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ABSTRACT 
The accurate computation of conventional methods have not 
relied in the revolutionary period of changes and cannot make 

reshaping in the biological research as the meta-mining was used 

for integration of data which is not compatibility for biological 
research. Therefore we have reshaped the conventional method 

using Logical Network for effective transcriptomic technology for 
translation. In this paper, the advanced technology of knowledge 

mining which have an unprecedented wealth of quantity of data 
have been sruitnished and we present lonet for in silico systems 

biology and medicine (LONETSSOM), and a web based 
application that exploits logical management systems and 

distributed data processing system are highly used for DNA 
microarray through a genetic consistent, computational analysis 

framework. The advanced framework of logical network system 
is LONETSSOM which perform efficient versatile annotation 

system and integrative analysis through multi-application 
programming interface delivered in the SOA. The LONETSSOM 

aims to setup a generic paradigm of efficient knowledge mining 
that promotes throughput in translation of biomedicine field 

through the fusion of logical network and creation of semantic 
web technologies. 
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computing, network, translational biomedical research, web 

services. 
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1. INTRODUCTION  
In recent years, genomic and transcriptomic 

technologies have become widely used tools for biomedical 
research producing high unparallel form of wealth of data 

regarding genome- wide sruitnishing of an organism. This 
experiment perform global gene expression monitoring, enabling 

the, through questioning of the in-vivo cellular state and its 
regulation, in healthy and disease state for response to numerous 

environmental stimuli across different species etc. DNA 
microarray [1] is a collection of genomic applications, which is  

 

 

used for identifying significant alternations in transcriptomic 
expression of the system, investigated and map them to specific  

phenotypic outcomes. By the field of molecular diagnostic we 

drive clinically useful, prognostic and diagnostic gene-signatures. 
Most probably hundreds of thousands of measurements per 

sample for large scale whole genome disease associated data for 
increasing the importance of microarrays the biological problems 

that can be thus addressed, introduced versatility in their design, 
in an effort to satisfy researches demands for increased array 

density sample number , content flexibility, and minimization 
costs. The efficient software solution obtained by the 

technological developments for explosion of computational 
complexity. The increasing number of transcriptomic studies 

leads to great popularity of research, based on various types of 
microarrays forming datasets that range from several tenths of 

hundreds of megabytes. Similar datasets derived from 
epidemiological cohorts that use higher density arrays, will a 

mass data of several gigabytes. This datasets are organized by 
SOA in data mining for unprecedented data towards research 

oriented data for biomedical process. 
 

The target of gene collection analysis, variation in 
actual collection level of data mining can obtained from various 

sources which inherited in microarray technologies. We 
implement by using .Net behind web based interface which is 

using to provide web based architecture. By providing various 
levels functionality, regarding either the quantitative analysis or 

information integration and annotation based on various 
implementations of web based microarray analysis platforms. 

These can be separated in two main categories: centralized 
(single server) and distributed with respected to centralized 

solution, one of the first attempts was web accessible gene 
expression data analysis using SNOMAD [2].Data classification, 

using supervised learning methods performed by caGEDA [3]. 

The user friendly interface for no voice users provided by 
MAGMA [4]. The data management rather than analysis 

efficiency provided by MARS [5]. GEPAS system [6] provide 
successful implementation, combining extended functionalities 

together with neat design. It performs preprocessing statistical 
analysis, functional analysis and finally DEG lists [Differently 

expressed genes list]. In the last step clustering, classification and 
gene annotation are supported. This system is not parallelized but 

instead, they are executed as single threaded operations. The gene 
meta-analysis provided by Gene Mesh [7]. It performs hypothesis 

derived, relational analysis by matching genes with medical 
subject headings index, but also with other established biological 

vocabularies, such as KEGG, Entrez, gene ontology[GO] etc. For 
collection of datasets using LONETSSOM for integrated and 

update the data accordingly climate. 
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For analysis of cDNA chips, utilizing message passing 
interface(MPI) technology over the hellinic Lonet infrastructure 
regarding distributed/parallel computing software 
implementation, a seminal pilot effort was the Network 

platform[8].Using a ASP .Net web interface for submitting both 
raw data and minimal information about a 
microarrayexperiment(MIAME) information which are stored in a 
distributed database a significiant improvement and speed up of 
the data-preprocessing task was attained GEMMA[9] is another 
example of such a solution, deployed over the Italian EGEE 

infrastructure. DNA microarray analysis using BioVLAB 
Microarray is a cloud computing inspired solution.RNA 
sequences, a cloud computing solution named 
Myrna[10].Calculates differential gene expression in large RNA-
seq datasets by using R/Bioconductor [11] for interval 

calculation, normalization and statistical testing. These latest 

developments emphasize in the profits of fusing bioinformatics 
with LONET computing technologies. 
 

