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ABSTRACT 

The design, operation and control of stabilization -tracking 

systems has been a challenging task for the scientists and 

engineers with the present day requirements of modern aged 

sophistication of these systems. The conventional control 

concepts have been outplayed by the optimal control techniques 

with the evolution of the modern control theory. Moreover, due 

to the problems associated with modern control techniques have 

motivated the engineers to apply intelligent technique to 

circumvent these difficulties. An attempt has been made to 

design and feasibility of an adaptive Particle Swarm 

Optimization (PSO) based fuzzy logic controller for 

stabilization-tracking system. The simulation results obtained in 

the study demonstrate the feasibility of the designed controllers. 
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1. INTRODUCTION 
Stabilization-tracking systems are multidisciplinary in nature 

and are required to maintain the orientation of optical sensors 

(payload ), so that they are pointed in application dependent 

direction and held steady in inertial space along selected 

orientation. Thus stabilization tracking system  precisely control 

the position of sensor’s line of sight (LOS) and provides 

isolation from base foundation dynamics or host platform 

generated vibration. The movement of vehicle carrying the 

sensors can introduce errors in the attempts to maintain a track 

on a given target, thus the modulation transfer function of an 

electro-optical system mounted on a mobile platform decreases 

very rapidly with an increase in the disturbance on a LOS. The 

servo control loops determine the ultimate behavior of 

stabilization-tracking systems.  

In recent years, fuzzy logic based control schemes have become 

a topic of great interest. It is one of the active areas of research 

in the applications of fuzzy set theory, because conventional 

controllers cannot be used due to lack of knowledge regarding 

the input- output models [1,3]. These methods have been used 

successfully in many real-world applications [2,8]. Fuzzy logic 

based controllers are generally applicable to systems that do not 

accurate mathematical models and require only qualitative 

guidance through experienced operators for their implementation 

[4]. Fuzzy logic is conceived as a tool for dealing with 

uncertainty but has proven to be an excellent choice for many 

control system applications. The fast developments in the 

technology relating to hardware systems required for 

implementing fuzzy logic based controllers like fuzzy memory 

devices, fuzzy computers etc. have made a way for effective 

utilization of fuzzy logic even in complex and ill defined 

processes that can be controlled by an expert designer without 

the knowledge of their underlying dynamics [1,5]. 

Classic fuzzy modeling and controlling structures are based on 

extensive expertise of the designer and some heuristic pre-

knowledge, in order to avoid these shortcomings fuzzy logic and 

neural network structure are operated together. This approach 

involves merging or fusing fuzzy systems and neural networks 

into an integrated system to reap the benefits of both[1]. The 

most important neuro-fuzzy model is the Mamdani model. The 

Mamdani Model incorporates an idea that local dynamics of a 

non linear system can be represented by different linear dynamic 

models. In applications of fuzzy-neural networks the learning 

capability of the neural networks is used for determining 

optimum values of fuzzy antecedent (membership) and 

consequent (rule) parameters.  

Many supervised learning algorithms have been proposed in the 

literature for fuzzy controller training [10-13]. The back-

propagation (BP) learning algorithm [14] is widely used for 

training neuro-fuzzy networks by means of error propagation 

using calculus of variance. However the BP learning algorithm 

is a powerful training technique that can be applied in networks 

with feed forward structure to transform them into adaptive 

systems. But the algorithm may reach the local minima and the 

global solution may never be found because the steepest descent 

optimization technique is used in BP training to minimize the 

error function. 

Evolutionary computation has inspired new designs and models 

for physical systems. Evolutionary computation provides a more 

robust and efficient approach for solving complex real-world 

problems. Recently, due to its global optimization capability, the 

genetic algorithm (GA) has become a useful tool for the 

automatic design of fuzzy control systems. The GA is employed 

where desired outputs are not available or costly to obtain. 

However, the learning performance of the GA may not be 

satisfactory for complex problems. In most of real-time control 

problems, the system model is unknown, gradient computation is 

impossible. Therefore, particle swarm optimization technique is 

an effective method to avoid this vital drawback. 

