
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

19

Shirorekha Chopping Integrated Tesseract OCR

Engine for Enhanced Hindi Language Recognition

Nitin Mishra

Dept. of Phy. & Comp. Sc.
Dayalbagh Edu. Institute
Dayalbagh, Agra, India

C. Patvardhan
Dept. of Electrical Engg.
Dayalbagh Edu. Institute
Dayalbagh, Agra, India

C. Vasantha Lakshmi
Dept. of Phy. & Comp. Sc.
Dayalbagh Edu. Institute
Dayalbagh, Agra, India

Sarika Singh
 Dept. of Phy. & Comp. Sc.
Dayalbagh Edu. Institute
Dayalbagh, Agra, India

ABSTRACT

Tesseract OCR Engine is one of the most efficient open

source OCR engines currently available. Recently, Tesseract

OCR 3.01 is capable of recognizing Hindi language but still it

needs some enhancement to improve the performance. The

Hindi language recognition accuracy is quite low even for the

printed text, as the conjunct character combinations of Hindi

Language are not easily separable due to partial overlapping.

The proposed approach solves this problem, so that

Devanagari conjunct characters can easily be segmented and

recognized using Tesseract OCR Engine. This paper presents

a complete methodology to improve The Hindi Language

Recognition accuracy. This paper also presents comparison

with other Devanagari OCR engines available on the basis of

recognition accuracy, processing time, font variations and

database size.

General Terms

Pattern Recognition

Keywords

Tesseract, Hindi, OCR, Shirorekha Chopping, Character

Segmentation

1. INTRODUCTION
Today, Tesseract is considered one of the most accurate open

source OCR engines available. Tesseract OCR Engine was

one of the best 3 engines in 1995 UNLV Accuracy Test.

Between 1995 and 2006 however; there was little activity in

Tesseract, until it was open sourced by HP and UNLV in

2005. It was again re-released to the open source community

in August of 2006 by Google [1]. Tesseract has ability to train

for newer language and scripts as well [2]. A complete

overview of Tesseract OCR engine can be found in [3]. While

Tesseract was originally developed for English, it has since

been extended to recognize French, Italian, Catalan, Czech,

Danish, Polish, Bulgarian, Russian, Greek, Korean, Spanish,

Japanese, Dutch, Chinese, Indonesian, Swedish, German,

Thai, Arabic, and Hindi etc. Training the Tesseract OCR

Engine for Hindi language requires in-depth knowledge of

Devnagari script in order to collect the character set [4].

Moreover, Tesseract OCR Engine does not just require

training of the collected dataset but also to tackle the character

segmentation and clubbing issues based on the script specific

features [5] i.e. Shirorekha, maatra etc. Hindi language has

enormous number of character combinations [6]; it is not a

good technique to train all the possible combinations of Hindi

characters. It is highly desirable to choose a Smart Database

having all basic characters, half characters, and the minimal

set of conjunct character combinations that may occur in some

word and left out all unfavorable combinations. The

segmentation issues related to Shirorekha based scripts are

presented in [7]. Basically the proposed Hindi Language

Database consists of basic vowels, consonants, extensions,

special symbols, punctuation marks, English numerals,

Devnagari numerals and minimal set of favorable vowel-

consonant combinations, bi-consonant combinations and bi-

consonant-vowel combinations. Tesseract based researches

have shown robust results on Bangla and Kannada languages

[8, 9] but still no efficient recognition results had been shown

for Hindi language. This paper presents an improvement in

printed Devanagari script recognition using Tesseract OCR

Engine.