LONETSSOM [12] is a versatile web application, 
capable of providing experts in the fields of molecular biology 
and medicine with a powerful, rapid and standardized 
computational pipeline, able to accommodate various types of 
DNA microarray technologies. 
 

LONETSSOM enables storage, processing and analysis 
of larger experimental datasets, overcoming inherent limitations 
in memory, storage, and performance of standalone 
configurations. At the same time, through the exploitation of 
network infrastructures and web services, it provides a unified 
environment for quantitative, statistical and semantic, functional 
analysis and makes of computational power which leads to 
experimental result, the rest of paper is organized as follow 
section II discussed related work of protein, mRNA, DNA section 
III.The overview of LONETSSOM and web application, and 
presenting tools, and designing 
architecture based on the web application. Section IV shows 
analysis through LONETSSOM platform, finally conclusion. 

 

2. RELATED WORK  
These are various implementation of conventional 

based methods in a living cell which is a system were cellular 
components such as genome and the gene transcription and 
protein interaction with each other.  
2.1. Genomics  

Genomics provides the various important roles in 
modern biological research in which nucleotide sequences of all 
the chromosomes of an organism are embedded and mapped with 
location of different genes and their sequences are determined. 
This existing analysis of nucleic acids by using molecular 
biological techniques before the data’s is ready for processing in 
the computer. It is a technique describing a living organism is the 
sequence of genome which is not reliable to estimate the number 
of genes in an organism based on the number of nucleotide base-
pair as the presence of high number of redundant copies of many 
genes. Genomic can help to rectify these types of problems for 
research work.  
2.2. Transcriptomics  

Transcriptomics is a study of transcriptome which is a 
whole set of mRNA molecules. This kind of technique has helped 
us to find out biologist to monitor the gene expression of cells and 
compare gene expression between control cells and treatment 

cells. Transcriptomics has some drawbacks, such as micro 
experiments is not always good predictor of the relative proteins. 
This is because of differential adaptation to the translational 
machinery and differential usage of amino acids of different 
usage of amino acids of different abundance and the lack of 
information on post-translational modification such as 
acetylation, hydroxylation, gycosylation, phosphorylation and 

cleavage are fundamental in understanding the interactions of 

cellular components.  
2.3. Proteomics  

This represents the earliest attempt to identify a major 
sub-class of cellular components - the proteins – and their 
interactions. Proteomics involves the sequencing of amino acids 
in a protein, determining its 3D structure and relating it to the 
function of protein. Before computer processing comes into the 
picture, extensive data, particularly through crystallography and 
nuclear magnetic resonance (NMR), is required for this kind of 
study. With such data on known proteins, the structure and 
relationship to the function of newly discovered proteins can soon 
be understood. 
 

The term proteomics was coined to make an analogy 
with genomics, and while it is often viewed as the next step, 

proteomics is much more complicated than genomics. Most 
importantly while the genome is rather a constant entity, the 
proteomic differs from cell to cell and is constantly changing 
through its biochemical interactions with the genome and the 
environment. A single organism has radically different protein 
expressions in different parts of its body, in different stages of life 
cycle or, on a smaller scale, the set of proteins found in a 
particular cell type under a particular type of simulation, is 
referred to as the proteomic of the organism or cell type, 
respectively.Scientists feel that the bioinformatics of proteins is 
crucial since characterizing thousands of proteins and their 
interactions is a difficult task. To understand the cellular 
components and their interactions completely, one needs 
integrated analyses of proteomic, genomic, and transcription data 
and a one word solution for all this bioinformatics. 

 

3. TOOLS AND METHODS  
In Fig. 1, an overview of the workflow structure of 

LONETSSOM is illustrated. The platform has been designed in 
order to effectively accommodate the needs of a wide range of 
users with different levels of expertise, aspiring to perform 
versatile and varying series of operations. The core of the 
developed web application, namely the quantitative signal 
processing and statistical analysis of the microarrays, which 
represent the computationally expensive part of the analysis 
pipeline, but also the storage of the datasets as well as of the 
annotation files, are exploiting the Network infrastructure and 
create easily scrutinisible data from dataset in the network. 
Overall, the DNA microarray experimental data analysis tasks 
implemented within the platform, encompass diversified 
processing steps, entailing versatile, heterogeneous in nature of 
processing, data type and complexity tasks. 
 

These can be basically partitioned into the categories of 
data import, gene selection, gene annotation tasks integrative 
interpretation capabilities, secure database storage and 
maintenance, and support of various output formats. With respect 
to the efficient interpretation of DNA microarray experiments, 
LONETSSOM supports gene classification based on clustering 
algorithms or cellular pathway analysis, through the integration 
of statistical ranking of annotated genomic experimental results 
(StRAnGER) [13]. 

