
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.12, February 2012

1

Meta Heuristic Search Technique for Dynamic

Test Case Generation

M. S. Geetha Devasena
Assistant Professor,

Dept. of CSE

Sri Ramakrishna Engg. College

M. L. Valarmathi

Associate Professor
Dept. of CSE

Govt. College of Technology

ABSTRACT

Software testing is an inevitable activity of software

development which is crucial to the software quality and

consumes approximately 50% of the software development

cost. Test case design is the most important activity in testing

which determines software quality. The program with the

moderate complexity cannot be tested completely but verified

only for input situations selected as test data. Innovative

methods are emerging to perform testing as a whole and unit

testing in particular with minimum effort and time. Unit

testing is mostly done by developers under a lot of schedule

pressure since the software companies find a compromise

among functionality, time to market and quality. Thus there is

a need for reducing unit testing time by optimizing and

automating the process. Test suite generation is an error-

prone, tedious and time consuming part of unit testing. A

novel technique is proposed to automatically generate test

cases from the input domain using meta heuristic search

technique scatter search for branch coverage criteria with

respect to cyclomatic complexity measure.

Keywords

Software testing, Unit testing, Branch Coverage Criteria and

Scatter Search

1. INTRODUCTION
Testing can show the existence of errors but not the non-

existence of errors. The main challenges in testing are

exhaustive testing is not possible, when to stop testing cannot

be assessed and there is no way to show the absence of errors.

With the increased pace of production schedules, the

tremendous proliferation of software design methodologies

and programming languages, and the increased size of

software applications, software testing has evolved from a

routine quality assurance activity into a sizable and complex

challenge in terms of manageability and effectiveness. The

major challenges to software testing in today‘s business

environment are,

• Efficiency. Is the test cycle too long? How can you

ensure every test is a good investment of time and money?

• Thoroughness. How can you tell when you are

done testing? How can you be reasonably sure the program is

bug-free?

• Resource Management. Are testing resources

strategically allocated, focusing on the highest-risk elements

of the software? Are the functionally central parts of the

program receiving an acceptable level of testing?

In practice, unit level testing ranges from the ad hoc

tests done by programmers as they are writing code to

systematic white box testing, where Unit level testing is part

of a every unit must be tested and documented by a QA and

Test group. In either case, the tester begins with the goal of

coverage, for it is the very purpose of unit level testing [1] to

achieve the highest level of coverage possible. Unit testing is

important because it is performed early in the development

process and it is more cost-effective at locating errors. The

greatest challenge of unit level testing is to identify a

minimum set of unit level tests to run. In an ideal world, every

possible path of a program would be tested, accounting for all

executable decisions in all possible combinations. But this is

impossible when one considers the enormous number of

potential paths embedded in any given program. With

enormous amount of possible input situations complete test is

not feasible in practice.

An essential part of testing is the selection of the most error

sensitive test data. A good set of test cases is one that has a

high chance of uncovering previously unknown errors. A

successful test run is one that discovers these errors. To

uncover all possible errors in a program, exhaustive testing is

required to exercise all possible input and logical execution

paths. But it is neither possible nor economically feasible

except for very trivial programs. Therefore, a practical goal

for software testing is to maximize the probability of finding

errors using a finite number of test cases, performed in

minimum time with minimum effort. Because of the central

importance of test case design for testing, a large number of

testing methods developed over the last decades, designed to

help the tester with the selection of appropriate test data.

Existing test case design methods can be categorized into

black-box testing and white-box testing. Black-box test cases

are determined from the specification of the program under

test and white-box test cases are derived from the internal

structure of the software. But it is difficult to achieve

complete automation of the test case design [4,9] in both the

cases. Black-box tests are automated only if a formal

specification exists. The tools supporting white-box tests are

limited to program code instrumentation and coverage

measurement due to the limits of symbolic execution. The test

case design has to be performed manually and the quality of

test is reliant on the tester. Thus the, manual test case design

is time-intensive and error prone when done manually.

Evolutionary testing is a promising approach for automation

of structural test case generation. The aim of evolutionary

testing is to increase the quality of tests and achieve cost

savings in software development by means of high degree of

automation.

