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ABSTRACT 

This paper presents a recurrent neural circuit for solving 

quadratic programming problems. The objective is 

tominimize a quadratic cost function subject to 

linearconstraints. The proposed circuit employs non-

linearfeedback, in the form of unipolar comparators, to 

introducetranscendental terms in the energy function ensuring 

fastconvergence to the solution. The proof of validity of the 

energy function is also provided. The hardware complexity of 

the proposed circuit comparesfavorably with other proposed 

circuits for the same task. PSPICE simulation results 

arepresented for a chosen optimization problem and are 

foundto agree with the algebraic solution. 
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1. INTRODUCTION 
Quadratic programming problem (QPP) is the problem of 

optimizing (minimizing or maximizing) a quadratic function 

of several variables subject to linear constraints on these 

variables. Such problems arise naturally in a variety of 

applications, such as structural analysis [1], optimal control 

[2], plastic analysis [3], antenna array pattern synthesis [4], 

geometric optimization [5], propulsion physics [6], multi-

commodity networks [7], etc. Moreover, in the discipline of 

constrained optimization, problems with nonlinear objective 

functions are usually approximated by a second-order system 

and solved by a standard quadratic programming technique. 

Traditional methods for solving quadratic programming 

problems typically involve an iterative process, but long 

computational time limits their usage. An alternative approach 

to solution of this problem is to exploit the artificial neural 

networks (ANN's) which can be considered as an analog 

computer relying on a highly simplified model of neurons [8]. 

ANN's have been applied to several classes of constrained 

optimization problems and have shown promise for solving 

such problems more effectively. For example, the Hopfield 

neural network has proven to be a powerful tool for solving 

some of the optimization problems. Tank and Hopfield first 

proposed a neural network for solving mathematical 

programming problems, where a linear programming problem 

(LPP) was mapped into a closed-loop network [9]. Later, the 

dynamical approach was extended for solving quadratic 

programming problems. Over the past two decades several 

neural-network architectures for solving quadratic 

programming problems have been proposed by Kennedy & 

Chua [10], Maa&Shanblatt[11], Chen & Fang [12], Wu et 

al.[13] and Xia [14]. More recently, Malek&Alipour proposed 

a recurrent neural network that is able to solve quadratic 

programming problems [15] without needing to set network 

parameters thereby reducing the number of analog multipliers 

required. 

In this paper, a hardware solution to the problem of solving a 

quadratic programming problem is presented. The proposed 

architecture uses non-linear feedback which leads to a new 

energy function that involves transcendental terms. This 

transcendental energy function is fundamentally different 

from the standard quadratic form associated with Hopfield 

network and its variants. To solve a QPP in n variables with m 

constraints, the circuit requires n opamps,m unipolar 

comparators and (n2+mn) resistances thereby causing the 

hardware complexity of the proposed network to compare 

favorably with the existing hardware implementations. It may 

be mentioned that a similar approach of using non-linear 

synaptic interconnections between neurons has also been 

employed to solve systems of simultaneous linear equations 

[16] and linear programming problems [17]. 

The remainder of this paper is arranged as follows. A brief 

review of relevant technical literature on the solution of QPP 

using neural network based methods is presented in Section-2. 

Section-3 outlines the mathematical formulation of the basic 

problem and details of the proposed network. Section-4 

contains explanation of the energy function and the proof of 

its validity. Section-5 contains the circuit implementation of 

the proposed network for a set of sample problem in two 

variables. PSPICE simulation results of the proposed circuit 

are also presented. Issues that are expected to arise in actual 

monolithic implementations are discussed in Section-6. 

Concluding remarks are presented in Section-7. 

2. EXISTING NEURAL NETWORKS 

FOR QPP 
Various methods to solve QPP by employing neural network 

approaches are available in the technical literature. Kennedy 

& Chua extended the Tank and Hopfield network by 

developing a neural network for solving nonlinear 

programming problems, by satisfaction of the Karush–Kuhn–

Tucker optimality conditions [10]. However, the need to set a 

penalty parameter means that the network can generate 

approximate solutions only and implementation problems 

arise when the penalty parameter is large. Each variable 

amplifier comprises of 2 opamps, 2 resistors and 1 capacitor 

whereas for satisfying each constraint, the constraint amplifier 

employs 3 opamps, 2 resistors and 1 diode [10]. Wang 

proposed a recurrent neural network for solving QPPs with 

equality constraints. The network is asymptoticallystable and 

is able to generate optimal solutions to quadratic programs 

with equality constraints. An opamp based circuit realization 
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of the network is also presented which requires (n+m) neurons 

for solving a QPP in n variables with m constraints. Each 

neuron is made up of a summer, an integrator, and an inverter 

consuming 3 opamps, 1 capacitor and (n+5) resistors [18]. 

