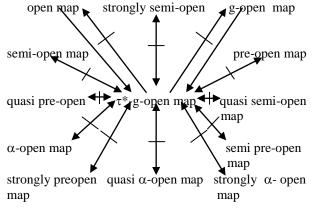
Remark 3.7. The following example shows that τ^* -g-open map is independent from the following maps.

Example 3.8. Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity map.

- (i) Let $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}$. Then f is strongly α -open. But it is not τ^* -g-open, since for the g-open set $V = \{a\}$ in X, $f(V) = \{a\}$ is not τ^* -g-open in Y.
- (ii) Let τ = {X, φ, {a}} and σ = {Y, φ, {b}, {a, c}. Then f is a τ*-g-open map. But it is not strongly α-open, since for the α-open set V={a} in X, f(V) ={a} is not α-open in Y.
- (iii) Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}$. Then f is strongly semi-open. But it is not τ^* -g-open, since for the g-open set $V = \{b\}$ in X, $f(V) = \{b\}$ is not τ^* -g-open in Y.
- (iv) Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, c\}$. Then f is a τ^* -g-open map. But it is not strongly semi-open, since for the semi-open set $V = \{a, b\}$ in X, $f(V) = \{a, b\}$ is not semi-open in Y.
- (v) Let $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. Then f is strongly pre-open. But it is not τ^* -g-open, since for the g-open set $V = \{b\}$ in X, $f(V) = \{b\}$ is not τ^* -g-open in Y.

- (vi) Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, c\}$. Then f is a τ^* -g-open map. But it is not strongly pre-open, since for the pre-open set $V = \{a\}$ in X, $f(V) = \{a\}$ is not pre-open in Y.
- (vii) Let $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then f is quasi α -open. But it is not τ^* -g-open, since for the g-open set $V = \{c\}$ in X, $f(V) = \{c\}$ is not τ^* -g-open in Y.
- (viii)Let $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, b\}\}$. Then f is a τ^* -g-open map. But it is not quasi α -open, since for the α -open set $V = \{b\}$ in X, $f(V) = \{b\}$ is not open in Y.
- (ix) Let $\tau = \{X, \phi, \{b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then f is quasi semi-open. But it is not τ^* -g-open, since for the g-open set $V = \{c\}$ in X, $f(V) = \{c\}$ is not τ^* -g-open in Y.
- (x) Let $\tau = \{X, \phi, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Then f is a τ^* -g-open map. But it is not quasi semi-open, since for the semi-open set $V = \{b, c\}$ in X, $f(V)=\{b, c\}$ is not open in Y.
- (xi) Let $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, b\}\}$. Then f is quasi pre-open. But it is not τ^* -g-open, since for the g-open set $V = \{a, c\}$ in X, $f(V) = \{a, c\}$ is not τ^* -g-open in Y.
- (xii) Let $\tau = \{X, \phi, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Then f is a τ^* -g-open map. But it is not quasi pre-open, since for the pre-open set $V = \{a, c\}$ in X, $f(V) = \{a, c\}$ is not open in Y.
- (xiii) Let $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is preopen. But it is not τ^* -g-open, since for the g-open set $V = \{b\}$ in X, $f(V) = \{b\}$ is not τ^* -g-open in Y.
- (xiv) Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\)$ and $\sigma = \{Y, \phi, \{c\}\}\)$. Then f is a τ^* -g-open map. But it is not preopen, since for the open set V ={a, b} in X, f(V) = {a, b} is not preopen in Y.
- (xv) Let $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}$. Then f is semiopen. But it is not τ^* -g-open, since for the g-open set V= $\{a\}$ in X, $f(V) = \{a\}$ is not τ^* -g-open in Y.
- (xvi) Let $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a, c\}\}$. Then f is a τ^* -g-open map. But it is not semiopen, since for the open set $V = \{a\}$ in X, $f(V) = \{a\}$ is not semiopen in Y.
- (xvii) Let $\tau = \{X, \phi, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is α -open. But it is not τ^* -g-open, since for the g-open set V = $\{c\}$ in X, f(V) = $\{c\}$ is not τ^* -g-open in Y.
- (xviii) Let $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Then f is a τ^* -g-open map. But it is not α -open, since for the open set $V = \{a, b\}$ in X, $f(V) = \{a, b\}$ is not α -open in Y.
- (xix) Let $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Then f is semi pre-open. But it is not τ^* -g-open, since for the g-open set $V = \{c\}$ in X, $f(V) = \{c\}$ is not τ^* -g-open in Y.
- (xx) Let $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Then f is a τ^* -g-open map. But it is not semi pre-open, since for the open set $V = \{b\}$ in X, $f(V) = \{b\}$ is not sp-open in Y.

Remark 3.9 From the above discussion, we have the following implications.