2. EXISITING SYSTEM

2.1 Random Test Data Generation
Random test data generation techniques [2] select inputs

randomly until useful inputs are found. This technique may

fail to find test data to satisfy the requirements because

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.12, February 2012

2

70%

6%

4%

4%

4%

3%

3%
2%

2%2%

Percentage of Applications

Testing and Debugging

Management

Distribution, Maintanance

Miscellaneous

General Aspects

Software/Program Verification

Design Tools and Techniques

Requirements/Specifications

Network Protocols

Metrics

Artificial Intelligence

Coding Tools and Techniques

information about the test requirements is not incorporated.

The various disadvantages of this method are such as it is

appropriate only for simple and small programs, many sets of

values may lead to the same observable behavior and are thus

redundant and the probability of selecting particular inputs

that cause buggy behavior may be astronomically small.

2.2 Static Method
Static method generates test cases without execution from

several constraints based on the input variables of the program

under test. These methods have several drawbacks such as

treatment of loops, resolution of computed storage locations

and computational cost.

2.3 Dynamic Method
Dynamic test-data generation technique carry out a direct

search of tests through the execution of the instrumented

version of the program under test and determines test cases

that come closest to satisfying the requirement. Then, test

inputs are incrementally modified until one of them satisfies

the requirement. Most dynamic techniques use search based

software techniques.

2.4 Search based software testing
Search-Based Software Engineering (SBSE) is the application

of optimization techniques (OT) in solving software

engineering problems. Optimization is the process of

attempting to find the best possible solution amongst all those

available. The percentage of application of search based

techniques to software testing is 70% as shown in Figure 1.

Fig 1: Application of SBSE

Software testing is a suitable candidate for Search-Based

Software Engineering because the generation of software tests

is an undecidable problem [14, 15] and a program’s input

space is very large, exhaustive enumeration is infeasible. To

perform evolutionary testing, the task of test case design is

transformed into an optimization problem that, in turn, is

solved with meta-heuristic search techniques, such as

evolutionary algorithms or simulated annealing. The input

domain of the system under test represents the search space

from which the test data fulfilling the test objectives under

consideration is sought. The main aim of evolutionary testing

is to increase the quality of the tests in addition to achieve

substantial cost savings in system development by means of a

high degree of automation. In various case studies, it has been

proved that evolutionary testing has the potential to improve

the effectiveness and efficiency of the testing process

significantly. An overview of different applications of

evolutionary testing is provided by McMinn [12].

2.5 Symbolic test case generation technique
Symbolic test data generation techniques are those [7, 8] that

assign symbolic values to the variables to create algebraic

expressions for the constraints in the program. Then

constraints solver is used to find a solution for these

expressions that satisfies a test requirement. The floating point

inputs cannot be found by this technique because the

constraint solvers cannot produce floating point constraints.

3. STRUCTURAL TESTING

3.1 Bug Statistics

The bug statistics[17] through SDLC collected from various

sources given by Boris Beizer for a program of 1,00,000 lines

of code shown in Table 1, among the other bugs structural

bugs are the highest and half of the structural bugs are control

flow and sequence bugs as shown in Figure 2.

Table 1. Bug Statistics

Fig 2: Bar Graph representation of Bug Statistics

Size of source code: 6870000 statements

Total Reported Bugs: 16209

Bug Categorization
Total number

of bugs

% of bugs among

the total bugs

Requirements 1317 8.1

Features and Functionality 2624 16.2

Structural Bugs 4082 25.2

Data 3638 22.4

Implementation and
Coding

1601 9.9

Integration 1455 9.0

System, Software and

Architecture
282 1.7

Test Definition and

Execution
447 2.8

Other, Unspecified 763 4.7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A B C D E F G H I

T
ot

al
 r

ep
or

te
d

bu
gs

Bugs Categorized by SDLC Stages

No of Reported Bugs Control Flow Bugs
Processing Bugs

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.12, February 2012

3

The horizontal axis details of Figure 3 is mentioned below

A-Requirements

B-Features and Functionality

C-Structural Bugs

D-Data

E-Implementation and Coding

F-Integration

G-System and software Architecture

H-Test Definition and Execution

I-Other, unspecified

3.2 Cyclomatic complexity measure

Cyclomatic complexity [11, 16] (or conditional complexity) is

software structural metric (measurement) used to measure the

complexity of a program using Control flow graph of the

program. The cyclomatic complexity of a structured program

is defined as M=E-N+2P where, M- Cyclomatic Complexity,

E- the number of edges of the graph, N- The number of nodes

of the graph and P- The number of disconnected components.

