
International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.6, February 2012 

1 

 A Novel Architecture Style: Diffused Cloud for 

Virtual Computing Lab 

 
Deven N. Shah 

Professor 
Terna College of Engg. & 

Technology 
Nerul, Mumbai 

 Sukhada Bhingarkar 
Assistant Professor 

MIT College of Engg. 
Paud Road, Pune 

 

 

Bharati Ainapure 
Assistant Professor 

MIT College of Engg. 
Paud Road, Pune 

 

ABSTRACT 
Using Eucalyptus Systems’ private cloud solution, an institute 

can build Virtual Computing Lab (VCL) that can satisfy the 

requirements of an institute, but it is assumed that infinite 

computing resources are available on demand thereby 

eliminating the need for cloud computing users to plan far 

ahead for provisioning.. However, due to extensive usage of 

computational resources, cluster controller (CC) component 

of Eucalyptus becomes a bottleneck, hampering performance 

of cloud computing environment. To overcome the drawbacks 

of Eucalyptus, diffused cloud approach is proposed based on 

master-slave concept where one master and multiple slaves 

serve the resources to the clients. This approach improves the 

performance of the server and would allow cloud servers to 

extend their computational power by dynamic resource 

discovery over the network. This architecture allows new 

clients to request virtual machines, and the server makes the 

choice of running the requested virtual machine either on 

previously available slaves, or on the clients who are recently 

registered into a set of slaves. Thus this architecture reduces 

the probability of occurrence of network bottlenecks and 

ensures that sufficient resources are always available to the 

end users, thus implementing the concept “Cloud never Dies”.  

In order to demonstrate the performance of this novel 

architecture we provide and interpret several experimental 

results. 

 

General Terms 
Cloud Computing, IaaS, PaaS, SaaS, Virtual Machine 

Instances. 

Keywords 
Cloud Controller, Master, Node Controller, Private cloud, 

Slave, Virtual Computing Lab  

1. INTRODUCTION 
Over the past few years, the concept of cloud computing and 

virtualization has gained much momentum and has become a 

more popular phrase in information technology. Many 

organizations have started implementing this new 

technology to further reduce cost through improved machine 

utilization, reduced administration time and infrastructure 

costs [1]. There are many cloud toolkits that can be used to 

transform existing infrastructure into an Infrastructure as a 

Service (IaaS) cloud with cloud-like interfaces such as 

Eucalyptus. It is compatible with Amazon’s EC2 interface and 

is designed to support additional client-side interfaces [2][3]. 

However, the main hindrance in Eucalyptus is that it lacks in 

certain features such as virtual machine reservation and 

portability of cloud server functionality.  While providing 

private cloud-computing environment, according to user 

perception, infinite computing resources are available on 

demand, thereby eliminating the need for Cloud Computing 

users to plan far ahead for provisioning. But in reality only 

finite set of computational resources are available at server 

end and details of implementation is masked to the cloud user 

by levels of abstraction over these resources. Also, as cloud 

services are needed to be transferred across the network to the 

clients, we need to consider data transfer cost also. To 

overcome drawbacks of Eucalyptus, there is a need to provide 

an architecture that solves the problem of paucity of resources 

and resolve the issues related to portability and network 

bottleneck. This paper presents architecture called as diffused 

cloud for private cloud computing which would allow cloud 

computing environment to dynamically extend its 

computational power, thus allowing increased service 

capability through dynamic discovery of resources across 

network and thus reducing the probability of occurrence of 

network bottlenecks. The diffused cloud approach consists of 

one master and multiple slave machines serving to the users 

and clients are added dynamically and the instances are 

running on the slaves. It allows setting up node controller 

functionalities over the machine on the network thus 

increasing capability of the cloud. This architecture is capable 

of running lesser priority virtual machines (VM) on client 

machines running our specialized client Operating System 

(OS). This architecture also provides basic cloud computing 

features like launching virtual instances, keeping track of 

status of virtual machines which are running on node 

controller, addressing of these virtual machines, NATting and 

mapping of virtual machines on network to real world 

machine. Diffused Cloud also provides Cloud server facilities 

to be easily made available at client end. This involves 

provision of graphical interface to check status of request and 

allow client to easily launch virtual machine. This approach 

provides vast improvements over existing architecture of 

cloud by extending server resources by including client 

hardware and ensures that sufficient resources are always 

available.  