In this way, statistical enrichment analysis is 
performed, which exploits controlled biological vocabularies like 
the GO [14]. Another capability of LONETSSOM is the 
reconstruction of cellular network super-pathway models, which 
are SBML-compliant [15] by exploiting the KEGG pathway IDs 
that are derived from the analysis performed by StRAnGER. 
 

An important, strategic, technical consideration, in the 
design of LONETSSOM was the adoption of open standards 
regarding the description and processing of biological 
information at various aspects, as well as its development as an 
open source software project. In this way, the wider tangible 
research communities are targeted to embrace the application and 
provide a positive feedback either as users or as developers. Also, 
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the adoption of web service technologies was another crucial 
feature, in the design phase, regarding the integration of novel 
functionalities in the platform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Structure of the functionalities of the LONETSSOM 
computational environment.  

That is why LONETSSOM can accommodate novel 
processing needs, emerging possibly from innovations in the field 
of biological instrumentation, by exploiting application 
programming interfaces (APIs), which will be programmed to 
support the data exchange with these applications. As the DNA 
microarray processing scenarios, can be particularly variable, 
even for the first part of the quantitative analysis, which concerns 
the signal processing phase and the derivation of significant gene 
lists, the whole procedure is divided into several processing steps, 
encompassing data importing, filtering, normalization, and 
statistical selection. The design of the screens is friendly, in order 
to facilitate the selections of the user, in order to assemble the 
analytical pipeline, according to which the dataset will be 
processed. Default values are provided to aid the computational 
analysis of microarrays even for non experts and enable a first, 
crude evaluation of the microarray experiments. The a priori 
definition of the steps that comprise the analysis pipeline is a 
necessary compromise for the execution of the workflows on the 
Network, as well as the usage of its shared resources. This 
certainly poses limitations to the extent of interaction of the user 
with the data,during their processing. Due to the queuing and 
security policies adopted by Network administrators for the scope 
of the most effective and rapid, public use of the Network 
resources, end users are not granted power user rights that would 
otherwise empower them to have full control of their data. The 
reason is that this would pose serious performance and security 
threats. Upon completion of the analysis, the results are stored in 
the Network, but can be downloaded at any time. These gene lists 
can be subjected to further processing, such as k-means clustering 
or even Pathway Analysis, exploiting GO and KEGG Terms. 

Fully complying with its open standards support policy, 

LONETSSOM provides MIAME-compliant [16] annotation 
capabilities, regarding the description of the experimental 
protocol that was followed in the given microarray experiment. In 
this way, this valuable information is integrated upon request to 
the LONETSSOM repository and can be exported either in 
MIAME or miniML[17] compatible format. Bedrock for the 

analysis pipelines of LONETSSOM was Gene ARMADA [18], a 
DNA microarray analysis application, which has been extensively 
tested and used in several studies [19], [20]. LONETSSOM 
radically evolves its routines through extensive reprogramming, 
to develop new versions that enable parallel implementations of 
the assigned computational jobs, in distributed computing 

environments. 

 

3.1. Data set 
 

LONETSSOM currently offers a versatile data import 
wizard, suitable for cDNA and oligonoucleotide arrays. 
Regarding cDNA microarrays, LONETSSOM fully supports a 
variety of widely used formats for raw image data files (GenePix, 
ImaGene, QuantArray). Alternatively, other less popular 
microarray formats, or in general, microarray experiment signal 
files provided in tab-delimited text format,  
can be accommodated through a customizable data import 
wizard, which ensures that the minimal necessary information 
required for the subsequent analysis, is provided. Regarding 

oligonoucleotide platforms, LONETSSOM supports the analysis 
of Affymetrix DNA chips and Illumina BeadArrays. In order to 
parse and import Affymetrix.CEL files and their corresponding 
array libraries, proper Bioconductor [11] packages are wrapped 

within LONETSSOM code for primary parsing. This element 
enables easy data input and interfacing with the LONETSSOM 

internal data structures and ensures error-free subsequent 
analysis. A similar strategy is adopted for Illumina BeadArrays, 
where the user has to upload the primary gene or probe profile 
output from the BeadStudio suite,accompanied by a simple file 
describing the experimental structure. 
 