It provides lower bound on the number of test cases required

to achieve branch coverage. The amount of test effort is better

judged Cyclomatic Complexity. If there are fewer test cases

than the measure then missing cases are to be found and more

test cases than the measure shows that the coverage can be

achieved with less number of test cases.

3.3 Evolutionary Testing

Evolutionary testing is characterized by the use of

metaheuristic search techniques for test case generation. The

test aim is transformed into an optimization problem. The

search space is the input domain of the test object . The search

algorithm explores the search space to find test data that

fulfils the respective test aim. The neighborhood search

methods such as hill climbing are not suitable in such cases.

So meta-heuristic search methods are employed, e.g.

evolutionary algorithms, simulated annealing, or scatter

search [5, 6, 13]. In this work, evolutionary algorithms are

used to generate test data because their robustness and

suitability for the solution of different test tasks has already

been proven in previous work [10]. Most of the previous

works in applying search techniques are not taking into

account float values for input domain. The first work in

applying scatter search to test case generation is given by Diaz

and the cyclomatic complexity is not considered [3]. The

proposed work extends the previous work and applies scatter

search technique to test case generation in compliance with

cyclomatic complexity measure for unit testing and compares

the performance with random test case generation based on

the measures of test suite size and branch coverage.

4. PROPOSED SYSTEM
The proposed system develops a tool for test suite generation

which takes control flow graph as input and automatically

generates test cases from the input domain of various

variables using scatter search technique. The architecture of

the proposed work is shown in Figure 3. The Control Flow

Graph Generator takes the source code of programs for which

test case is to be generated and generates Control Flow

Graphs.

4.1 Methodology

The various steps in the automated framework of test case

generation are,

1. Taking source code under test as input CFG

generator generates CFG.

2. Find the Cyclomatic Complexity measure.

3. The CFG is analyzed and the branching condition

information is extracted.

4. The test cases are generated for each condition

from input domain of the variables involved in the

condition using scatter search technique.

5. Find the compliance of number of test cases with

Cyclomatic Complexity measure.

6. The generated test cases are applied to the

instrumented source code to check the branch

coverage.

7. The best test cases form an effective test suite for

the given source code under test.

Source Code of

Programme under Test

Test Suite Generator Using

Scatter Search

CFG Generator Instrumentor

Instrumentated Source

Code

Cyclomatic Complexity

Measure
Percentage of Coverage

Optimized Test Suite

Test Cases

Fig 3: Flow diagram of Proposed System

4.2 Scatter search technique

The scatter search technique is a meta heuristic technique

which is proven successful in real world applications such as

travelling salesman problem. Recently it is found suitable for

test case generation problems in software testing. But only

few results have been published with relatively few samples

and it must be further proven with all data types of input

domain and with more samples. The scatter search algorithm

is given as,

begin

 Initialize Current Solution

 Store Current Solution in CFG

 Add Current Solution to memory list

 do

 Select a subgoal node to be covered

 Calculate neighbourhood candidates

 for each candidate do

 calculate branch covered by candidate

 endfor

 if (subgoal node covered) then Add Current

 Solution to memory list

 else Add Current Solution to memory list

 endif

 while (NOT all nodes covered AND number of

 iterations<MAXIT)

 end

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.12, February 2012

4

5. RESULTS
The proposed technique has been tested with 12

benchmarking samples including the triangle classifier

program which is widely used in various research papers [1, 3,

13] in the test suite generation. The results obtained are

encouraging and scatter search technique performs better than

random technique. The Performance measures such as the

Test Suite Size, Percentage of branch coverage are considered

for comparison of the techniques. Also the test suite size is

compared with the cyclomatic complexity of the program

structure under test which gives the measure of test cases

required to cover the program.

The results got by random technique can be given in Table 2.

Table 2. Results of Random Technique

The results show that the branch coverage varies from75% to

a maximum of 100% and that is achieved with more number

of test cases than the calculated Cyclomatic Complexity

measure. The results got by scatter search technique are given

in Table 3.

Table 3. Results of Scatter search Technique

It is found that branch coverage is increased by 10 percentage

and test suite size is reduced by 67 percentage. It is achieved

with as many numbers of test cases as calculated by

Cyclomatic Complexity measure. The performance analysis

graph based on the number of test cases in the test suite and

the percentage of branch coverage of both the techniques is

given in Figure 4 and Figure 5 respectively.