The particle swarm algorithm is an optimization technique 

inspired by social interaction observed among animals such as 

bird flocking and fish schooling. The kind of social interaction 

modeled within a PSO is used to guide a population of 

individuals (so called particles) moving towards the most 

promising area of the search space [9]. The PSO conducts 

searches using the population of particles which correspond to 

individuals in the genetic algorithm. 
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2. FUZZY LOGIC OVERVIEW 
FL was conceived as a better method for sorting and handling 

data but has proven to be a excellent choice for many control 

system applications since it mimics human control logic. It can 

be built into anything from small, hand-held products to large 

computerized process control systems. It uses an imprecise but 

very descriptive language to deal with input data more like a 

human operator. It is very robust and forgiving of operator and 

data input and often works when first implemented with little or 

no tuning. 

3. MAMDANI FUZZY CONTROLLER 
The input variables are error(e) and the rate of change of 

error(ė). The output of the fuzzy controller gives the input 

variables are error(e) and the rate of change of error(ė). The 

output of the fuzzy controller gives the incremental control 

force(u). The membership functions were defined using the 

standard Gaussian function, 

f (x, σ, c) = exp [- (x-c)2  / 2σ2]                              

The proposed membership functions are continuous in the 

universe of discourse and therefore the inferred control output is 

smooth.The scaling process is a trial-and-observation procedure. 

The selection of membership function parameters(c and σ) for 

different fuzzy sets of a variable is very important issue. The 

system performance is very sensitive to this selection. Since this 

selection depends heavily on the knowledge base of the 

designer, the experience of the designer is very vital.  

4. PARTICLE SWARM OPTIMIZATION 

OVERVIEW 
A population of particles is randomly generated initially. Each 

particle represents a potential solution and has a position 

represented by a position vector 
p


i. A swarm of  particles  

moves through the problem space, with the moving velocity of 

each particle represented by a velocity vector v


i. At each step, 

a cost function Cfi representing a quality measure is calculated  

by using as input pi. Each particle keeps track of its own best 

(local best) position, which is associated with the best fitness it 

has found so far in a vector 
p


lb. Furthermore, the best position 

among the all particles obtained so far in the population is kept 

track of as global best 
p


gb. At each step n, by using the 

individual best position, 
p


lb, and global best position, 
p


gb a 

new velocity for the ith particle is updated by [15,16] 

 v


i(n) = χ ( v


i(n-1) + ψ1 r2 (
p


lbi – pi (n-1))+ (1) 

 ψ2r2(
p


gb – pi(n-1))) (2) 

where  r1 and r2 are uniformly distributed random numbers in 

the interval of  the [0,1]. 

ψ1 and ψ2  are positive constant learning rates .χ is called the 

constriction factor and is   defined by 

          χ =                     2                     ,      …...                      (3) 

                          |2-  ψ -√ψ²-4ψ   |                         

                     ψ = ψ1 + ψ2,   ψ>4 

Based on the updated velocities, each particle changes its 

position according to the following 

 
p


i(n) =  
p


i (n-1) + v


i (n) (4) 

5. FUZZY CONTROLLER STRUCTURE 

AND PSO OPTIMIZATION 
A standard Mamdani fuzzy inference system [17] with two 

inputs ( error and derivative of error) and one output (control 

output), 49 first order Mamdani rules, implication min., 

aggregation max., defuzzification  centroid and Gaussian 

membership functions ( 7 for error, 7 for derivative of error and 

7 for control output) is used in this study. Each membership 

function has two parameters – mean and variance. Hence total 

42= (2*(7+7+7)) parameters have been selected as a position 

vector having 42 positions. The purpose of this study is to train 

these 42 parameters using PSO. The ith particle’s cost function, 

Cfi, is computed according to the following equation in this 

study  

Cfi = 




N

m

me
N 1

2

2

1

 (5) 