3.2. Data Preprocessing  
1)BackgroundCorrection/Adjustment: LONETSSOM provides 
various data preprocessing methods both for two-color and 
oligonoucleotide arrays. Three options are available for spot 
background correction in two-color microarrays: 1) Background 
subtraction, 2) Calculation of the SNR: the net signal for each 
channel is estimated as the ratio between the signal and its 

background, and 3) No background correction. In the second 
case, the background correction is performed by calculating the 
SNR of a spot. This background correction method is based in the 
established, SNR of a signal notion, in systems theory and image 
processing. It is also in line with the perception of the 
experimentalist about signal quality, in a given experiment. As a 

noise filtering standard is missing regarding two-dye cDNA 
microarrays [21], this approach is vital, especially in the case 
where the tested datasets present low SNR for the majority of 
their signals. Concerning Affymetrix arrays, RMA and GCRMA 
[22] algorithms can be utilized for background adjustment, 
whereas for Illumina BeadArrays, the users should perform 
the background correction step on Illumina BeadStudio. 
2. Quality Control: In the case of two-color cDNA microarrays, 
poor-quality spots are filtered out either manually, or by 
excluding spots marked as poor, by other image analysis 
software. Noise filtering is further performed through three 
filtering options applied to both channels: 1) a signal-to-noise 
threshold filter, 2) a filter, based in the signal and background 
distributions distance, and 3) a custom filter, based in several 
probe data. For Affymetrix arrays, poor-quality probe sets are 
detected using the MAS5 algorithm (present/absent call) as well 
as through the use of empirical filters, utilizing probeset 
expression and its variation among different experimental 
conditions. For Illumina BeadArrays, the detection score is used 
to filter out problematic bead sets just as similar empirical filters 
to those applied in the analysis of Affymetrix arrays. A second 
proactive mechanism for outlier detection across replicates 
within the same experimental condition is the application of 
parametric or nonparametric tests, across replicate probe 
expressions, referring to the specific experimental condition.   

2) Normalization: Regarding two-color CDNA 
arrays, several intrachip normalization methods are supported: 
global mean/median, rank invariant [23], linear and quadratic 
loess and their robust versions. Subnetwork normalization is 
possible if spatial arrangement information is provided. The 
following interchip normalizations are available: quantile 
normalization [24] and MAD centering [25]. For Affymetrix and 
Illumina arrays, quantile and rank-invariant normalizations [26] 
are supported, followed by median polish summarization for 
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Affymetrix arrays.  
 

3.3. Statistical Analysis:  
The investigation method for better interpret relevance 

of the biological annotations of a group of genes, statistical 
descriptions and analyses of the annotations can be used. When 
the considered genes are selected from a predefined set or 
subdivided in classes, to evaluate the statistical significance of 
specific annotation categories provided through controlled 
vocabularies in each considered group of genes, their quantities, 
frequencies, distributions, and probabilities of occurrence can be 
considered. Several different statistical approaches can be used to 
calculate a probability value for each considered annotation 
category. We used the hypergeometric distribution and binomial 
distribution tests, and the Fishers exact test [27].The 
hypergeometric and binomial distribution equations include the 
binomial coefficient: 
 
 

 

If calculated as a factorial ratio, on common computer platforms, 
this coefficient rapidly reaches the maximum overflow limit for a 
variable when the value of n is greater than 170. In our 
application n represents the number of considered genes, which 
can be several tens of thousands in a high-density microarray. 
Therefore, to calculate the hypergeometric and binomial 
distribution p-values, we used specific algorithms that calculate 
the binomial coefficient according to the Pascal’s triangle, as in: 

 

C (n, k) =C (n.1, k.1) +C (n.1, k), for 0< k< n 

 
When implemented iteratively, this equation provides greater 
efficiency and computation precision than those given by the 
factorial ratio. 
 

3.4. Clustering:  
Clustering algorithms have proved useful to help group 

together genes with similar functions based on gene expression 
patterns under various conditions or across different tissue 
samples [27], [28]. Co-expressed genes found in the same cluster 
demonstrate significant enrichment for function. Co expressed 
genes in the same cluster are probably involved in the same 
cellular process and strong expression pattern correlation between 
those genes indicates co-regulation. Inference of regulation 
through 
clustering of gene expression data also warrants the further 
hypothesis of the mechanism of transcriptional regulatory 
network. 
 

We have explored various clustering algorithms 
including the hierarchical clustering. In contrast to partitioning-
based clustering, which attempts to directly decompose the data 
set into a set of disjoint clusters, hierarchical clustering generates 
a hierarchical series of nested clusters which can be graphically 
represented by a tree, namely, dendrogram. The branches of a 
dendrogram not only record the formation of the clusters but also 
indicate the similarity between the clusters. 
 

In our case the proximity measure for the individual 
genes is the co-relation coefficient with respect to the independent 
components generated by the ICA algorithm a, which partitions 
optimally. 

 

3.5. Annotation Retrieval and Updating  
According to the above-described methodology, we 

implemented LONETSSOM as a system automatically retrieving 
gene annotations from the FTP sites of different databanks. The 
GO data, category definitions using controlled vocabulary terms 
and relationships between them, are obtained from the Gene 
Ontology FTP site. Several annotations and correspondences 

between gene identifiers and GO categories, and other gene 
annotations are retrieved from the NCBI LocusLink [28], Swiss-
Prot Expasy [29], KEGG [30], OMIM [31], and Affymetrix FTP 
sites. 
 