The rest of the paper is structured as follows: Section 2 

discusses related work. In section 3, the statement is made 

about the problem that is addressed in this paper. Section 4 

elaborates on proposed architecture of diffused cloud. Section 

5 presents experimental results. Finally, Section 6 gives 

conclusion and future work. 

 

2. RELATED WORK  
There are several architectures for cloud platforms have been 

published in these recent years.  Some of examples of these 

platforms are Eucalyptus, Nimbus, OpenNebula etc. Several 

projects and products provide virtual infrastructure 

management capabilities using these platforms.  Not all of 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.6, February 2012 

2 

them are labeled with the term cloud and cannot be used 

complete IaaS offerings.  Although most existing cloud 

computing implementations share the common high-level 

notion of flexible, scalable and dynamic computational 

provisioning, there is significant variation in exactly how that 

power is presented to the end user. Some systems such as 

Amazon’s Elastic Compute Cloud (EC2) and Anomalism 

allow users to allocate entire virtual machines on demand 

VMware’s vSphere[4] and Platform’s VM Orchestrator[5] are 

embedded hypervisors that run directly on server hardware 

without requiring an additional underlying operating system. 

The initial mapping of virtual machines is done based on CPU 

load of each physical host. Then dynamic mapping is 

performed by monitoring utilization of available hosts. The 

priorities and other parameters for the mapping can be defined 

by the user, but it is not possible to change the mapping 

policies. These tools also lack other features that are relevant 

for building IaaS clouds, such as public-cloud like interfaces, 

mechanisms for adding such interfaces easily and the ability 

to deploy virtual machines on external clouds.  

On the other hand, projects such as Globus Nimbus [6] can 

help transform existing infrastructure into an IaaS cloud with 

cloud-like interfaces.Nimbus exposes Amazon EC2 

interfaceand offers self-configuring virtual cluster support. 

However, it has limited choice of preconfigured mapping 

policies i.e. first fit, round robin, greedy and green-it. Also, its 

Virtual Machine management capabilities are limited. 

OpenNebula[2] is a part of EU’s Reservoir project which aims 

to develop open source technologies to enable the deployment 

and management of complex IT services across different 

administrative domains. Initial placement is based on 

requirements or rank policies to prioritize those resources that 

are more suitable for the virtual machine using dynamic 

information. It supports any static or dynamic placement 

policy. OpenNebula is further extended to include Haizea that 

adds the functionality of leases. The leases are extended user 

requests for computational reservations. They can be used to 

define a period of time, when the resources should be 

available. The virtual machine placement strategies support 

queues and priorities. 

oVirt[7] is a free Red Hat / Fedora specific virtualization 

management system that allows to manage virtual machines 

through a web interface using libvirt. The libvirt library 

allows oVirt to manage virtual machines hosted on KVM 

virtual machine servers. However, it is unable to scale to 

external clouds. It has monolithic and closed architecture that 

is hard to extend or interface with other software, not allowing 

seamless integration with existing storage and network 

management solutions deployed in data centers. Its placement 

policies are also manual.  

Apache Hadoop is a framework for running applications on 

large clusters built of commodity hardware. The Hadoop 

framework transparently provides applications both reliability 

and data motion. Hadoop implements a computational 

paradigm named Map/Reduce, where the application is 

divided into many small fragments of work, each of which 

may be executed or reexecuted on any node in the cluster. In 

addition, it provides a distributed file system (HDFS) that 

stores data on the compute nodes, providing very high 

aggregate bandwidth across the cluster. Both Map/Reduce and 

the distributed file system are designed so that node failures 

are automatically handled by the framework [8].  

The Cumulus project is an on-going Cloud computing project 

at the recently established Steinbuch Centre for Computing 

(SCC) at the Karlsruhe Institute of Technology (KIT). It 

intends to provide virtual machines, virtual applications and 

virtual computing platforms for scientific computing 

applications. The Cumulus project currently is running on 

high performance HP and IBM blade servers with Linux and 

the Xen hypervisor [9].  

 

3. PROBLEM FORMULATION  
VCL architecture mainly is intended for designing and 

configuring a private cloud computing system that serve both 

the educational and research missions of an institute in a very 

economical and cost efficient manner. In an institute the usage 

of resources will vary depending on the academic calendar. 