Where N is the number of discrete time Samples. It is expected 

to minimize this cost function value, while the PSO algorithm 

iteration goes forward. All parameters of the FC are updated at 

every final time. Functions for the input variables (e and ė) and 

the output variable (u). These are the standard values of the 

membership function.The rule base forms an important element 

to process the fuzzified inputs. The expert knowledge is usually 

in the form of “if-then” rules, which are easily implemented by 

fuzzy conditional statements in fuzzy logic. The collection of 

fuzzy control rules constitutes the rule base. The set of rules 

which we have used in this project  are given in the  form of a 

matrix in Table  2. There are total of 49 numbers for all the 

possible combinations of input fuzzy sets. 

  

  Table 1 Parameters of fuzzy membership functions. 

Variables                               e ė                  u 

Fuzzy Sets cσ cσ cσ 

nb -1.0                         

0.35 

-1.0                      

0.141 

-1.0                     

0.141 

Nm -0.25                        
0.1 

-0.66                   
0.141 

-0.57                   
0.142 

Ns -0.1                        
0.04 

-0.2                           
0.12 

-0.15                       
0.1 

Z 0.0                          

0.013 

0.0                            

0.05 

0.0                        

0.007 

Ps 0.1                         
0.04 

0.1                         
0.04 

0.1                         
0.04 

pm 0.25                        

0.1 

0.66                       

0.141 

0.57                       

0.142 

pb 1.0                         
0.35 

1.0                        
0.141 

1.0                       
0.141 
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Particle Swarm optimization Algorithm 

Initialize 

 Set constants kmax, c1, c2. 

 Randomly initialize particle positions  x0iε D in IRn for 
i=1,…..,p. 

 Randomly initialize particle velocities 0≤v0i≤v0max 
for i=1,……,p. 

 Set k=1 

Optimize 

 Evaluate function value fki using design space 
coordinates  xk. 

 If  fki ≤ fbesti  then fbesti=fki,pki=xki. 

 If fki≤fbestg then fbestg=fki,pkg=xki. 

 If stopping condition is satisfied then goto 3. 

 Update all particle velocities vki for i=1,…..,p with rule 
(2.1). 

 Update all particle positions xki for i=1,…..,p with rule 
(2.2). 

 Increment k. 

 Goto 2(a). 

Terminate. 

 

Fig. 1 Flow Chart For  The PSO 

 

Table 2  Final updated values of the 42 parameters of the 

Mamdani model 

                               Final updatedvalues of theMamdanimodel 

gbest(:,:,499)= 

Columns 1 through 8 

0.0155   0.0132   0.0130   0.0706   0.3500   0.236   0.0130   

0.0500 

Columns 9 through 16 

0.0501   0.0500   0.0500   0.0500   0.0501   0.0501   0.1004   

0.1003 

Columns 17 through 24 

0.1000   0.1000   0.1088   0.1002   0.1024   0.9989   0.7546   

0.7622 

Columns 25 through 32 

1.0000   0.1004   0.9395   -0.9479   1.0000   -0.0467   1.0000   

0.3252 

Columns 33 through 40 

0.7391   -0.0535   0.8855   0.9963   0.8942   0.3070   0.4855   -

0.6341 

Columns 41 through 42 

0.2294   -0.3357 

 

 

Fig. 2Particle Swarm optimization algorithm result. 

In beginning the particles scattered everywhere but finally they 

get      Converge at one position. The present graph is the 

plotting of particle between their positions and velocities.  

 x axis- particle position. 

y axis – particlevelocity. 