Since all above cited public accessible FTP sites are 
regularly updated with the latest version of the data they provide, 
all the retrieved data need to be kept updated. Therefore, in a 
Active server application we implemented procedures to 
automatically download the data of interest from the above FTP 
sites at predefined intervals of time. Because the different FTP 
sites are updated at different time and with different frequencies, 
our implemented updating procedures have been synchronized to 
perform downloading only at the right time. Moreover, 
the versions of the last downloaded data used in our application 
are memorized in a table of our system database and showed 
upon user request. 
 

The Asp.net application not only performs automatic 

downloading of the latest version of gene annotations from web-
accessible databanks but also imports these data in the 

LONETSSOM database tables. Each databank provides data in a 
specific format, e.g. CSV text files in a tabular format or flat text 

files where data are identified by keywords. Therefore, in the 
latter case these files need to be parsed with specific algorithms 

to extract only the information useful for our system goal. Some 
other information is inferred from the downloaded data, it is 

organized and structured, and then it is stored in the 
LONETSSOM databases. For example, GO path codes are 

generated starting from the information on category-to-category 

relationships in the GO database. GO path codes simplify the 
understanding of where a GO category is located in the Gene 

Ontology structure, and represent the top-down paths in the 
ontology from the GO root to specific GO categories. Due to the 

GO Direct Acyclic Graph (DAG) structure, multiple paths exist 
for certain categories. To generate them, we created a specific 
recursive scanning algorithm for tree-like structures, since from a 
top-down view GO DAGs are tree-like structures. 
 

Because the LONETSSOM generates many temporary 
database tables to speed up system response time, the developed 
.Net server application also performs system maintenance tasks, 
deleting obsolete temporary tables. 
 

3.6. Functional Analysis/Interpretation  
The derivation of a statistically sound list of 

differentially expressed genes represents only the first step, 
toward a biologically consistent yet comprehensive functional 
interpretation of the biological problem investigated. Aim is to 
unravel through a systems level approach, the intricate 
interactions taking place among whole cellular processes and 
pathways, encompassing numerous genes. It also aspires to 
rationalize thediscovery process through which, genomic 
expression is linked to phenotypic manifestation. For this scope, 
tools that perform additional analysis, utilizing functional 
information captured by established biological ontologies or other 
controlled vocabularies, fruit of the concerted action of the wider 
research communities, are indispensable. LONETSSOM 
performs systems level functional analysis and interpretation by 
exploiting interchangeably the GO [14] or the KEGG pathways 
database [30]. This is done through incorporation of the 
StRAnGER web service [13], which combines established 
statistical enrichment analysis methods and bootstrapping, in 
order to perform pathway analysis that subsumes individual gene 
function to broader, instrumental, cellular processes. The 
algorithm performs statistical enrichment analysis of GO terms 
together with bootstrapping, in order to tackle the large inherent 
bias introduced in gene enrichment analyses, due to the structure 
of the formal GO tree. In this way, a ranked list of biological 
procedures assigned to GO terms, is derived.  
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Fig. 2. KEGGConverter web application central screen 
 

The prioritization is based both on statistical measures 
as well as biological content (number of genes) of each GO term. 
The functionality of StRAnGER is also applicable to KEGG 
pathways, in order to detect overrepresented KEGG pathways, 
based in the number of genes mapped onto them. Having thus 
derived a list of the significant KEGG pathways, it is possible, by 
importing this set of IDs into the KEGGConverter web service, to 
support automated reconstruction of SMBL cellular metabolic 
models, for in silico testing. KEGGConverter [32] is a web-based 
application (see Fig. 2), which uses as source KEGG markup 
language (KGML) files, in order to construct cellular networks, 
from the integration of several biochemical pathways.This web 
service grants the user, the ability to define the number and 
identity of the pathways that are incorporated, as well as the type 
of SBML model that the service will create. 

It is thus determined whether the model will only be a 

pure stoichiometric one, or  will integrate kinetic information 

about the pertaining reactions. This functionality represents a 

novel feature of LONETSSOM, which links different layers of 

biological organization, like the transcriptomic and the 

metabolomic.It enables a systemic perspective in the study of 
biological systems, transforming the platform into a versatile and 

powerful one, for Systems Biology research. 
 

3.7. Porting LONETSSOM to Other 
Workflows through Web Services  

Web services are an emerging, promising technology to 
build distributed applications. It is an implementation of service 
oriented architecture (SOA) [33] that supports the concept of 
loosely coupled open-standard, language- and platform 
independent systems. The loosely coupled features allow service 
providers to modify back-end functions, while maintaining the 
same interface to clients. The core service functions are 
encapsulated and remain transparent to clients. The open-standard 
approach supports collaboration and integration with other 
services. Platform and language independence promotes service 
development in any language and deployment on any platform. 

