
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.2, February 2012

44

Non-linear Feedback Neural Network for Solution of

Quadratic Programming Problems

Mohd. Samar Ansari

Department of Electronics Engineering
Aligarh Muslim University

Aligarh, India

Syed Atiqur Rahman
Department of Electronics Engineering

Aligarh Muslim University
Aligarh, India

ABSTRACT

This paper presents a recurrent neural circuit for solving

quadratic programming problems. The objective is

tominimize a quadratic cost function subject to

linearconstraints. The proposed circuit employs non-

linearfeedback, in the form of unipolar comparators, to

introducetranscendental terms in the energy function ensuring

fastconvergence to the solution. The proof of validity of the

energy function is also provided. The hardware complexity of

the proposed circuit comparesfavorably with other proposed

circuits for the same task. PSPICE simulation results

arepresented for a chosen optimization problem and are

foundto agree with the algebraic solution.

General Terms

Neural Networks, Quadratic Programming Problem.

Keywords

Dynamical Systems, Non-Linear Synapse, Feedback

Networks.

1. INTRODUCTION
Quadratic programming problem (QPP) is the problem of

optimizing (minimizing or maximizing) a quadratic function

of several variables subject to linear constraints on these

variables. Such problems arise naturally in a variety of

applications, such as structural analysis [1], optimal control

[2], plastic analysis [3], antenna array pattern synthesis [4],

geometric optimization [5], propulsion physics [6], multi-

commodity networks [7], etc. Moreover, in the discipline of

constrained optimization, problems with nonlinear objective

functions are usually approximated by a second-order system

and solved by a standard quadratic programming technique.

Traditional methods for solving quadratic programming

problems typically involve an iterative process, but long

computational time limits their usage. An alternative approach

to solution of this problem is to exploit the artificial neural

networks (ANN's) which can be considered as an analog

computer relying on a highly simplified model of neurons [8].

ANN's have been applied to several classes of constrained

optimization problems and have shown promise for solving

such problems more effectively. For example, the Hopfield

neural network has proven to be a powerful tool for solving

some of the optimization problems. Tank and Hopfield first

proposed a neural network for solving mathematical

programming problems, where a linear programming problem

(LPP) was mapped into a closed-loop network [9]. Later, the

dynamical approach was extended for solving quadratic

programming problems. Over the past two decades several

neural-network architectures for solving quadratic

programming problems have been proposed by Kennedy &

Chua [10], Maa&Shanblatt[11], Chen & Fang [12], Wu et

al.[13] and Xia [14]. More recently, Malek&Alipour proposed

a recurrent neural network that is able to solve quadratic

programming problems [15] without needing to set network

parameters thereby reducing the number of analog multipliers

required.

In this paper, a hardware solution to the problem of solving a

quadratic programming problem is presented. The proposed

architecture uses non-linear feedback which leads to a new

energy function that involves transcendental terms. This

transcendental energy function is fundamentally different

from the standard quadratic form associated with Hopfield

network and its variants. To solve a QPP in n variables with m

constraints, the circuit requires n opamps,m unipolar

comparators and (n2+mn) resistances thereby causing the

hardware complexity of the proposed network to compare

favorably with the existing hardware implementations. It may

be mentioned that a similar approach of using non-linear

synaptic interconnections between neurons has also been

employed to solve systems of simultaneous linear equations

[16] and linear programming problems [17].

The remainder of this paper is arranged as follows. A brief

review of relevant technical literature on the solution of QPP

using neural network based methods is presented in Section-2.

Section-3 outlines the mathematical formulation of the basic

problem and details of the proposed network. Section-4

contains explanation of the energy function and the proof of

its validity. Section-5 contains the circuit implementation of

the proposed network for a set of sample problem in two

variables. PSPICE simulation results of the proposed circuit

are also presented. Issues that are expected to arise in actual

monolithic implementations are discussed in Section-6.

Concluding remarks are presented in Section-7.

2. EXISTING NEURAL NETWORKS

FOR QPP
Various methods to solve QPP by employing neural network

approaches are available in the technical literature. Kennedy

& Chua extended the Tank and Hopfield network by

developing a neural network for solving nonlinear

programming problems, by satisfaction of the Karush–Kuhn–

Tucker optimality conditions [10]. However, the need to set a

penalty parameter means that the network can generate

approximate solutions only and implementation problems

arise when the penalty parameter is large. Each variable

amplifier comprises of 2 opamps, 2 resistors and 1 capacitor

whereas for satisfying each constraint, the constraint amplifier

employs 3 opamps, 2 resistors and 1 diode [10]. Wang

proposed a recurrent neural network for solving QPPs with

equality constraints. The network is asymptoticallystable and

is able to generate optimal solutions to quadratic programs

with equality constraints. An opamp based circuit realization

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.2, February 2012

45

of the network is also presented which requires (n+m) neurons

for solving a QPP in n variables with m constraints. Each

neuron is made up of a summer, an integrator, and an inverter

consuming 3 opamps, 1 capacitor and (n+5) resistors [18].