A \rightarrow B means A implies B, A \rightarrow B means A does not imply B and A \rightarrow means A and B are independent

4. τ*-GENERALIZED HOMEOMORPHISM AND τ*-GC-HOMEOMORPHISM IN TOPOLOGICAL SPACES

In this chapter, we introduce the notion of τ^* -generalized homeomorphisms and τ^* -gc-homeomorphisms which are generalizations of homeomorphisms and study some of their properties. We also investigate their relationship with some existing homeomorphisms.

Definition 4.1. A bijection $f:(X,\tau^*) \rightarrow (Y,\sigma^*)$ is called τ^* -generalized homeomorphism (briefly τ^* -g-homeomorphism) if f is both τ^* -g-continuous map and τ^* -g-open map.

Theorem 4.2. Every homeomorphism is τ^* -g-homeomorphism but not conversely.

Proof: Let $f: X \to Y$ be homeomorphism. Then f is both continuous map and open map. In [6], it has been proved in Theorem 3.4 that every continuous map is τ^* -g-continuous. Also from Theorem 3.2, f is a τ^* -g-open map. That is f is both τ^* -g-continuous map and τ^* -g-open map. Hence f is τ^* -g-homeomorphism.

The converse of the theorem need not be true as seen from the following example.

Example 4.3. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let $f: X \to Y$ be an identity map. Then f is τ^* -g-homeomorphism. But it is not homeomorphism. Since for the closed set $V = \{a, c\}$ in Y, $f^{-1}(V) = \{a, c\}$ is not closed in X. So, f is not continuous. Therefore f is not homeomorphism.

Theorem 4.4. Every g-homeomorphism is τ^* -g-homeomorphism but not conversely.

Proof: Let $f: X \to Y$ be g-homeomorphism. Then f is both g-continuous map and g-open map. In [6], it has been proved in Theorem 3.6 that every g-continuous map is τ^* -g-continuous. So, f is τ^* -g-continuous. Also, by Theorem 3.4, f is a τ^* -g-open map. Therefore f is both τ^* -g-continuous and τ^* -g-open. Hence f is τ^* -g-homeomorphism. The converse of the theorem need not be true as seen from the following example.

Example 4.5. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$. Let $f: X \to Y$ be an identity map. Then clearly f is τ^* -g-homeomorphism. But it is not g-homeomorphism. Since for the open set $V = \{a, c\}$ in X, $f^{-1}(V) = \{a, c\}$ is not g-open in Y.

Theorem 4.6. If $f: X \to Y$ is a bijective and τ^* -g-continuous map, then the following statements are equivalent:

- (a) f is a τ^* -g-open map.
- (b) f is a τ^* -g- homeomorphism
- (c) f is a τ^* -g-closed map.

Proof: (a) \implies (b).By assumption, f is bijective, τ^* -g-continuous and τ^* -g-open. Then by definition, f is τ^* -g- homeomorphism. Hence (a) \implies (b).

(b) \implies (c). Since f is τ^* -g-homeomorphism, it is bijective, τ^* -g-open and τ^* -g-continuous. Then by Theorem 3.6, f is a τ^* -g-closed map. Hence (b) \implies (c).

(c) \implies (a). By assumption, f is τ^* -g-closed and bijective. Therefore by Theorem 3.6, f is τ^* -g-open map. Hence (c) \implies (a). Thus (a), (b) and (c) are equivalent.

Theorem 4.7. Let X and Z be any two topological spaces and let Y be a τ^* -Tg-space. If $f: X \to Y$ and $g: Y \to Z$ be τ^* -g-homeomorphisms, then the composition $g \circ f: X \to Z$ is also τ^* -g-homeomorphism

Proof: Let U be a g-closed set in Z. Since $g: Y \to Z$ is τ^* -g-continuous, $g^{-1}(U)$ is τ^* -g-closed in Y. Since Y is a τ^* -Tg-space, $g^{-1}(U)$ is g-closed in Y. Also, $f: X \to Y$ is τ^* -g-continuous. Therefore $f^{-1}[g^{-1}(U)]$ is a τ^* -g-closed in X. But $f^{-1}[g^{-1}(U)] = (g \circ f)^{-1}(U)$. Hence $g \circ f$ is τ^* -g-continuous.

Again, let U be a g-open set in X. Since $f: X \to Y$ is a τ^* -g-open map, f(U) is τ^* -g-open in Y. And since Y is a τ^* -T_g-space, f(U) is g-open in Y. Also $g: Y \to Z$ is a τ^* -g-open map. Therefore g[f(U)] is a τ^* -g-open set in Z. But g[f(U)] = $(g \circ f)(U)$. Hence $(g \circ f)$ is a τ^* -g-open map. Thus, $g \circ f: X \to Z$ is both τ^* -g-continuous and τ^* -g-open map. Hence it is τ^* -g-homeomorphisms.