 

LONETSSOM provides web service-based access to its 

functionality and repository resources, facilitating its integration 

in other application environments, through the setup of 
appropriate workflows. Experiment management and retrieval 

tasks from the LONETSSOM repository can be remotely 

handled.Each task is implemented by a function that can be 

invoked through the developed web service and is described 

through the appropriate WSDL representation of the service as 

illustrate in Fig 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. WSDL Instance of the LONETSSOM WSDL 
describing basic functions for submitting and monitoring 
experiments to the platform. 
 

Web services are accessed through the HTTP protocols 
and utilize eXtensible markup language for data exchange. This 
in turn implies that web services are independent of platform, 
programming language, tool and network infrastructure. Services 
can be assembled and composed in such a way to foster the reuse 
of existing back-end infrastructure. The basic SOA includes three 
service components: provider, requester and registry.WSDL is 
commonly defined by the service provider for invocation of the 
service. Simple object access protocol (SOAP) is adopted as 
message transfer protocol between requester and provider. The 
Universal Description, Discovery, and Integration are used for 
service registration and discovery. 
The WSDL representation resides online together with 
LONETSSOM web repositories and can be accessed directly by 
workflows tools like Taverna Workbench [34]. The exposed 
functions and features are recognized by the workflow schedulers 
and become available to the user.Authentication and security is 
addressed through the WS Security (Rampart) kit [35]. WS-
Security is a standard for adding security to SOAP Web service 
message exchanges. It uses a SOAP message-header element in 

order to attach the security information to messages, in the form 

of tokens conveying different types of claims along with 

encryption and digital-signature information. On top of the WS-

Security kit, the SSL protocol [36] has been used for the proper 

encryption of the data during transmission between the service 

consumer and the web service itself. The .NET toolkit has been 

utilized for the development of the web services. The deployment 

has used the IIS application server. A single class has been 

created, which contains all functions that expose the functionality 

just described. 
 

4. PROPOSED ARCHITECTURE  
The LONETSSOM system is implemented in a three-

layer architecture based on a multi-database structure (Fig. 4). In 
the first layer, the data layer, a MySQL DBMS server manages 

all different types of annotations and data results the system 
provides. The core engine is based on a relational database, 
Master DB that maintains information about system users and 
their uploaded lists of classified sequence data. Another relational 
database, MyGO DB, keeps information about the GO structure. 
A third relational database, Gene Data DB, stores many different 

gene annotations, including associations between genes and GO 
categories. Automatic procedures, implemented in .Net 
programming language, keep updated MyGO and Gene Data 
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databases by automatically retrieving gene annotations and GO 
information from several on-line databanks, as soon as new 
releases become available. 

In the second layer, the processing layer, a web server 

manages the requests coming from client computers and runs all 
system processing and analyses. This is the main layer of the 
LONETSSOM system. It is constituted of Active Server Page 
scripts and uses Microsoft ActiveX Data Object technology and 
Standard Query Language to communicate with the DBMS server 
on the data layer, which is connected to through a fast Local Area 

Network. In this layer, SQL queries are built and performed to get 
data from the databases in the data layer, whereas ASP scripts 
perform the data processing. When a user requests a 
LONETSSOM web page, the ASP scripts it contains execute on 
the web server all required system operations and statistical 

analyses, and results are shown within HTML pages sent to the 

user client computer. 
 

The third layer, the user layer, is composed of any client 

computer connected to the web server on the processing layer 
through an Internet/intranet communication network and loading 
in its web browser the LONETSSOM graphic user interface 
implemented as HTML web pages. The LONETSSOM user 
interface is intended to increase at maximum system usage 
easiness and friendliness, leading to evaluate the functional 

significance of microarray experiments results through graphical 
views and statistical indexes in a web browser user interface 
usable anywhere an Internet connection is available. It is 
organized in modules allowing users to study the distribution of 
different classes of genes among GO categories, KEGG 
biochemical pathways, PFAM protein domains, or OMIM 

diseases. Each module provides a specific task. 
 

The development of microarray technologies has 
generated the need for bioinformatics approaches that can help in 
biologically interpreting microarray experiment results. With this 
aim and to enrich a plain list of gene identifiers, selected through 
microarray experiments, with biological meaning and statistical 
significances, we implemented the LONETSSOM system. It 
includes an annotation  
module as well as a number of data exploration and analysis 
modules that enable highlighting the most relevant functional 
annotations within user-defined classes of genes, independently of 
the methods used to define them. 
 