Table 1: General Vowels

ऄ

a

अ

ा़

aa/A

आ

ऽा

e/i

इ

ाा

ee/ii

ई

ाि

u

उ

ाी

oo/uu

ए

ा

e

ऐ

ा

ai

ओ

ा

o

औ

ा

ou

ऄं

ां

aM

ऄः

ाः

aH

Table 2: Other Vowels

ॠ

r^^

ॡ

l^^

ॐ

AUM

Table 3: Consonants

क

ka

ख

kha

ग

ga

घ

gha

ङ

nga

च

cha

छ

chha

ज

ja

झ

jha

ञ

nja

ट

Ta

ठ

Tha

ड

Da

ढ

Dha

ण

Na

त

ta

थ

tha

द

da

ध

dha

न

na

प

pa

फ

Pha/fa

ब

ba

भ

bha

म

ma

य

ya

र

ra

ल

la

व

va/wa

श

Sha

ष

shh

स

sa

ह

ha

क्ष

ksh

त्र

tra

ज्ञ

jnja

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

20

Table 4: Dot+Consonants (Extensions)

ऩ

.na

ऱ

.ra

ऴ

.La

क़

.ka

ख़

.kha

ग़

.ga

ज़

.ja

ड़

.Da

ढ़

.Dha

फ़

.fa

य़

.ya

Table 5: Special Symbols

Anusvara

ां

Visarga

ाः

Chandra

Bindu

ा

Chandra

ा

Nukta

ाऺ

Virama

ा

Udatta

ा

Anudatta

ा

Purna virama

।

Deergha

virama

॥

Avagraha

ऻ

Grave

Accent

ा

Accute Accent

ा

Table 6: Punctuation Marks and Other Symbols

“ ? ; % * / () \

= { } [] , - : !

Table 7: Numerals

० १ २ ३ ४ ५ ६ ७ ८ ९

0 1 2 3 4 5 6 7 8 9

2. METHODOLOGY
As Fig 1 shows, the proposed approach can be divided into

two major components described below:

Fig 1: Block Level Diagram

2.1 Training Data Generation
The basic guideline to prepare training data has very clearly

explained in [10], which is followed to prepare the customized

training data. It has following phases described below:

2.1.1 Smart Hindi database selection
The Training database consists of 15 vowels, 36 consonants,

11 extensions, 13 special symbols, 18 punctuation marks and

other symbols, 10 English numerals, 10 Devnagari numerals,

a minimal set of 218 vowel-consonant combinations, 276 bi-

consonant combinations and 179 bi-consonant-vowel

combinations, providing a total of 786 character combinations

of 18 pt. sized mangal font. The coarse classification of Hindi

characters is presented in [11].

2.1.2 Training image generation
It involves the sufficiently spaced out single font specific text

image creation. For each new font Tesseract OCR Engine

suggests preparation of a new image file.

2.1.3 Box file generation
The information about the Bounding Boxes for all the

characters present in the training image is generated for

specifying Devanagari script components in the box file. The

default generated Bounding boxes can easily be edited using

box file editors i.e. cowboxer tool etc.

2.1.4 Train file generation
Box file editors also allow editing the corresponding Unicode

characters against appropriate Bounding boxes.

2.1.5 Character set file generation
Character set file is required to specify the information like

uppercase, lowercase, digits, punctuation marks etc. about the

Unicode characters. Since Devanagari does not distinguish

upper and lower case characters, only digits and punctuation

marks have to be specified.

2.1.6 Font properties selection
Font properties like italic, bold, fixed, serif etc. are required to

be specified before training the data. In this work only normal

fonts have been considered.

2.1.7 Feature extraction
This phase extracts the features of the shape of characters

from the Training Data Image.

2.1.8 Clustering
This phase clusters the character shape features into

prototypes.

2.1.9 Dictionary data preparation
Tesseract may use up to 5 types of Dictionary files which are

converted into Directed Acyclic Word Graph (DAWG) files.

2.1.10 Post processing ambiguity removal
Editing the unicharambigs file allows removing the intrinsic

ambiguity between two similar looking characters or their

combinations by using a substitution rule.

Training Data Generation

Smart Hindi Database Selection

 Training Image Generation

 Box file Generation

 Train file generation

 Character set file generation

 Font properties Selection

 Feature Extraction

 Clustering

 Dictionary Data Preparation

 Post Processing Ambiguity

 Removal

Training Data Compaction

Test Data Processing

Recognizing the Test Image

Recognizing the Test Image

Shirorekha Chopping Based

Preprocessing

Binarization

 Noise Elimination

 Blob Detection

 Skew Detection and Correction

 Character Segmentation

 Matching

 Post Processing

 Result Generation

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

21

2.1.11 Training data compaction
Finally all the generated files are compacted into a single file.

Fig 2: Resources and Commands used

Fig 2 lists all the resources and commands used from the

experimental point of view. The Mangal font was used in

training image.