Wang's network is not suitable for real time applications as it 

takes around 50 ms to arrive at the solution [18]. A rigorous 

analysis of the prominent neural networks for QPP, available 

till that time (1992), is presented in [11]. Forti&Tesi presented 

new conditions capable of ensuring existence, uniqueness, and 

global asymptotic stability of the equilibrium point for 

Kennedy and Chua's network [19]. Wu et al. proposed two 

neural network models for solving LPP and QPP, the 

convergence of which was not dependent on the network 

parameters [13].  

Around the same time, Xia also put forward a neural network 

capable of solving both LPP and QPP in which no parameter 

tuning was necessary. Moreover, the actual hardware 

implementation was somewhat simplified, as compared to its 

contemporaries, because of the fact that no analog multipliers 

were required for the variables [14]. To solve a QPP in n 

variables with m constraints, Xia's network consisted of 

(2m2+4mn) amplifiers, (2m2+4mn+3m+3) summers, (n+m) 

integrators, and n limiters. Tao, Cao and Sun further 

simplified the network of Xia [14], and reduced the system 

complexity [20]. More recently, Liu and Wang presented a 

one layer feedback neural network with a discontinuous hard-

limiting activation function for solving QPP in which the 

number of neurons is the same as the number of decision 

variables [21]. Each neuron in [21] is composed of two 

adders, (3n+1) resistors, one limiter and an integrator. 

Although significant reduction in circuit complexity is 

achieved, the time that the circuit takes to arrive at the correct 

solution is of the order of seconds thereby making the circuit 

unsuitable for applications requiring fast solution times. A 

comprehensive bibliography of the technical literature related 

to QPP can be found in [22]. 

3. PROPOSED CIRCUIT 
Let the second-orderfunction to be minimized be 

𝐹 =  

𝑉1

𝑉2

⋮
𝑉𝑛

 

𝑇

 

c11 c12 … c1n

c21 c22 … c2n

⋮ ⋮ … ⋮
cn1 cn2 … cnn

  

𝑉1

𝑉2

⋮
𝑉𝑛

      (1) 

subject tothe following linear constraints 

 

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ … ⋮
am1 am2 … amn

  

𝑉1

𝑉2

⋮
𝑉𝑛

  ≤  

b1

b2

⋮
bm

      (2) 

whereV1, V2,…, Vn are the variables, and aij, cij and bi (i = 1, 2, 

…, m; j = 1, 2, …, n) are constants. The proposed 

neuralnetwork based circuit to minimize the quadratic 

function given in (1) in accordance with the constraints of (2) 

is presented in Fig. 1. As can be seen from Fig. 1, individual 

equations from the set of equations to be solved are passed 

through non-linear synapses which are realized using unipolar 

comparators comprising of operational amplifiers and diodes. 

Rp1 and Cp1are the input resistance and capacitance of the 

opamp that is used to emulate the functionality of a neuron. 

These parasitic components are included to model the 

dynamic nature of the opamp. The outputs of the comparators 

are fed to neurons having weighted inputs. The neurons are 

realized by using opamps and the weights are implemented 

using resistances. The currents arriving to the neuron from 

various synapses get added up at the input of the neuron. 

 

Fig 1: First neuron of the proposed feedback neural 

network circuit to solve a quadratic programming 

problem in n variables with m linear constraints. 

Graphical representation of the transfer characteristics for a 

bipolar comparator is shown in Fig 2(a) from where it can be 

seen that the comparator output saturates at ±Vm when the two 

inputs differ by more than few millivolts in magnitude. 

Unipolar transfer characteristics can be obtained using an 

opamp (the transfer characteristics of which can be modeled 

by (3) by employing a diode as depicted in Fig. 3, the diode 

essentially `trimming' one half of the transfer characteristic 

curve, which are shown in Fig. 2(b) and can be 

mathematically modeled by (4). As is explained in the next 

section, such unipolar comparator characteristics are utilized 

to obtain an energy function which acts to bring the neuronal 

states to the feasible region. 