VCL provides good scheduling mechanism to identify the 

movements and flows of campus activities. With the help of 

desktop and HPC utilization, VCL provides efficient 

utilization of the computational infrastructure in institute’s 

labs[1][10]. Eucalyptus[3] is an open source tool that offers 

complete IaaS solution on the top of hypervisors. Eucalyptus 

was used to create VCL that helped in college environment. It 

had following features: 

1. Some of the existing desktops were clustered to create 

private cloud. Thus we did not need to invest in 

additional capacity. 

2. The stakeholders of a college; students and staff had 

their own storage space in cloud to store their daily 

data. The final year projects were also stored on this 

cloud to have them available for later reference. 

3. This private cloud allowed students to launch virtual 

machine instances based on various practical 

experiments. 

4. The student pen drive can't be detected in VM. Hence 

students will not able to use pen drive. Though virus 

gets downloaded within VM,  it will die down along 

with VM, hence it will not affect other machine. 

5. The students cannot misuse the internet connectivity 

as each virtual machine instance is allotted a fixed 

amount of Internet bandwidth [11]. 

However, VCL environment provided by Eucalyptus suffers 

from certain drawbacks. e.g. to serve 48 students in a 

laboratory simultaneously, we had setup a Server with 2 Xeon 

6 core each processor and 48 GB RAM. But in a college, out 

of 700 machines, at least 250 machines are required to run 

virtual machine instances for performing Local Area Network 

(LAN). This limits the number of resources and thus the 

perception of infinite resources in a private cloud fails. This 

leads to design an architecture which ensures that sufficient 

resources are always available and the cloud never dies.      

  

4. PROPOSED SOLUTION: DIFFUSED 

CLOUD 

4.1 System Architecture  
To solve the problem of scalability and limitation in 

resources, this paper proposes an architecture which would 

not only utilize the resources of the cloud server, but would 

also be capable of running lesser priority virtual machines on 

client machines running our specialized client OS. The 

diffused cloud is based on master-slave approach which 

consists of one master and one slave at the beginning. First of 

all, the slave has to register itself to the master to be part of 

cloud. After the registration with the master, the master 

queries the slave about the available resources. The slave 

replies to the master and master simultaneously updates its 

database about the number of cores it has. All the images are 

bundled and uploaded to the master so that they can be 

launched on a slave. This architecture grows dynamically 

when new clients are added to a set of slaves. 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.6, February 2012 

3 

This architecture allows new clients to request virtual 

machines, and the server makes the choice of running the 

requested virtual machine either on previously available 

slaves, or on the clients who are recently registered into a set 

of slaves. It allows setting up node controller functionalities 

on machines over network that increases the capability to run 

more virtual instances. 

The proposed solution also provides basic cloud computing 

features like launching virtual instances, keeping track of 

status of virtual machines, which are running on node 

controller, addressing of these virtual machines, NATing and 

mapping of virtual machines.  

Figure 1 shows system architecture of Diffused Cloud.  

 

 
Figure 1.  System Architecture 

 

The architecture consists of following components: 

 

Client1: It is a machine that wants to launch VM instance 

using cloud service in the network, it sends request to server 

machine along with the parameters specifying ram, VM image 

type. Whenever it utilizes cloud service, it can publish its own 

resources to the cloud architecture so that client1 become a 

slave for other clients and other client machines can make use 

of its resources and launch VM instances. 

Client2: It is other client machine that wants to launch VM 

instance. 

Server: This machine acts as a master. It is responsible to 

fulfill the requests of clients for launching the VM instances. 

Whenever any client machine sends request to the server 

machine for VM instance, corresponding response is sent 

back to the client specified by status of VM instance and IP 

address of requested VM instance so as to connect with the 

VM. 

Slaves: It is a pool of resources.  When client request is 

fulfilled, client registers itself with server machine. Client 

machine then announces its resources with server machine 

and server adds client machine in the resource pool and 

monitors its status. 

 

4.2     Flow of Events 
The flow of events happens in two parts. Part I corresponds to 

flow of events when Client1 requests to Master for launching 

VM instance.  Figure 2 illustrates the flow of events of part I 

in the system. 

 

 
Figure 2. Flow of events in the system (Part I) 

 

The description of flow of events in part I is as follows: 

1. When the client1 wants a image, it sends a request to the 

master machine through a User Interface. 

2. This request is evaluated by the master machine and 

accordingly forwards this request to the suitable slave 

machine. 

3. The Mater machine gives the IP address of slave machine 

to the client1 for any further connections. 