LONETSSOM automatically translates lists of 
differentially expressed genes into functional profiles of several 

biological categories providing statistical significance values 
for each category. Among the provided categories, those defined 
by the GO controlled vocabulary enable functional annotations of 
a given gene set on a genomic scale and across different species. 
The LONETSSOM three-layer architecture enhances at 
maximum the system performances because it enables to 
subdivide the required computational power between the two web 
and DBMS servers. The implemented multidatabase structure 
allows enhancing system performance and maintaining separated 
data of different types, sources and obsolescence. For instance, 
data regarding Gene Ontology structure and terms are updated 
monthly, and their associated database can be entirely replaced 
each month with its new version. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The three-layer multi-database LONETSSOM system 

architecture. 
Other gene annotation data in the Gene Data DB are 

updated with different frequencies, whereas the Master DB is 

continuously written with user data, according to system 
utilization. Because the LONETSSOM databases manage a vast 

quantity of increasing data, they tend to become very big, 
reducing the system performance. Thus, according to their 

updating frequencies, they are designed to enhance at best the 
data extraction speed from their tables and the overall system 

usability. During GO structure explorations and statistical 
analyses, some SQL queries including join operations between 

GO data tables and loaded user sequence IDs tables are required. 

Since SQL joins are CPU and disk costly and time requiring, they 
should be reduced at minimum through data denormalization and 

support tables, implementing static views on different data tables.  
Therefore, after downloading and importing several 

distinct tables with different data from public databanks, the 
implemented updating procedures create few big tables 

representing views of those tables and containing all required 
data joined together. This operation is very time-consuming and 

very costly for the DBMS server CPU but it is performed only 
once after each system update. Subsequently, the system uses the 

data in the created big tables instead of performing SQL joins 
between several little tables, and results are obtained more 

quickly. 
The developed friendly web interface enables any user 

to easily utilize the LONETSSOM from everywhere an Internet 
connection is available. Besides allowing the user to upload also 
sequence ID lists with predefined classifications, LONETSSOM 
allows creating gene classifications based on the membership of 
each gene to specific functional categories and performing 
statistical analyses of these classifications. To our knowledge, 
this important feature is not available in other similar tools. 

 

5. LONETSSOM PLATFORM: USE CASES  
In this section, the capabilities of LONETSSOM 

regarding analysis and interpretation of DNA microarray datasets 
are demonstrated, through two use cases. The first use case 

represents a comparative evaluation of the computational 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.2, February 2012 

29 

performance of LONETSSOM, to a single-server configuration 

that is performing the same analysis tasks, through a batch script, 
that utilizes MATLAB R2008b scripts from its Bioinformatics 

toolbox. The dataset used in this case is the GEO GSE6820 
dataset that comprises 18 different experimental conditions with 

two replicates in each condition, where a custom, noncommercial 
array configuration has been used. Due to this reason, the 

annotation of this array set could not be fully retrieved 
automatically from the databases; therefore, this dataset was used 

only for the computational evaluation of the platform and another 
dataset was used to highlight the descriptive strengths of 

LONETSSOM.  
Analyzing the dataset, up to the point of the derivation 

of a significant gene list through utilization of the most 
computationally intensive normalization method (robust quadratic 

loess) and using the default selections suggested by the platform, 
the whole analysis in LONETSSOM was completed in 55.59 min 

(3335.59s) for the DAG configuration, and in 33.16 min (1989.78 
s) for the MPI configuration. The respective performances for the 

single-server configuration were 143.37 min (8624.1 s), thus the 
speedup attained by LONETSSOM is 259% and 433% for the 

DAG and the MPI solutions respectively. However, as the MPI 

solution was related to a much large number of failures in job 
dispatching and executions in the Network, in certain periods, the 

DAG management was adopted to render the operation of the 
whole application more resilient, against a wide range of 

underperforming factors. LONETSSOM compresses the data 
stored, thus managing a more efficient use of the storage 

resources. In our case, the total size of our dataset was 266 MB, 
whereas compressed is downsized to 96MB, that is a profit of 

277%. 
The second use case demonstrates the tangible strengths 

of LONETSSOM regarding the meaningful and versatile 
functional interpretation of transcriptomic data. The publically 

available GEO GSE10010 dataset is utilized for this purpose, and 
makes use of the Agilent-012694 Whole Mouse Genome G4122A 

cDNA microarrays. Its experimental design encompasses two 
conditions each one enumerating three replicates. The image 

analysis software used was Agilent Feature Extraction Software, 
and data were imported in LONETSSOM, through its 

customizable data import wizard. The dataset was fully annotated, 

with the help of the LONETSSOM annotation module. All details 
of the experiment (annotated gene lists, visualizations, clustering 

and pathway analysis results) are publicly available in the 
LONETSSOM repository and can be explored through use of the 

visualization shell which supports various options (see Fig. 5). 
Data analysis was performed using the following parameters: 

signal-to-noise background correction was applied to mean signal 
spot intensities of each replicate, followed by gene filtering 

requiring the foreground signal to be > = 2 times above the 
background signal, whereas robust linear LOWESS, with a span 

window of 20% of the signal distribution in each array, was 
applied for intrachip normalization. Genes with 2 out of three 

values missing in any condition were filtered out and finally 1-
way ANOVA with a 0.05 p-value threshold was applied. A list of 