 

Fig 2: Transfer characteristics of (a) bipolar; and 

(b)unipolar; comparators 

 

Fig 3: Obtaining unipolar comparator characteristics 

using an opamp and a diode 

𝑥 = 𝑉𝑚 𝑡𝑎𝑛ℎ 𝛽 𝑉𝑖 − 𝑉𝑗                                    (3) 

𝑥 =
1

2
𝑉𝑚  𝑡𝑎𝑛ℎ 𝛽 𝑉𝑖 − 𝑉𝑗  + 1                           (4) 

Using (4), the output of the i-th unipolar comparator in Fig. 1 

can be given by (5) where βis the open-loop gain of the 

comparator (practically very high), ±Vm are the output voltage 

levels of the comparator and V1, V2,…,Vn are the neuron 

outputs. 

𝑥𝑖 =
𝑉𝑚

2
 𝑡𝑎𝑛ℎ 𝛽 𝑎𝑖1𝑉1 + 𝑎𝑖2𝑉2 + ⋯ + 𝑎𝑖𝑛𝑉𝑛 − 𝑏𝑖 + 1    (5) 
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Applying node equations for node ‘A’ in Fig. 1, the equation 

of motion of the i-th neuron can be given as 

𝐶𝑖

𝑑𝑢𝑖

𝑑𝑡
=  

𝑥1

𝑅𝑐1𝑖
+ 

𝑥2

𝑅𝑐2𝑖
+ ⋯ + 

𝑥𝑛

𝑅𝑐𝑛𝑖
 

+  
𝑉1

𝑅1𝑖
+ 

𝑉2

𝑅2𝑖
+ ⋯ +

𝑉𝑛
𝑅𝑛𝑖

 −
𝑢𝑖

𝑅𝑖
             (6) 

whereRi is the parallel equivalent of all resistances connected 

at node ‘A’ in Fig. 1 and is given by 

1

𝑅𝑖
=  

1

𝑅𝑗𝑖

𝑛

𝑗 =1

+  
1

𝑅𝑐𝑗𝑖

𝑛

𝑗 =1

+
1

𝑅𝑝𝑖
                          (7) 

whereui is the internal state of the i-th neuron, Rc1i, Rc2i, Rcni, 

… are the weight resistance connecting the outputs of the 

unipolar comparators to the input of the i-th neuron and R1i, 

R2i, Rni, … are the feedback resistances from the outputs of the 

neurons to the input of the i-th neuron. As is shown later in 

this section, the values of these resistances are governed by 

the entries in the coefficient matrix of (2). Rpi and Cpi are the 

input resistance and capacitance of the opamp corresponding 

to the i-th neuron. 

Further, as has been explained in Section-3, the non-linear 

feedback neural circuit of Fig. 1 is associated with the 

following Lyapunov function (also referred to as the ‘energy 

function’) 

𝐸 =    𝐶𝑖𝑗𝑉𝑖𝑉𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

+
𝑉𝑚
2

  𝑎𝑖𝑗𝑉𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

 

+  
𝑉𝑚
2𝛽

 ln coshβ   (𝑎𝑖𝑗 𝑉𝑗

𝑛

𝑗 =1

− 𝑏𝑖) 

𝑚

𝑖=1

  (8) 

This expression of the Energy Function can be written in a 

slightly different (but more illuminating) form as 

               𝐸 =    𝐶𝑗𝑖𝑉𝑖𝑉𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

+  𝑃1 + 𝑃2 + ⋯ + 𝑃𝑚               (9) 

where the first term is the same as the second-order function 

to be minimized, as given in (1), and P1, P2, … , Pm are the 

penalty terms. The i-th penalty term can be given as 

𝑃𝑚 =  
𝑉𝑚
2

 𝑎𝑖𝑗𝑉𝑗

𝑛

𝑗 =1

+
𝑉𝑚
2𝛽

ln coshβ   𝑎𝑖𝑗𝑉𝑗 − 𝑏𝑖

𝑛

𝑗 =1

            (10) 

Obtaining a partial differentiation of the combined penalty 

term, P (=P1+P2+…+Pm) with respect to Vi we have 

𝜕𝑃

𝜕𝑉𝑖
=

𝑉𝑚
2

 𝑎𝑗𝑖

𝑚

𝑗 =1

+
𝑉𝑚
𝛽

 𝑎𝑗𝑖

𝑚

𝑗 =1

tanh β   𝑎𝑖𝑗𝑉𝑗 − 𝑏𝑖

𝑛

𝑗=1

       (11) 

which may be simplified to 

𝜕𝑃

𝜕𝑉𝑖
=  𝑎𝑗𝑖 𝑥𝑗

𝑚

𝑗 =1

                                      (12) 