Wang's network is not suitable for real time applications as it

takes around 50 ms to arrive at the solution [18]. A rigorous

analysis of the prominent neural networks for QPP, available

till that time (1992), is presented in [11]. Forti&Tesi presented

new conditions capable of ensuring existence, uniqueness, and

global asymptotic stability of the equilibrium point for

Kennedy and Chua's network [19]. Wu et al. proposed two

neural network models for solving LPP and QPP, the

convergence of which was not dependent on the network

parameters [13].

Around the same time, Xia also put forward a neural network

capable of solving both LPP and QPP in which no parameter

tuning was necessary. Moreover, the actual hardware

implementation was somewhat simplified, as compared to its

contemporaries, because of the fact that no analog multipliers

were required for the variables [14]. To solve a QPP in n

variables with m constraints, Xia's network consisted of

(2m2+4mn) amplifiers, (2m2+4mn+3m+3) summers, (n+m)

integrators, and n limiters. Tao, Cao and Sun further

simplified the network of Xia [14], and reduced the system

complexity [20]. More recently, Liu and Wang presented a

one layer feedback neural network with a discontinuous hard-

limiting activation function for solving QPP in which the

number of neurons is the same as the number of decision

variables [21]. Each neuron in [21] is composed of two

adders, (3n+1) resistors, one limiter and an integrator.

Although significant reduction in circuit complexity is

achieved, the time that the circuit takes to arrive at the correct

solution is of the order of seconds thereby making the circuit

unsuitable for applications requiring fast solution times. A

comprehensive bibliography of the technical literature related

to QPP can be found in [22].

3. PROPOSED CIRCUIT
Let the second-orderfunction to be minimized be

𝐹 =

𝑉1

𝑉2

⋮
𝑉𝑛

𝑇

c11 c12 … c1n

c21 c22 … c2n

⋮ ⋮ … ⋮
cn1 cn2 … cnn

𝑉1

𝑉2

⋮
𝑉𝑛

 (1)

subject tothe following linear constraints

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ … ⋮
am1 am2 … amn

𝑉1

𝑉2

⋮
𝑉𝑛

 ≤

b1

b2

⋮
bm

 (2)

whereV1, V2,…, Vn are the variables, and aij, cij and bi (i = 1, 2,

…, m; j = 1, 2, …, n) are constants. The proposed

neuralnetwork based circuit to minimize the quadratic

function given in (1) in accordance with the constraints of (2)

is presented in Fig. 1. As can be seen from Fig. 1, individual

equations from the set of equations to be solved are passed

through non-linear synapses which are realized using unipolar

comparators comprising of operational amplifiers and diodes.

Rp1 and Cp1are the input resistance and capacitance of the

opamp that is used to emulate the functionality of a neuron.

These parasitic components are included to model the

dynamic nature of the opamp. The outputs of the comparators

are fed to neurons having weighted inputs. The neurons are

realized by using opamps and the weights are implemented

using resistances. The currents arriving to the neuron from

various synapses get added up at the input of the neuron.

Fig 1: First neuron of the proposed feedback neural

network circuit to solve a quadratic programming

problem in n variables with m linear constraints.

Graphical representation of the transfer characteristics for a

bipolar comparator is shown in Fig 2(a) from where it can be

seen that the comparator output saturates at ±Vm when the two

inputs differ by more than few millivolts in magnitude.

Unipolar transfer characteristics can be obtained using an

opamp (the transfer characteristics of which can be modeled

by (3) by employing a diode as depicted in Fig. 3, the diode

essentially `trimming' one half of the transfer characteristic

curve, which are shown in Fig. 2(b) and can be

mathematically modeled by (4). As is explained in the next

section, such unipolar comparator characteristics are utilized

to obtain an energy function which acts to bring the neuronal

states to the feasible region.