6. PROBLEM STATEMENT 
In this paper, the plant under consideration consists of a 

gimbaled payload that is driven by a permanent magnet dc motor 

[6,7]. A dual axis dynamically tuned gyro is used to sense the 

inertial angular rate of the gimbal in elevation and azimuth. The 

relevant parameters of gimbal / electronics system are as 

follows: 

 gimbal inertia = 0.5 kg- m2 

 weight of payload= 35 kg 

 load pole= 1 Hz 
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 gimbal resonance=140 Hz 

 torque rating=3.5nm (peak) 

 torque sensitivity(kt) = 0.786 Nm/A 

 backemf constant(kb)=0.786 V/(rad/sec) 

 gyro scale factor=5.73 V/rad. 

 gyro dynamics, singe pole at 100 Hz 

 data acquisition resolution, 16 bits (max. input = ± 10 V) 

 dead band due to stiction friction, 10% of the peak 
torque 

 digital-to-analog converter resolution = 16 bits (max. 
input = ± 10 V) 

The design considerations were as follows: 

 steady state error for step response is <= 0.1% 

 percent overshoot is <= 40% 

 rise time, <=50 ms 

 typical disturbance frequencies are 0.1 to 0.5 Hz 

 typical amplitude of disturbance input is 0.2 rad/sec 

Results of the proposed fuzzy controller 

trained by PSO  

Here, in Fig. 3, the block diagram of PSO trained fuzzy 

controlled stabilization loop is shown. 

Characteristics PSO Trained Fuzzy Controller 

Rise Time ( ms) 36 

Settling Time (ms) 53 

Peak Overshoot (%) 0.8 

Steady State Error (%) 0.1 
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Fig.3 Block diagram of the stabilization loop using   PSO trained fuzzy controller 

 

Fig. 4 Step response with saturation (PSO trained fuzzy 

controller) 
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Table 3  Error between standard output and observed 

output which after certain iterations becomes zero 

Error between standard output and observed output 
err1= 
Columns 1 through 9 
-1.4627 -0.9118 -0.5660  -0.8313  -0.8054  -1.1752  -0.6383 -0.7754 -
1.8635 
Columns 10 through 18 
-1.0405 -0.6990 -0.5460  -0.9532  -0.9181  -0.2645  -0.6284 -0.1102 -
0.5311 
Columns 19 through 27 
-0.1628 -0.1406 -0.3670  -0.1165  -0.2596  -0.2220  -0.2132 -0.1889 -
0.3895 
Columns 28 through 36 
-0.1610 -0.2194 -0.1535  -0.1560  -0.2170  -0.1600  -0.3106 -0.2480 -
0.2039 
Columns 37 through 45 
-0.2180 -0.2911 -0.1703  -0.1978  -0.0418  -0.0885  -0.2095 -0.1400 -
0.1813 
Columns 46 through 54 
-0.1150 -0.0518 -0.1191  -0.0626  -0.1824  -0.0474  -0.0843 -0.1295 -
0.0847 
Columns 55 through 63 
-0.1441 -0.0443 -0.1117  -0.0248  -0.0642  -0.0622  -0.1179 -0.0757 -
0.0554 
Columns 64 through 72 
-0.0693 -0.0857 -0.0492  -0.0753  -0.0329  -0.0373  -0.0753 -0.1060 -
0.0697 

 

                                           Final updatedweights 

Columns 775 through 783 

0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
Columns 784 through 792 

0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

Columns 793 through 801 
0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

 w0 = 

       1.3322   1.4054   1.4786   1.5518 
       1.3322   1.4054   1.4786   1.5518 

w1 = 

      -0.3296  -1.1015  -1.1101  -0.8805 
       1.2944   0.3489   -0.1621  -0.1158 

v  = 

      -0.2127   0.0596   0.3320    0.6043 

 

 

Fig. 5  Fuzzy curves obtained from neuro fuzzy controller. 

7. CONCLUSION 
This paper presents the results of a Mamdani type fuzzy logic 

based controller trained  using PSO for a real time defense 

systems. The proposed fuzzy logic based  controller eliminates 

the hit and trial procedure for tuning the fuzzy controller 

parameters thus reducing the effort and time required in both 

design and optimization. Moreover , implementation of fuzzy 

controller trained using PSO is much easier than the traditional 

methods, especially in embedded systems. The proposed 

approach may further be improved and can be used for the 

rejection of torque disturbances  on the  line of sight. 
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