Using the above relations to find the derivative of the energy 

function E with respect to Vi we have 

𝜕𝐸

𝜕𝑉𝑖
=  

𝜕

𝜕𝑉𝑖
   𝐶𝑖𝑗𝑉𝑖𝑉𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

 +
𝜕𝑃

𝜕𝑉𝑖
                      (13) 

which in turn yields 

𝜕𝑃

𝜕𝑉𝑖
=  𝑐𝑖𝑗

𝑛

𝑗=1

+  𝑎𝑗𝑖 𝑥𝑗

𝑚

𝑗 =1

                                 (14) 

Also, if E is the Energy Function, it must satisfy the following 

condition [23]: 

𝜕𝐸

𝜕𝑉𝑖
= 𝐾𝐶𝑖

𝑑𝑢𝑖

𝑑𝑡
                                       (15) 

whereK is a constant of proportionality and has the 

dimensions of resistance. Equation (15) applied to the i-th 

neuron results in 

𝑅𝑐𝑖𝑗 =
𝐾

𝑎𝑖𝑗
                                               (16) 

A similar comparison of the remaining partial fractions for the 

remaining variables yields the following: 

 

𝑅𝑐11 𝑅𝑐12

𝑅𝑐21 𝑅𝑐22

… 𝑅𝑐1𝑛

… 𝑅𝑐2𝑛

⋮ ⋮
𝑅𝑐𝑚1 𝑅𝑐𝑚2

… ⋮
… 𝑅𝑐𝑚𝑛

 = 𝐾

 
 
 
 
 

1
𝑎11

 1
𝑎12

 

1
𝑎21

 1
𝑎22

 

… 1
𝑎1𝑛

 

… 1
𝑎2𝑛

 

⋮ ⋮
1

𝑎𝑚1
 1

𝑎𝑚2
 

… ⋮

… 1
𝑎𝑚𝑛

  
 
 
 
 

    (17) 

and 

 

𝑅11 𝑅12

𝑅21 𝑅22

… 𝑅1𝑛

… 𝑅2𝑛

⋮ ⋮
𝑅𝑚1 𝑅𝑚2

… ⋮
… 𝑅𝑚𝑛

 = 𝐾

 
 
 
 
 

1
𝑐11

 1
𝑐12

 

1
𝑐21

 1
𝑐22

 

… 1
𝑐1𝑛

 

… 1
𝑐2𝑛

 

⋮ ⋮
1

𝑐𝑚1
 1

𝑐𝑚2
 

… ⋮

… 1
𝑐𝑚𝑛

  
 
 
 
 

          (18) 

4. ENERGY FUNCTION 
This section deals with the explanation of individual terms in 

the energy function expression given in (8). The last term is 

transcendental in nature and an indicative plot showing the 

combined effect of the last two terms is presented in Fig. 4. 

As can be seen, one ‘side’ of the energy landscape is flat 

whilst the other has a slope directed to bring the system state 

towards the side of the flat slope. During the actual operation 

of the proposed QPP solving circuit, the comparators remain 

effective only when the neuronal output states remain outside 

the feasible region and during this condition, these unipolar 

comparators work to bring (and restrict) the neuron output 

voltages to the feasible region. Once that is achieved, first 

term in (8) takes over and works to minimize the given 

quadratic function. 

 

Fig 4: Combined effect of last two terms in (8) 

The validity of the energy function of (8) can be proved as 

follows. The time derivative of the energy function is given 

by 

𝑑𝐸

𝑑𝑡
=   

𝜕𝐸

𝜕𝑉𝑖

𝑑𝑉𝑖

𝑑𝑡

𝑁

𝑖=1

 =   
𝜕𝐸

𝜕𝑉𝑖

𝑑𝑉𝑖

𝑑𝑢𝑖

𝑁

𝑖=1

𝑑𝑢𝑖

𝑑𝑡
                      (19) 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.2, February 2012 

47 

Using (15) in (19) we get 

𝑑𝐸

𝑑𝑡
=   𝐾𝐶𝑖

𝑁

𝑖=1

 
𝑑𝑢𝑖

𝑑𝑡
 

2 𝑑𝑉𝑖

𝑑𝑢𝑖

 20  

The transfer characteristics of the output opamp used to 

implement the neurons in Fig. 1 implements the activation 

function of the neuron and can be written as 

𝑉𝑖 = 𝑓 𝑢𝑖  21  

 

Fig 5: Transfer characteristics of the opamp used to 

realize the neurons 

whereVi denotes the output of the opamp and ui corresponds 

to the internal state at the inverting terminal. The function f is 

typically a saturating, monotonically decreasing one, as 

shown in Fig. 5, and therefore [16], 

𝑑𝑉𝑖

𝑑𝑢𝑖
 ≤ 0                                            22  

thereby resulting in 

𝑑𝐸

𝑑𝑡
≤ 0                                              23  

with the equality being valid for 

𝑑𝑢𝑖

𝑑𝑡
= 0                                              24  

Equation (23) shows that the energy function can never 

increase with time which is one of the conditions for a valid 

energy function. The second criterion viz. the energy function 

must have a lower bound is also satisfied for the circuit of Fig. 

