
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.8, January 2012

47

Reliable Clustering Model for Enhancing Processors

Throughput in Distributed Computing System

Anurag Raii

Department of IT
College of Engineering Roorkee, Roorkee-247667,

(U.K.)

Vikram Kapoor

Department of CS
O.I.M.T. Rishikesh (U.K.)

ABSTRACT

A distributed computing system is the system architecture that

makes a collection of heterogeneous computers, workstations,

or servers act and behave as a single computing system. In

such a computing environment, users can uniformly access

and name local or remote resources, and run processes from

anywhere in the system, without being aware of which

computers their processes are running on. Distributed

computing systems have been studied extensively by

researchers, and a great many claims and benefits have been

made for using such systems. In fact, it is hard to rule out any

desirable feature of a computing system that has not been

claimed to be offered by a distributed system. However, the

current advances in processing and networking technology

and software tools make it feasible to achieve the diverse

advantages like increased performance, Cost-effectiveness,

Sharing of resources, increased extendibility. To meet such

challenging computing requirements reliability plays an

important role. In this paper authors are proposing a model for

enhancing processors throughput in distributed computing

system.

General Terms

Distributed Computing systems

Keywords

Distributed System, Task, Communication Cost, Clustering

1. INTRODUCTION
The spread of high-speed broadband networks in developed

countries, the continual increase in computing power, and the

growth of the Internet have changed the way in which society

manages information and information services [1-2].

Geographically distributed resources, such as storage devices,

data sources, and supercomputers, are interconnected and can

be exploited by users around the world as single, unified

resource. To a growing extent, repetitive or resource-intensive

IT tasks can be outsourced to service providers, which execute

the task and often provide the results at a lower cost. A new

paradigm is emerging in which computing is offered as a

utility by third parties whereby the user is billed only for

consumption. This service-oriented approach from

organizations offering a large portfolio of services can be

scalable and flexible [3].

The idea of distributing resources within computer networks

is not new. It dates back to remote job entry on mainframe

computers and the initial use of data entry terminals. This was

expanded first with minicomputers, then with personal

computers (PCs) and two-tier client-server architecture [4].

While the PC offered more autonomy on the desktop, the

trend is moving back to client-server architecture with

additional tiers, but now the server is not in-house. Not only

improvements in computer component technology but also in

communication protocols paved the way for distributed

computing. Networks based on Systems Network Architecture

(SNA), created by IBM in 1974, and on ITU-T’s X.25,

approved in March 19761, enabled large-scale public and

private data networks [5]. These were gradually replaced by

more efficient or less complex protocols, notably TCP/IP.

Broadband networks extend the geographical reach of

distributed computing, as the client-server relationship can

extend across borders and continents. A number of new

paradigms and terms related to distribute computing have

been introduced, promising to deliver IT as a service [6].

While experts disagree on the precise boundaries between

these new computing models,

In general terms, a distributed system is “is a collection of

independent computers that appears to its users as a single

coherent system” (Andrew S. Tanenbaum). A second

description of distributed systems by Leslie Lamport points

out the importance of considering aspects such as reliability,

fault tolerance and security when going distributed: “You

know you have a distributed system when the crash of a

computer you have never heard of stops you from getting any

work done” [7]. Even without a clear definition for each of the

distributed paradigms: clouds and grids have been hailed by

some as a trillion dollar business opportunity.

The main goal of a distributed computing system is to connect

users and IT resources in a transparent, open, cost-effective,

reliable and scalable way. The resources that can be shared in

grids, clouds and other distributed computing systems include:

Physical resources, Computational power, Storage devices,

and Communication capacity [8-10]. Virtual resources, which

can be exchanged and are independent from its physical

location; like virtual memory, Operating systems, Software

and licenses, Tasks and applications and Services.

2. MAIN ASPECTS OF DISTRIBUTED

COMPUTER SYSTEM (DCS)
Following are some important aspects of DCS that need

special consideration

2.1 Cluster
Clustering is the use of multiple computers, typically PCs or

workstations, multiple storage devices, and redundant

interconnections, to form what appears to users as a single

highly available system. Cluster computing can be used for

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.8, January 2012

48

load balancing as well as for high availability. It is used as a

relatively low-cost form of parallel processing machine for

scientific and other applications that lend themselves to

parallel operations. Computer cluster technology puts clusters

of systems together to provide better system reliability and

performance. Cluster server systems connect a group of

servers together in order to jointly provide processing service

for the clients in the network [11]. Cluster operating systems

divide the tasks amongst the available servers. Clusters of

systems or workstations, on the other hand, connect a group of

systems together to jointly share a critically demanding

computational task. Theoretically, a cluster operating system

should provide seamless optimization in every case [12]. At

the present time, cluster server and workstation systems are

mostly used in High Availability applications and in scientific

applications such as numerical computations.