Fig 2: Transfer characteristics of (a) bipolar; and

(b)unipolar; comparators

Fig 3: Obtaining unipolar comparator characteristics

using an opamp and a diode

𝑥 = 𝑉𝑚 𝑡𝑎𝑛ℎ 𝛽 𝑉𝑖 − 𝑉𝑗 (3)

𝑥 =
1

2
𝑉𝑚 𝑡𝑎𝑛ℎ 𝛽 𝑉𝑖 − 𝑉𝑗 + 1 (4)

Using (4), the output of the i-th unipolar comparator in Fig. 1

can be given by (5) where βis the open-loop gain of the

comparator (practically very high), ±Vm are the output voltage

levels of the comparator and V1, V2,…,Vn are the neuron

outputs.

𝑥𝑖 =
𝑉𝑚

2
 𝑡𝑎𝑛ℎ 𝛽 𝑎𝑖1𝑉1 + 𝑎𝑖2𝑉2 + ⋯ + 𝑎𝑖𝑛𝑉𝑛 − 𝑏𝑖 + 1 (5)

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.2, February 2012

46

Applying node equations for node ‘A’ in Fig. 1, the equation

of motion of the i-th neuron can be given as

𝐶𝑖

𝑑𝑢𝑖

𝑑𝑡
=

𝑥1

𝑅𝑐1𝑖
+

𝑥2

𝑅𝑐2𝑖
+ ⋯ +

𝑥𝑛

𝑅𝑐𝑛𝑖

+
𝑉1

𝑅1𝑖
+

𝑉2

𝑅2𝑖
+ ⋯ +

𝑉𝑛
𝑅𝑛𝑖

 −
𝑢𝑖

𝑅𝑖
 (6)

whereRi is the parallel equivalent of all resistances connected

at node ‘A’ in Fig. 1 and is given by

1

𝑅𝑖
=

1

𝑅𝑗𝑖

𝑛

𝑗 =1

+
1

𝑅𝑐𝑗𝑖

𝑛

𝑗 =1

+
1

𝑅𝑝𝑖
 (7)

whereui is the internal state of the i-th neuron, Rc1i, Rc2i, Rcni,

… are the weight resistance connecting the outputs of the

unipolar comparators to the input of the i-th neuron and R1i,

R2i, Rni, … are the feedback resistances from the outputs of the

neurons to the input of the i-th neuron. As is shown later in

this section, the values of these resistances are governed by

the entries in the coefficient matrix of (2). Rpi and Cpi are the

input resistance and capacitance of the opamp corresponding

to the i-th neuron.

Further, as has been explained in Section-3, the non-linear

feedback neural circuit of Fig. 1 is associated with the

following Lyapunov function (also referred to as the ‘energy

function’)

𝐸 = 𝐶𝑖𝑗𝑉𝑖𝑉𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

+
𝑉𝑚
2

 𝑎𝑖𝑗𝑉𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

+
𝑉𝑚
2𝛽

 ln coshβ (𝑎𝑖𝑗 𝑉𝑗

𝑛

𝑗 =1

− 𝑏𝑖)

𝑚

𝑖=1

 (8)

This expression of the Energy Function can be written in a

slightly different (but more illuminating) form as

 𝐸 = 𝐶𝑗𝑖𝑉𝑖𝑉𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

+ 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑚 (9)

where the first term is the same as the second-order function

to be minimized, as given in (1), and P1, P2, … , Pm are the

penalty terms. The i-th penalty term can be given as

𝑃𝑚 =
𝑉𝑚
2

 𝑎𝑖𝑗𝑉𝑗

𝑛

𝑗 =1

+
𝑉𝑚
2𝛽

ln coshβ 𝑎𝑖𝑗𝑉𝑗 − 𝑏𝑖

𝑛

𝑗 =1

 (10)

Obtaining a partial differentiation of the combined penalty

term, P (=P1+P2+…+Pm) with respect to Vi we have

𝜕𝑃

𝜕𝑉𝑖
=

𝑉𝑚
2

 𝑎𝑗𝑖

𝑚

𝑗 =1

+
𝑉𝑚
𝛽

 𝑎𝑗𝑖

𝑚

𝑗 =1

tanh β 𝑎𝑖𝑗𝑉𝑗 − 𝑏𝑖

𝑛

𝑗=1

 (11)

which may be simplified to

𝜕𝑃

𝜕𝑉𝑖
= 𝑎𝑗𝑖 𝑥𝑗

𝑚

𝑗 =1

 (12)