130 differentially expressed genes was obtained which was 
subjected to cluster analysis (hierarchical, Pearson correlation 

distance measure, and average linkage; see Fig. 7) and to 
functional analysis exploiting the GO and KEGG controlled 

vocabularies, through the use of the StRAnGER web service. 
Regarding the GO-based analysis the service provides systems 

level visualization of the significant GO terms, by mapping them 

into illustrations of the relevant parts of the three GO trees that 
correspond to the categorization molecular function, cellular 

component, and biological process. The intensity of the 
colorization determines the importance of the GO term, according 

to StRAnGER. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Overview of the LONETSSOM gene analysis results 
screen. 
 
Among the deregulated cellular processes, functions related to 
phosphoprotein phosphatase activity (GO: 0004721; p-value = 
0.002867598), calcium ion binding (GO: 0005509; p-value = 
0.01827472), proteolysis (GO: 0006508, p-value = 0.03149798) 
or purine metabolism (KEGG_id:230), and Jak-STAT signaling 
pathway (KEGG_id:4630) were identified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Tree-view tool for hierarchical clustering visualization. 
In the left window, the overall clustering tree is given in 
detail, in the central one the profiles of the genes comprising 
the selected genes of the tree are given in detail, while in the 
right their gene IDs are given. 
 

6. DISCUSSION AND CONCLUSION  
The computational complexity of the analysis 

workflows, of the modern high-throughput biological 

experimental techniques, sets as a critical priority the exploitation 

of computational methodologies that improve the processing 

performance and reduce the computing time for the respective 

workflows. LONETSSOM represents a powerful logical network 

computing environment for versatile DNA microarray analysis, 

and the only one to our knowledge, that is supporting numerous 

types of cDNA together with the most popular oligonoucleotide 

microarrays, like Affymetrix and Ilumina. The analysis tasks for 

all these types of microarray data are committed through the same 

transparent for the end user shell, without the need for extra 

programming effort. The exploitation of the immense 

computational resources of the Logical network, in terms of 

processing power, memory and storage render the LONETSSOM 

platform ideal, if not the only feasible solution for really unified, 
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statistical processing of very big datasets, like those that can be 

derived from large longitudinal, prospective or retrospective 

epidemiological studies. Real-life experience from the pilot 

period of operation of LONETSSOM, emphatically stresses the 

fact that porting an e-Science application in a functional Logical 

network environment entails great technical challenges, lots of 

nontrivial, yet tedious code reprogramming and lots of debugging. 

This is a prerequisite regarding the successful operational 

interfacing with the middleware. 
 
 

 
 
 
 

 
 
 

 
Fig. 7. Visualization of the results of the GO terms analysis 

performed by StRAnGER for the GEO GSE10010 dataset. 

The three trees correspond to the basic categories molecular 

function, cellular component, biological process, from top to 

bottom, in which all GO terms are discerned. The more 

intense the color the more significant the respective GO term. 

 
This aspect, usually overlooked in software engineering 

projects represents the biggest practical limitation for rapid 
exploitation of the fruits of interesting software implementations, 
which unfortunately, due to versioning problems cannot attract 
widespread use. LONETSSOM represents a much more flexible, 
and resilient, regarding its sustainable operation, web application, 
which manages to exploit the logical network infrastructure even 
for conditions of intense computing. Thus, sustainable job 
management is attained with minimization of queuing times, even 
for limited or small processor availability, an omnipresent reality 
regarding Logical network utilization, due to its internal 

prioritization policy scheme. 
In this way, the reconstruction of whole cellular 

networks from the experimental data is facilitated, through 

extensive in silico testing. Through the functional annotation and 

statistical evaluation of sequence ID lists, the LONETSSOM can 

stand out the most relevant biological information of a given gene 

set. Consequently, as the performed validation demonstrated, it 

enables enriching a plain list of gene identifiers with biological 

meaning and statistical significances. Based on some of the 

available and constantly updated genomic sources, we think 

LONETSSOM can represent an important aid in biologically 

interpreting microarray experiment results and in discovering 

biological knowledge from gene expression data. Other future 

work will introduce a grid and cloud based application for 

knowledge-mining from protein DNA and protein–protein 

interaction databases, as well as biological text mining 

functionalities. 
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