Definition 4.8. A bijection $f: X \to Y$ is said to be τ^* -gc-homeomorphisms if f is τ^* -gc-irresolute and its inverse f⁻¹ is also τ^* -gc-irresolute. The space (X, τ^*) and (Y, σ^*) are said to be τ^* -gc-homeomorphic if there exists a τ^* -gc-homeomorphism from (X, τ^*) to (Y, σ^*) .

Notations: The family of all τ^* -gc-homeomorphisms [respectively τ^* -g-homeomorphisms, homeomorphisms, g-homeomorphism] from a topological space X onto itself is denoted by τ^* -gch(X) [respectively τ^* -g(X), h(X), gh(X), gch(X)].

Theorem 4.9. Every homeomorphism is τ^* -gc-homeomorphism but not conversely.

Proof: Let $f: X \to Y$ be homeomorphism. Then f is both continuous map and open map. Let U be a closed set in Y. Since f is continuous, $f^{-1}(U)$ is closed in X. By Remark 2.10, every closed set is τ^* -g-closed. Thus, U in Y is a

 τ^* -g-closed set implies $f^{-1}(U)$ in X is a τ^* -g-closed set. So, f is τ^* -gc-irresolute.

Again, let V be a closed set in X. Then V^c is open in X. Since f is an open map, $f(V^c)$ is open in Y. But $f(V^c) = Y - f(V)$. So, Y - f(V) is open in Y implies f(V) is closed in Y. By Remark 2.10, both V and f(V) are τ^* -g-closed sets and $(f^{-1})^{-1}(V) = f(V)$. Thus, $(f^{-1})^{-1}(V)$ is τ^* -g-closed in Y for the τ^* -g-closed set V in X. This shows that $f^{-1}: Y \to X$ is τ^* -gc-irresolute. Therefore f is τ^* -gc-homeomorphism.

The converse of the theorem need not be true as seen from the following example.

Example 4.10. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let $f: X \rightarrow Y$ be an identity map. Then f is τ^* -g-homeomorphism. But it is not homeomorphism. Since for the closed set $V = \{a, c\}$ in Y, $f^{-1}(V) = \{a, c\}$ is not closed in X. So, f is not continuous. Therefore f is not homeomorphism.

Proof: (i) Let $f, g \in \tau^*$ -gch(X). Then $g \circ f \in \tau^*$ -gch(X) and so τ^* -gch(X) is closed under the composition of maps. Composition of maps is always associative. The identity map $i: X \to X$ is a τ^* -gc-homeomorphisms and so $i \in \tau^*$ -gch(X). Also, $f \circ i = i \circ f = f$ for every $f \in \tau^*$ -gch(X). If $f \in \tau^*$ -gch(X), then $f^{-1} \in \tau^*$ -gch(X) and $f \circ f^{-1} = f^{-1} \circ f = i$. Hence τ^* -gch(X) is a group under the composition of maps.

(ii) Let $f: X \to X$ be a g-homeomorphism. By Theorem 3.5 of [12], both f and f⁻¹ are τ^* -gc-irresolute and so f is τ^* -gc-homeomorphism. Therefore every g-homeomorphism is a τ^* -gc-homeomorphism and so gh(X) is a subset of τ^* -gch(X). Also gh(X) is a group under the composition of maps. Therefore gh(X) is a subgroup of the group τ^* -gch(X).

(iii) In [12], it has been proved in Theorem 3.3 that every τ^* -gc- irresolute map is τ^* -g-continuous. Thus, τ^* -gch(X) $\subset \tau^*$ -gh(X).

Remark 4.12. Semi-homeomorphism is independent of τ^* -g-homeomorphisms as seen from the following example.

Example 4.13. Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity map. Let $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$. Then f is both irresolute and pre semi-open. So f is semi-homeomorphism. But it is not τ^* -g- homeomorphism, since for the g-open set $V = \{b\}$ in X, $f(V) = \{b\}$ is not τ^* -g-open in Y.

Let $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Then f is τ^* -g-homeomorphisms. But f is not pre semi-open, since for the semi-open set V ={a, c} in X, f(V) = {a, c} is not a semi-open set in Y.

Remark 4.14. sg-homeomorphism is independent of τ^* -g-homeomorphisms as seen from the following example.

Example 4.15. Let $X = Y = \{a, b, c\}$ and let $f: X \rightarrow Y$ be an identity map. Let $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Clearly f is sg-homeomorphism But it is not τ^* -g-continuous, since for the g-closed set $V = \{a, b\}$ in Y, $f^{-1}(V) = \{a, b\}$ is not τ^* -g-closed in X. Therefore f is not τ^* -g- homeomorphism.

Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, b\}\}$. Then f is τ^* -g-homeomorphisms. But f is not sg-continuous, since for the closed set V = $\{a, b\}$ in Y, $f^{-1}(V) = \{a, b\}$ is not sg-closed in X.

Remark 4.16. sgc-homeomorphism is independent of τ^* -g-homeomorphisms as seen from the following example.

Example 4.17. Let $X = Y = \{a, b, c\}$ and let $f: X \rightarrow Y$ be an identity map. Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Clearly f is sgc-homeomorphism But f is not τ^* -g-open, since for the g-open set $V = \{c\}$ in X, $f(V) = \{c\}$ is not τ^* -g-open in Y. Therefore f is not τ^* -g- homeomorphism.

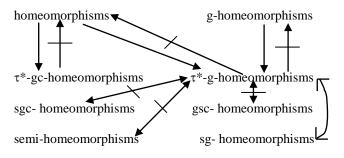
Let $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Then f is τ^* -g-homeomorphisms. But f is not sg-irresolute, since for the sg-closed set V = {b, c} in Y, $f^{-1}(V) = \{b, c\}$ is not sg-closed in X.

Remark 4.18. gsc-homeomorphism is independent of τ^* -g-homeomorphisms as seen from the following example.

Example 4.19. Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity map. Let $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, c\}, \{b, c\}\}$. Clearly f is gsc-homeomorphism But f is not a τ^* -g-open map, since for the g-open set $V = \{a\}$ in X, $f(V) = \{a\}$ is not τ^* -g-open in Y. Therefore f is not τ^* -g- homeomorphism. Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, b\}\}$. Then f is

t^{*}-g-homeomorphisms. But $f^{-1}: Y \rightarrow X$ is not gs-irresolute, since for the gs-closed set V = {a} in Y, $f^{-1}(V)$ = {a} is not gs-closed in X.

Remark 4.20 From the above discussion, we have the following implications.



 $A \longrightarrow B$ means A implies B, $A \longrightarrow B$ means A does not imply B and $A \xleftarrow{} \longrightarrow B$ means A and B are independent

5. REFERENCE

- Balachandran. K., Sundaram. P. and Maki. J On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.), 12 (1991), 5-13.
- [2] Biswas.N ,Some mappings in topological spaces, Bull.Cal.Math. Soc. 61 (1969), 127-135.
- [3] Cammaroto.F. and Noiri.T, Almost irresolute functions, Indian J Pure Appl.Math.20(5),472-82,may(1989).
- [4] Devi.R, Balachandran.K. and.Maki. H, Semi-generalized homeomorphisms and generalized semi homeomorphism in topological spaces, Indian J Pure Appl.Math.,26(3)(1995),271-284.
- [5] Dunham.W, A new closure operator for non-T topologies, Kyungpook Math. J., 22 (1982), 55 - 60.
- [6] Eswaran.S and Pushpalatha.A., τ*-generalized continuous maps in topological spaces, International J. of Math Sci & Engg. Appls. (IJMSEA) ISSN 0973-9424 Vol. 3, No. IV, (2009), pp. 67 – 76
- [7] Levine. N, Generalized closed sets in topology, Rend.Circ. Mat.Palermo, 19, (2) (1970), 89-96.
- [8] Maki.H., Sundaram.P. and Balachandran..K, On generalized homeomorphisms in topological spaces, Bull.Fukuoka Univ.Ed.III 40 (1991) 13-21.
- [9] Mashhour.A..S., Abd.M.E. El-Monsef and El-Deeb.S.N., On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc.Egypt 53(1982),47-53.
- [10] Mashhour.A.S, Hasanein.I.A. and El-Deeb.S.N., On α-continuous and α- open mappings, Acta. Math.Hunga.41(1983),213-218.
- [11] Pushpalatha. A, Eswaran. S and Rajarubi. P, τ^* - generalized closed sets in topological spaces, Proceedings of World Congress on Engineering 2009 Vol II WCE 2009, July 1 – 3, 2009, London, U.K., 1115 – 1117
- [12] Pushpalatha. A and Eswaran.S, Strong forms of τ^* -generalized continuous maps in topological spaces, Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 17, 815 822,
- [13] Sundaram.P, Maki.H and Balachandran.K, sg-closed sets and semi-T_{1/2}spaces, Bull.Fukuoka Univ.Ed.Part III, 40(1991),33-40.
- [14] Thivagar.M.L., Generalization of pairwise α-continuous functions, Pure and Applied Mathematika Sciences, Vol.XXXIII, No.1-2, March (1991),55-63.
- [15] Crossley, S. G., Hildebrand S. K., semitopological properties, Fund.Math. 74(1972), 233-54.