4. Once the client1 knows the IP address of the slave, it 

directly connects with the slave machine. 

5. The slave runs a VM instance to which client1 get 

connected using VNC client. This instance is then used by 

the client1 to perform any tasks he intends to perform. 

6. Client1 also sends its address to the database so that it can 

perform the function of slave for any future calls to the 

master. 

7. Client1 is added to the pool of resources, and is registered 

as a slave with the master. 

 

Part II corresponds to flow of events when client2 makes a 

request to the master for launching VM instance. Figure 3 

illustrates the flow of events of part II in the system. 

 
Figure 3. Flow of events in the system (Part II) 

 

The description of flow of events in part II is as follows: 

1. New Client2 sends request to the Master.  

2. Master forwards request to slave (might / might not be 

client1) 

3. Slave launches an instance. 

4. Client2 connects to the instance. 

5. Client2 also sends its address to the database so that it can 

perform the function of slave for any future calls to the 

master. 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.6, February 2012 

4 

6. Client2 resources are added to the pool of resources, and is 

registered as a slave with the master 

Thus, this architecture ensures that there are always sufficient 

resources available at the disposal of the master, and thus can 

accept any number of incoming connections. 

 

4.3     Mathematical Modeling 
Mathematically the problem can be expressed as follows: 

Let M  be a Master with finite set of resources defined by 

following tuple: M = ( c , m , s , b ) 

Where, c = CPU resources 

            m = memory resources 

            s =,Disk storage 

            b = Network bandwidth 

Let   
2,..........., 11

, )( n
A a a a 
 be a set of clients, and let 

1 2
S = ( , ,...... ,...... )

k ms s s s be a set of slaves where each 

slave ( , )
cpu ram

k k ks s s  specifies the CPU capacity and the 

memory capacity of the VM. 

When client 
ia  makes a request for VM instance to the 

Master M , M forwards this request to a slave
ks .  

ks allocates necessary resources for launching requested VM 

instance to . After running VM instance, 
ia  registers itself as 

a slave into a set S. Hence S is updated as S =
k is a   

When another client machine 
1ia 
makes a request for VM , 

the resources of 
ia are allocated to 

1ia 
.  Then, 

1ia 
 is 

added to slave set and in such a way, all those client machines 

requesting for resources are registered as slaves after their 

request is fulfilled. Thus S is modified to S=
1k ns a 

  . 

Let 
1 2

P = ( , ,...... ,...... )
j q

p p p p  be a set of ports on which 

request for VM is sent.  Let 
m

p is a port on which 

M communicates.  
ai

p and 
si

p are the ports on which client 

and slave communicate respectively. max

p  defines the 

maximum input/output requests the  port can receive. Thus, 
max

in out
p p p  , where , 

in
p = Number of input requests and 

out
p = Number of output responses. Thus diffused cloud 

architecture ensures that sufficient resources are always 

available. 

 

4.4      Experimental Setup 
The experimental setup is as follows: 

1. Software interface for user on the client machine 

will be his/her computer having ubuntu as its 

operating system.  

2. The hardware should provide Virtualization 

Technology and other necessary compatibility. 

3. The ubuntu machine should be running 

TightVNCViewer 

4.    Web Interface is provided for users to launch a VM. 

5.  Tight VNC Viewer manages all UI related with 

running the VM. 

6.    The Master is connected to a DHCP Server, which 

may or may not be on a different machine. 

 

Table 1 presents machine configuration for the diffused cloud. 

Table 1. Machine Configuration 

Sr. 

No. 

Machine Configuration Role 

1. 64-bit Ubuntu 9.10 server with 48GB 

RAM 

Master 

2. 32-bit/64-bit Ubuntu with minimum 

4GB RAM having VT enabled. 

Client 

 

The assumptions for this architecture are as follows:  

1. This architecture solely focuses on to check the possibility 

whether cloud solution can extend their capability or not. 

2. There are no security considerations while providing this 

architecture. 

3. Architecture does not address scalability issues of the 

cloud. 

4. The clients are manually registered as a slave. 

 

5. EXPERIMENTAL RESULTS 
The proposed architecture is evaluated by running 5 instances 

on client machines. The results are drawn with the help of 

performance graphs showing CPU, Memory and network 

utilization.  