1 wherein it may be seen that V1, V2, …, Vn are all bounded (as 

they are the outputs of opamps, as given in (21) amounting to 

E, as given in (8), having a finite lower bound. 

5. SIMULATION RESULTS 
This sectiondeals with the application of the proposed 

network to task of minimizing the objective function 

                                3𝑉1
2 + 4𝑉1𝑉2 + 5𝑉2

2 25  

subject to 

𝑉1 − 𝑉2 ≤ −1(26) 

𝑉1 + 𝑉2  ≤ 1 

The values of resistances acting as the weights on the neurons 

are obtained from (17,18). For the purpose of simulation, the 

value of K was chosen to be 1 KΩ. Using K = 1 KΩ in 

(17,18) gives 

Rc11 = Rc12 = Rc21 = Rc22 = K = 1 K, R11 = 1.66 K, R21 = 1 K, 

R12 = 1.66 K, R22 = 1 K 

For the purpose of PSPICE simulations, the unipolar voltage 

comparator was realized using a diode clamp with an opamp 

based comparator. The transfer characteristics obtained during 

the PSPICE simulations for opamp based bipolar and unipolar 

comparators are presented in Fig.6. For the purpose of this 

simulation, the LMC7101A CMOS opamp model from the 

Orcad library in PSPICE was utilised. The value of βfor this 

opamp was measured to be 1.1×104 using PSPICE simulation. 

 

Fig 6: Transfer characteristics for opamp based unipolar 

and bipolar comparators 

Routine mathematical analysis of (25) yields: V1= – 0.584, 

V2= 0.416. The resultant plots of the neuron output voltages 

as obtained after PSPICE simulation are presented in Fig.7 

from where it can be seen that V(1) = –0.58 V and V(2) = 

0.41 V which are very near to the algebraic solution thereby 

confirming the validity of the approach. The initial node 

voltages were kept as V(1) = –1 mV and V(2) = –10 mV. 

 

Fig 7: Simulation results for the proposed circuit applied 

to minimize (25) subject to (26) 

6. ISSUES IN VLSI IMPLEMENTATION 
This section deals with the monolithic implementation issues 

of the proposed circuit. The PSPICE simulations assumed that 

all operational amplifiers (and diodes) are identical, and 

therefore, it is required to determine how deviations from this 

assumption affect the performance of the network. Effects of 

variations in component values from one neuron to another 

were also investigated using Monte-Carlo analysis in PSPICE. 

A 10% tolerance with Gaussian deviation profile was put on 

the resistances used in the circuit to solve (25). The analysis 

was carried out for 100 runs and the Mean Deviation was 

found out to be -144.73×10-6 and Mean Sigma (Standard 

Deviation) was 0.0119. Offset analysis was also carried out by 

incorporating random offset voltages (in the range of 1 mV to 

10 mV) to the opamps. The Mean Deviation in this case was 

measured to be -143.51×10-6and the Mean Sigma (Standard 

Deviation) was 0.012. As can be seen, the effects of 

mismatches and offsets on the overall precision of the final 

results are in an acceptable range. 

In fact, the realization of unipolar comparators by the use of 

opamps in the proposed circuit tends to increase the circuit 

complexity. The transistor count can be further reduced by 

utilising voltage-mode unipolar comparators instead of the 

opamp-diode combination. This also suggests that a real, large 

scale implementation for solving quadratic programming 

problems with high variable counts might be quite different. 
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Alternative realizations based on the differential equations (6) 

governing the system of neurons are being investigated. Other 

approaches to obtain the tanh(.) non-linearity include the use 

of a MOSFET operated in the sub-threshold region [24] and 

the use of Current Differencing Transconductance Amplifier 

(CDTA) to provide the same nonlinearity in the current-mode 

regime [25]. 

7. CONCLUSION 
In this paper, a CMOS compatible approach to solve a 

quadratic programming problem in n variables subject to 

mlinear constraints, which uses nneurons and msynapses is 

presented. Each neuron requires one opamp and each synapse 

is implemented using a unipolar voltage-mode comparator. 

This results in significant reduction in hardware over the 

existing schemes. The proposed network was tested on a 

sample problem of minimizing a quadratic function in 2 

variables and the simulation results confirm the validity of the 

approach. 
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