2.2 Test Data Processing
This component can be categorized basically in two sub

components described below:

2.2.1 Shirorekha Chopping Algorithm
In the Preprocessing Phase, the horizontal and vertical

histograms are generated for each line of the text identified in

the test image. The Shirorekha of the Text in the image is

chopped each time the distance between the bottom of the

valley and the x-axis of corresponding vertical histogram goes

below a threshold T, which is dependent on the font size. The

motivation behind the Shirorekha Chopping is that by

applying good segmentation techniques the performance of

OCR can be increased [12].

Fig 3: Shirorekha Chopping based on Font size specific

threshold

The dots in Fig 3 represent the chopping points on the

Shirorekha for corresponding word in the Test image.

Fig 4: Shirorekha Chopping in Test Image

Fig 4 illustrates the Shirorekha Chopping. The small short

lines highlight those valleys, at which distance between the

bottom of the valley and the x-axis of corresponding vertical

histogram goes below a threshold, T. Thus Shirorekha is

chopped at these valleys. After the preprocessing gets

completed, the Shirorekha Chopped test image as shown in

Fig 5 is obtained.

Fig 5: Shirorekha Chopped Test Image

The Shirorekha Chopped test image is now easily segmented

using inbuilt segmentation technique of Tesseract OCR

Engine as shown in Fig 6.

Fig 6: Shirorekha Chopping based Character

Segmentation

2.2.2 Recognizing the Test Image
In this Phase, the preprocessed test image is recognized using

Training Data.

Test image used: test.tif

Commands used for Test Data Processing:

tesseract test.tif result –l hin

3. EXPERIMENTAL RESULTS
The recognition accuracy, the processing time, and the size of

database with preprocessing and font variations, was tested

against Google’s hin.traineddata [13] and Parichit’s

hin.traineddata [14].

Fig 7: Test image

Font used: Mangal

Font size: 18

Threshold=18/8=2.25

2.25

OS used: Ubuntu 10.04
Tesseract OCR version used: 3.01
Training image used: hin.mangal.exp1.tif

Commands used for Training Data Generation:

tesseract hin.mangal.exp1.tif hin.mangal.exp1 batch.nochop
makebox
tesseract hin.mangal.exp1.tif hin.mangal.exp1 nobatch box.train
unicharset_extractor hin.mangal.exp1.box
cp unicharset hin.unicharset
echo mangal 0 0 0 0 0 > font_properties
mftraining –F font_properties –U hin.unicharset
hin.mangal.exp1.tr
cntraining hin.mangal.exp1.tr
mv Microfeat hin.Microfeat
mv normproto hin.normproto
mv pffmtable hin.pffmtable
mv mfunicharset hin.mfunicharset
mv inttemp hin.inttemp
wordlist2dawg frequent_words_list hin.freq-dawg hin.unicharset
combine_tessdata hin .

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

22

Fig 8: Experimental Results Comparison

The test image sample taken is shown in Fig 7. The Test

Results can be compared by Fig 8. After a number of tests, the

final results were obtained, which are described below:

Table 8: Font Variation Tolerance Comparison

Recognition rate

with Mangal as

Testing font

Recognition rate

with Krutidev as

Testing font

Google’s

hin.traineddata
45.6 % 44.8 %

Parichit’s

hin.traineddata
23.4 % 21.2 %

Proposed

hin.traineddata 94.9 % 86.9 %

Table 9: Average Recognition Rate Comparison

Average

Recognition

Rate

Preprocessing

used on Test

Image

Google’s

hin.traineddata
45.2 % No preprocessing

Parichit’s

hin.traineddata
22.3 % No preprocessing

Proposed

hin.traineddata
90.9 % Shirorekha

Chopping

Table 10: Processing Time Comparison

 Processing Time
Total Characters

in Test Image

Google’s

hin.traineddata
2000 ms 94

Parichit’s

hin.traineddata
1500 ms 94

Proposed

hin.traineddata
1000 ms 94

Table 11: Training Data Size Comparison

Training Data

size
Training font

Google’s

hin.traineddata
13.8 MB -

Parichit’s

hin.traineddata
13.1 MB -

Proposed

hin.traineddata 7.5 MB Mangal

4. CONCLUSIONS
There is a significant improvement in the recognition rate,

processing time and the size of training database after

integrating Shirorekha Chopping with Tesseract OCR Engine.