Fig 4: Test Suite Size Comparison

Fig 5: Percentage of Branch Coverage Comparison

6. CONCLUSION
Software testing is an important activity and critical too in

deciding quality of the software. Test suite generation is vital

part of testing process which determines the quality of test.

This technique of automated generation of test cases from the

input domain can assist the developers and testers with error-

sensitive test data and helps to perform unit testing with

minimum time and resources. Also the optimized number of

test cases generated is much helpful in regression testing

which otherwise carried out with greater number of test cases.

The technique can be further extended for multiple coverage

criteria. Also the effectiveness can be further proven with

fault detection effectiveness.

Samples
Test Suite

Size

% of Branch

Coverage

Cyclomatic

Complexity

S1 8 75 3

S2 5 80 2

S3 7 100 3

S4 3 100 2

S5 9 77.77 3

S6 11 81.8 3

S7 5 100 2

S8 6 100 3

S9 5 100 2

S10 8 87.5 3

S11 10 88.88 3

S12 15 93.33 4

Samples
Test Suite

Size

% of Branch

Coverage

Cyclomatic

Complexity

S1 3 100 3

S2 2 100 2

S3 3 100 3

S4 2 100 2

S5 3 100 3

S6 3 100 3

S7 2 100 2

S8 3 100 3

S9 2 100 2

S10 3 100 3

S11 2 88.88 3

S12 3 93.33 4

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.12, February 2012

5

7. REFERENCES
[1] Chilenski1, John Joseph Chilenski and Steven P. Miller,

1994. ‘Applicability of Modified Condition/Decision

Coverage to Software Testing’, Software Engineering

Journal Vol. 9, No. 5, pp.193-200.

[2] Edvardson, J. 1999. ‘A Survey on Automatic Test data

generation’, In proceedings of the second conference on

computer science and engineering Vol.2, No.1, pp.343-

351.

[3] Eugenia Diaz, Javier Tuya, Raquel Blanco, Jose Javier

Dolado, 2008. ‘A tabu search algorithm for structural

software testing’, Computers and Operations Research

Vol. 14, No. 3, pp.38-69.

[4] Ferguson and Korel, B. 1966. ‘The chaining approach

for software test data generation’, ACMTOSEM vol. 5,

pp.63-86.

[5] Glover, F. 1989. ‘Tabu search: part I’, ORSA Journal on

Computing, Vol. 3, No.1,pp.190-206.

[6] Glover, F. 1990. ‘Tabu search: part II’, ORSA Journal on

Computing, Vol. 4, No. 2, pp.4–32.

[7] Howden, W.E. 1977. ‘Symbolic testing and the

DISSECT symbolic evaluation system’, IEEE

Transactions on Software Engineering vol.3, no. 4, pp.

266-278.

[8] John Clarke, Mark Harman, Bryan Jones. 2000. ‘The

Application of Metaheuristic Search techniques to

Problems in Software Engineering’, IEEE Computer

Society Press Vol.42, No.1, pp.247-254.

[9] Lindquist, T.E. and Jenkins, J.R. 1998.‘Test-case

generation with IOGen’, IEEE Software vol.5, no.1,pp.

72-79.

[10] Lin, Yeh, P.L. 2001. ‘Automatic test data generation for

path testing using Gas’, Information Sciences Vol. 4,

No.13, pp. 47-64.

[11] McCabe, Tom, 1976. ‘A Software Complexity Measure’,

IEEE Trans. Software Eng Vol.2, No.6, pp.308-320.

[12] McMinn, p. 2004. ‘Search Based Software Test Data

Generation:A survey’, Journal on Software Testing,

Verification, and Reliability vol.14, no.2, pp.105-156.

[13] Raquel Blanco , Javier Tuya , Belarmino Adenso-Díaz.

2009. ‘Automated test data generation using a scatter

search approach’, Information and Software Technology

Vol. 51, No.1, pp. 708-720.

[14] Tao Feng, Kasturi Bidarkar. 2008. ‘A Survey of

Software Testing Methodology’ vol.25, no-3, pp.216-

226.

[15] Voas, J.M, Morell, J. and Miller, K.W. 1991. ‘Predicting

where faults can hide from testing’, IEEE vol: 8, pp,

41-48.

[16] Wegener, Baresel DeMillo RA, Offutt, A.J. 1991.

‘Constraint-based automatic test data generation’ IEEE

Transactions on Software Engineering Vol.17.

[17] Boris Beizer. 2000. ‘Software Testing Techniques’,

Second edition.