Using the above relations to find the derivative of the energy

function E with respect to Vi we have

𝜕𝐸

𝜕𝑉𝑖
=

𝜕

𝜕𝑉𝑖
 𝐶𝑖𝑗𝑉𝑖𝑉𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

 +
𝜕𝑃

𝜕𝑉𝑖
 (13)

which in turn yields

𝜕𝑃

𝜕𝑉𝑖
= 𝑐𝑖𝑗

𝑛

𝑗=1

+ 𝑎𝑗𝑖 𝑥𝑗

𝑚

𝑗 =1

 (14)

Also, if E is the Energy Function, it must satisfy the following

condition [23]:

𝜕𝐸

𝜕𝑉𝑖
= 𝐾𝐶𝑖

𝑑𝑢𝑖

𝑑𝑡
 (15)

whereK is a constant of proportionality and has the

dimensions of resistance. Equation (15) applied to the i-th

neuron results in

𝑅𝑐𝑖𝑗 =
𝐾

𝑎𝑖𝑗
 (16)

A similar comparison of the remaining partial fractions for the

remaining variables yields the following:

𝑅𝑐11 𝑅𝑐12

𝑅𝑐21 𝑅𝑐22

… 𝑅𝑐1𝑛

… 𝑅𝑐2𝑛

⋮ ⋮
𝑅𝑐𝑚1 𝑅𝑐𝑚2

… ⋮
… 𝑅𝑐𝑚𝑛

 = 𝐾

1
𝑎11

 1
𝑎12

1
𝑎21

 1
𝑎22

… 1
𝑎1𝑛

… 1
𝑎2𝑛

⋮ ⋮
1

𝑎𝑚1
 1

𝑎𝑚2

… ⋮

… 1
𝑎𝑚𝑛

 (17)

and

𝑅11 𝑅12

𝑅21 𝑅22

… 𝑅1𝑛

… 𝑅2𝑛

⋮ ⋮
𝑅𝑚1 𝑅𝑚2

… ⋮
… 𝑅𝑚𝑛

 = 𝐾

1
𝑐11

 1
𝑐12

1
𝑐21

 1
𝑐22

… 1
𝑐1𝑛

… 1
𝑐2𝑛

⋮ ⋮
1

𝑐𝑚1
 1

𝑐𝑚2

… ⋮

… 1
𝑐𝑚𝑛

 (18)

4. ENERGY FUNCTION
This section deals with the explanation of individual terms in

the energy function expression given in (8). The last term is

transcendental in nature and an indicative plot showing the

combined effect of the last two terms is presented in Fig. 4.

As can be seen, one ‘side’ of the energy landscape is flat

whilst the other has a slope directed to bring the system state

towards the side of the flat slope. During the actual operation

of the proposed QPP solving circuit, the comparators remain

effective only when the neuronal output states remain outside

the feasible region and during this condition, these unipolar

comparators work to bring (and restrict) the neuron output

voltages to the feasible region. Once that is achieved, first

term in (8) takes over and works to minimize the given

quadratic function.

Fig 4: Combined effect of last two terms in (8)

The validity of the energy function of (8) can be proved as

follows. The time derivative of the energy function is given

by

𝑑𝐸

𝑑𝑡
=

𝜕𝐸

𝜕𝑉𝑖

𝑑𝑉𝑖

𝑑𝑡

𝑁

𝑖=1

 =
𝜕𝐸

𝜕𝑉𝑖

𝑑𝑉𝑖

𝑑𝑢𝑖

𝑁

𝑖=1

𝑑𝑢𝑖

𝑑𝑡
 (19)

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.2, February 2012

47

Using (15) in (19) we get

𝑑𝐸

𝑑𝑡
= 𝐾𝐶𝑖

𝑁

𝑖=1

𝑑𝑢𝑖

𝑑𝑡

2 𝑑𝑉𝑖

𝑑𝑢𝑖

 20

The transfer characteristics of the output opamp used to

implement the neurons in Fig. 1 implements the activation

function of the neuron and can be written as

𝑉𝑖 = 𝑓 𝑢𝑖 21

Fig 5: Transfer characteristics of the opamp used to

realize the neurons

whereVi denotes the output of the opamp and ui corresponds

to the internal state at the inverting terminal. The function f is

typically a saturating, monotonically decreasing one, as

shown in Fig. 5, and therefore [16],

𝑑𝑉𝑖

𝑑𝑢𝑖
 ≤ 0 22

thereby resulting in

𝑑𝐸

𝑑𝑡
≤ 0 23

with the equality being valid for

𝑑𝑢𝑖

𝑑𝑡
= 0 24

Equation (23) shows that the energy function can never

increase with time which is one of the conditions for a valid

energy function. The second criterion viz. the energy function

must have a lower bound is also satisfied for the circuit of Fig.