Table 8 shows the higher accuracy for testing font being same

as that of training font but lower accuracy for testing font

being different from the training font, but still the font

variation tolerance is quite better than existing ones. Table 9

shows the average recognition rate is quite enhanced using

Shirorekha Chopping. The proposed Shirorekha chopping

based preprocessing approach does not just improve the

recognition rate but also allows training only two or more

touching conjunct characters along with basic characters and

isolated half characters. The single touching conjunct

characters may be left out as these conjunct characters can

easily be segmented using Shirorekha Chopping into those

basic components that were trained. This leads to the

generation of comparatively smaller training database (Table

11). The proposed Approach runs faster than that of Google

and Parichit (Table 10). The extension to multiple fonts is

being done, from the perspective of Future scope.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

23

5. REFERENCES
[1] Google code : http://googlecode.blogspot.com/2006/08/

announcing-tesseract-ocr.html (last accessed 8 January,

2012)

[2] http://code.google.com/p/tesseract-ocr/ (last accessed 8

January, 2012)

[3] Smith, R. “An Overview of the Tesseract OCR” in proc.

ICDAR 2007, Curitiba, Paraná, Brazil.

[4] Bansal, V. and Sinha, R.M.K. “A Complete OCR for

Printed Hindi Text in Devnagari Script”, Sixth

International Conference on Document Analysis and

Recognition, IEEE Publication, Seatle USA, 2001,

Page(s):800-804.

[5] Jindal, M.K., Sharma, R.K., lehal, G.S. “A Study of

Different Kinds of Degradation in Printed Gurmukhi

Script”, Proceedings of the International Conference on

Computing: Theory and Applications (ICCTA'07),2007.

[6] Yadav, D., Sharma, A.K. and Gupta, J.P. Optical

character recognition for printed Hindi text in

Devanagari using soft-computing technique, IASTED

International Multi-Conference: Artificial Intelligence

and Applications, Innsbruck, Austria, 2007, pp. 102-107

[7] Chaudhuri, B. B. and Pal, U. "An OCR System to Read

Two Indian Language Scripts: Bangla and Devnagari

(Hindi)", Proc. of 4th ICDAR vol.2, Ulm, Germany,

1997, Page(s): 1011 -1015

[8] Hasnat, A., Chowdhury, M. and Khan, M. "Integrating

Bangla script recognition support in Tesseract OCR",

Proc. of the Conference on Language and Technology

2009 (CLT09), Lahore, Pakistan, 2009.

[9] Pal, U., Chaudhuri, B. B. ''Indian Script Character

recognition: A survey'', Pattern Recognition, vol. 37, pp.

1887-1899, 2004..

[10] tesseract-ocr An OCR Engine that was developed at HP

Labs between 1985 and 1995... and now at Google.

Available at: http://code.google.com/p/tesseract-

ocr/wiki/TrainingTesseract3/ (last accessed 8 January,

2012)

[11] Agrawal, P., Hanmandlu, M. and Lall, B., “Coarse

Classification of Handwritten Hindi Characters”,

International Journal of Advanced Science and

Technology,Vol. 10, September, 2009.

[12] Saba, T., Sulong, G. and Rehman, A. “A Survey on

Methods and Strategies on Touched Characters

Segmentation”, International Journal of Research and

Reviews in Computer Science (IJRRCS) Vol. 1, No. 2,

June 2010.

[13] tesseract-ocr, available at: http://code.google.com/p/

tesseract-ocr/downloads/detail?name=tesseract-ocr-3.01

.hin.tar.gz&can=2&q= (last accessed 8 January, 2012)

[14] parichit The best open source OCR for Indian

Languages...yet, available at:

http://code.google.com/p/parichit/downloads/detail?name

=hin.traineddata (last accessed 8 January, 2012)