Figure 4 shows performance graph when no instances are 

running on any machine, where 24 CPU cores launched.  In 

this graph we can see that about 50% of CPU is utilized along 

with 3.7% memory and 12 KB/s network utilization between 

10 to 45 seconds of time period. 

 

 
Figure 4. No instances running on any machine 

 

Figure 5 shows performance graph when 1 instance is running 

on a machine. In this graph we can see that CPU utilization 

reaches up to 60% and 3.6 % memory utilization between 20 

to 50 seconds. 

 
Figure 5. 1 instance running on a machine 

 

Figure 6 shows performance graph when 2 instances are 

running on a machine. In this graph we can see that almost 85 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.6, February 2012 

5 

to 90% of CPU and 5.6% of memory utilization between 40 to 

50 seconds which is the marginal increase in the utilization. 

 

 
Figure 6. 2 instances running on a machine 

 

Figure 7 shows performance graph when 5 instances are 

running on a machine. In the same way in this graph also we 

can see CPU utilization increased up to 100% with 5.6% 

memory, and network up to 35KB/s utilization between all 

tine periods. 

 

 
Figure 7. 5 instances running on a machine 

 

Figure 8 shows performance graph when all instances are 

terminated result will be almost same as no instances are 

running. 

 

 
Figure 8. all instances terminating 

 

Hence performance graphs show that as the number of 

instances is increased, there is increased utilization of CPU, 

Memory and Network resources. But though the load on the 

system it does not result into bottleneck. 

 

6. CONCLUSION AND FUTURE WORK 
The current architectures available for private cloud services 

provide Virtual Machines to clients using the resources of the 

cloud server. In a situation of high demand, the server gets 

saturated, and is forced to refuse further requests.  Hence this 

paper aims to correct these issues by implementing a novel 

architecture, diffused cloud that improves the performance of 

the server and allows cloud servers to extend their 

computational power, thus allowing increased service 

capability. A diffused cloud starts with one master and one 

slave but grows dynamically as new clients are added to a set 

of slaves. It ensures availability of sufficient resources.  
In diffused cloud architecture, master does caching of virtual 

machine instances. When new request comes to the master, 

master needs to check for available resources in the pool of 

slaves as well as with previous client. This leads to more time 

required to launch an instance for a new client. Hence future 

work can be extended to the automatic management for 

registration and allocation of computational resource to the 

cloud users. The future work also includes a work to be done 

to reduce time required for launching an instance for new 

request. 

7 REFERENCES 
[1] Jitesh Moothoor, Vasvi Bhatt, A Cloud Computing    

Solution for Universities: Virtual Computing Lab, Dec. 

2009  

[2] Borja Sotomayor, Rub’ en S. Montero, Ignacio M. 

Liorente, Ian Foster, An Open Source Solution for 

Virtual Infrastructure Management in Private and Hybrid 

Clouds. IEEE Internet Computing. Special Issue on 

Cloud Computing, 2009. 

[3] Daniel Nurmi, Rich Wolski, Chris Grezgorezyk, 

“Eucalyptus: A Technical Report on an Elastic Utility 

Computing Architecture Linking your Programs to 

Useful System”, UCSB Computer Science Technical 

Report, August 2008. 

[4] VMware and Cloud Computing: 

http://www.vmware.com/files/pdf/cloud/VMware-and-

Cloud-Computing-BR-EN.pdf 

[5] Platform, “Platform VM Orchestrator. [Online]. 

Available: 

http://www.platform.com/resources/datasheets/vmov4- 

ds.pdf. [Accessed: July 8, 2010].” 

[6] I. Foster, “Globus toolkit version 4: Software for service 

oriented systems,” in IFIP International Conference on 

Network and Parallel Computing, Springer-Verlag LNCS 

3779, 2005.  

[7] oVirt http://ovirt.org 

[8] Apache Hadoop, http://hadoop.apache.org/, (accessed 

20.01.2010).  

[9] Lizhe Wang, Jie Tao, Marcel Kunze, Dharminder Rattu 

and Alvaro Canales Castellanos, "The Cumulus Project: 

Build a Scientific Cloud for a Data Center”, CCA08, 

2008 

[10] Eric Jansson, Virtual Computing Labs in Liberal 

Education, Spring 2010  

[11] Sukhada B., Bharati A., Dr. Deven Shah, “The case of 

private cloud for the technical institute- Virtual 

Computing Lab”, Equinox 2011, Terna College of Engg., 

Mumbai 