1 wherein it may be seen that V1, V2, …, Vn are all bounded (as

they are the outputs of opamps, as given in (21) amounting to

E, as given in (8), having a finite lower bound.

5. SIMULATION RESULTS
This sectiondeals with the application of the proposed

network to task of minimizing the objective function

 3𝑉1
2 + 4𝑉1𝑉2 + 5𝑉2

2 25

subject to

𝑉1 − 𝑉2 ≤ −1(26)

𝑉1 + 𝑉2 ≤ 1

The values of resistances acting as the weights on the neurons

are obtained from (17,18). For the purpose of simulation, the

value of K was chosen to be 1 KΩ. Using K = 1 KΩ in

(17,18) gives

Rc11 = Rc12 = Rc21 = Rc22 = K = 1 K, R11 = 1.66 K, R21 = 1 K,

R12 = 1.66 K, R22 = 1 K

For the purpose of PSPICE simulations, the unipolar voltage

comparator was realized using a diode clamp with an opamp

based comparator. The transfer characteristics obtained during

the PSPICE simulations for opamp based bipolar and unipolar

comparators are presented in Fig.6. For the purpose of this

simulation, the LMC7101A CMOS opamp model from the

Orcad library in PSPICE was utilised. The value of βfor this

opamp was measured to be 1.1×104 using PSPICE simulation.

Fig 6: Transfer characteristics for opamp based unipolar

and bipolar comparators

Routine mathematical analysis of (25) yields: V1= – 0.584,

V2= 0.416. The resultant plots of the neuron output voltages

as obtained after PSPICE simulation are presented in Fig.7

from where it can be seen that V(1) = –0.58 V and V(2) =

0.41 V which are very near to the algebraic solution thereby

confirming the validity of the approach. The initial node

voltages were kept as V(1) = –1 mV and V(2) = –10 mV.

Fig 7: Simulation results for the proposed circuit applied

to minimize (25) subject to (26)

6. ISSUES IN VLSI IMPLEMENTATION
This section deals with the monolithic implementation issues

of the proposed circuit. The PSPICE simulations assumed that

all operational amplifiers (and diodes) are identical, and

therefore, it is required to determine how deviations from this

assumption affect the performance of the network. Effects of

variations in component values from one neuron to another

were also investigated using Monte-Carlo analysis in PSPICE.

A 10% tolerance with Gaussian deviation profile was put on

the resistances used in the circuit to solve (25). The analysis

was carried out for 100 runs and the Mean Deviation was

found out to be -144.73×10-6 and Mean Sigma (Standard

Deviation) was 0.0119. Offset analysis was also carried out by

incorporating random offset voltages (in the range of 1 mV to

10 mV) to the opamps. The Mean Deviation in this case was

measured to be -143.51×10-6and the Mean Sigma (Standard

Deviation) was 0.012. As can be seen, the effects of

mismatches and offsets on the overall precision of the final

results are in an acceptable range.

In fact, the realization of unipolar comparators by the use of

opamps in the proposed circuit tends to increase the circuit

complexity. The transistor count can be further reduced by

utilising voltage-mode unipolar comparators instead of the

opamp-diode combination. This also suggests that a real, large

scale implementation for solving quadratic programming

problems with high variable counts might be quite different.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.2, February 2012

48

Alternative realizations based on the differential equations (6)

governing the system of neurons are being investigated. Other

approaches to obtain the tanh(.) non-linearity include the use

of a MOSFET operated in the sub-threshold region [24] and

the use of Current Differencing Transconductance Amplifier

(CDTA) to provide the same nonlinearity in the current-mode

regime [25].

7. CONCLUSION
In this paper, a CMOS compatible approach to solve a

quadratic programming problem in n variables subject to

mlinear constraints, which uses nneurons and msynapses is

presented. Each neuron requires one opamp and each synapse

is implemented using a unipolar voltage-mode comparator.

This results in significant reduction in hardware over the

existing schemes. The proposed network was tested on a

sample problem of minimizing a quadratic function in 2

variables and the simulation results confirm the validity of the

approach.

8. REFERENCES
[1] Atkociunas, J. 1996. Quadratic programming for

degenerate shakedown problems of bar structures.
Mechanics Research Communications, 23(2), 195–206.

[2] Bartlett, R.A., Wachter, A., and Biegler, L.T. 2000.
Active set vs. interior point strategies for model
predictive control. In Proceedings of the American
Control Conference, Chicago, USA, June 2000, 4229–
4233.

[3] Maier, G. and Munro, J. 1982. Mathematical
programming applications to engineering plastic
analysis. Applied Mechanics Reviews, 35, 1631–1643.

[4] Nordebo, S., Zang, Z., and Claesson, I. 2001. A semi-
infinite quadratic programming algorithm with
applications to array pattern synthesis. IEEE
Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 48(3), 225–232.

[5] Schonherr, S. 2002. Quadratic programming in
geometric optimization: theory, implementation, and
applications. Technical report, Swiss Federal Institute
of Technology, Zurich.

[6] Borguet, S. and O. Lonard, O. 2009. A quadratic
programming framework for constrained and robust jet
engine health monitoring. Progress in Propulsion
Physics, 1, 669–692.

[7] Dembo, R.S. and Tulowitzki, U. 1988. Computing
equilibria on large multicommodity networks: An
application of truncated quadratic programming
algorithms. Networks, 18(4), 273–284.

[8] Krogh, A. 2008. What are artificial neural networks?
Nature Biotechnology, 26(2), 195–197.

[9] Tank, D.W. and Hopfield, J. 1986. Simple ‘neural’
optimization networks: An A/D converter, signal
decision circuit, and a linear programming circuit. IEEE
Transactions on Circuits and Systems, 33(5), 533–541.

[10] Kennedy, M.P. and Chua, L.O. 1988. Neural networks
for nonlinear programming. IEEE Transactions on
Circuits and Systems, 35(5), 554–562.

[11] Maa, C.-Y. andShanblatt, M.A. 1992. Linear and
quadratic programming neural network analysis. IEEE
Transactions on Neural Networks, 3(4), 580–594.

[12] Chen, Y.-H. and Fang, S.-C. 1998. Solving convex
programming problems with equality constraints by
neural networks. Computers & Mathematics with
Applications, 36(7), 41–68.

[13] Wu, X.-Y., Xia, Y.-S., Li, J., and Chen, W.-K. 1996. A
high-performance neural network for solving linear and
quadratic programming problems. IEEE Transactions
on Neural Networks, 7(3), 643–651.

[14] Xia Y. 1996. A new neural network for solving linear
and quadratic programming problems. IEEE
Transactions on Neural Networks, 7(6), 1544–1548.

[15] Malek, A. and Alipour, M. 2007. Numerical solution for
linear and quadratic programming problems using a
recurrent neural network. Applied Mathematics and
Computation, 192(1), 27–39.

[16] Rahman, S.A. and Ansari, M.S. 2011. A neural
circuitwith transcendental energy function for solving
system of linear equations. Analog Integrated Circuits
and Signal Processing, 66, 433–440.

[17] Ansari, M.S. and Rahman, S.A. 2010. A DVCC-based
non-linear analog circuit for solving linear programming
problems. In Proceedings of International Conference on
Power, Control and Embedded Systems (ICPCES), Dec
2010, 1–4.

[18] Wang, J. 1992. Recurrent neural network for solving
quadratic programming problems with equality
constraints. Electronics Letters, 28(14), 1345–1347.

[19] Forti, M. and Tesi, A. New conditions for global
stability of neural networks with application to linear and
quadratic programming problems. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and
Applications, 42(7), 354–366.

[20] Tao, Q., Cao, J., and Sun, D. 2001. A simple and high
performance neural network for quadratic programming
problems. Applied Mathematics and Computation,
124(2), 251–260.

[21] Liu, Q. and Wang, J. 2008. A one-layer recurrent neural
network with a discontinuous hard-limiting activation
function for quadratic programming. IEEE Transactions
on Neural Networks, 19(4), 558–570.

[22] Gould, N.I.M., and Toint, P.L. 2010. A quadratic
programming bibliography. Technical report, RAL
Numerical Analysis Group, March 2010.

[23] Rahman, S.A., Jayadeva, and S.C. Dutta Roy. 1999.
Neural network approach to graph colouring. Electronics
Letters, 35(14), 1173–1175.

[24] Newcomb, R.W. and Lohn, J.D. 1998. The handbook of
brain theory and neural networks. Chapter: Analog VLSI
for neural networks, MIT Press, Cambridge, MA, USA,
86–90.

[25] Ansari, M.S. and Rahman, S.A. 2009. A novel current-
mode non-linear feedback neural circuit for solving
linear equations. In Proceedings of International
Conference on Multimedia, Signal Processing and
Communication Technologies, 284–287.