2.2 Tasks
A task is a sequential program, which performs some

predefined action and possibly communicates with other tasks

in a system. Some tasks often have priorities relative to other

tasks in a system [13-15]. Other common words for tasks are

threads and processes. Tasks can be preemptive or non

preemptive and are defined to take different states/modes:

ready, executing, waiting, blocked or dormant. A task will

experience state changes during its execution time [16]. Three

blocks usually construct a task: a control block, a program

code and a data area. When a task is ready to execute, it is set

to active (ready state). The task with the highest priority

among the ones ready will then begin its execution. There

exist different kinds of tasks depending on what action they

implement. Since actions handle events and events have

different structures, tasks can be periodic, aperiodic or

sporadic. Periodic means that tasks are activated at a

repeatedly periodic interval. Aperiodic means that tasks can

occur at any time and there are no known arrival patterns

between the occasions. Sporadic tasks can also occur at any

time but there is a known minimum time between the arrivals

[17].

Moreover in a DCS the ability to meet task deadlines largely

depends on the underlying task allocation and hence we need

a pre-runtime task allocation algorithm that takes into

consideration the real-time constraints [18]. Since the end-to-

end system response time of distributed applications is

affected significantly by inter-task communication, one must

account for the effect of delays and precedence constraints

imposed by inter-task communication when task allocation

decisions are made.

2.3 Tasks Allocation Problem

Consider a set 1 2 3 nP = {p , p , p ,, p } of n

processors interconnected by communication links and a set

1 2 3 mT = {t , t , t ,, t } of m executable tasks. The

allocation of each task to n available processors such that

objective times function is minimized subject to the certain

resource limitations and constraints imposed by the

application or environment [19]. In a DCS, a program is

portioned into small tasks and distributed among several

processors to minimize the overall system time. Several

challenges have been posed by this mode of processing which

can be classified mainly into two broad categories. One class

belongs to the hardware oriented issues of building such

systems more and more effective while the other class aims at

designing efficient algorithms to make the best use of the

technology in hand. The task allocation problem in DCS

belongs to the later class.

Assigning m tasks to n processors requires nm exhaustive

enumerations. [20] showed that the problem of finding an

optimal allocation from amongst all possible assignments is

exponentially complex. An efficient task allocation policy

should avoid excessive Inter-Processor Communication (IPC)

and exploit the specific efficiencies of the processors and in

case of a system having similar processors, the tasks or

modules should be distributed as evenly as possible. The IPC

is the bottleneck in providing linear speed-up with the

increase in the number of processors [21].

2.4 Assumptions and Definitions
In our underline model some assumption should be taken for

the batter utilization of the resources. Number of task is more

than the number of processor’s. Total m task are arranged in a

list T=[t1,t2,…tm].The size of different task of the list are

arranged in the task size matrix TS[]. We have Inter Task

Communication Time Matrix ITCTM [,]. It holds the

communication time between the Inter Task Communication

CTS []. In our distributed computing system we have n

processor’s, P={p1,p2,…pn} interconnected by

communication links, each of the n processor’s in the system

have their different execution rate (because of heterogeneous

system) [22]. The processing efficiency of individual

processor is given in the form of PER [] (Process Execution

Rate). With the help of ECM algorithm k cluster are created

from m task over the n processor’s and store it in the list CLS

[].

3. PROBLEM STATEMENT
Let us given a distributed computing system consist of a set of

n processor’s, P=[p1,p2…pn] interconnected by

communication links. These links serves the purpose of

transferring messages between the processors, and a set of m

task T=[t1,t2,..tn] that constitute a communicated program.

These constitute a communicated program. These tasks are

collectively responsible for attaining the desired goal.

The processing efficiency of individual processor is given in

the form of matrix ECM[,] of order m X n and ITCTM[,] is

taken in the form of a symmetric matrix CCM[,] or order m X

m. The proposed model relies upon:

(i) Developing the methods fro clustering m task.

(ii) Reduction of ITCTM

(iii) Formulating the Cost Function to measure ECM

(iv) Calculating reliability of individual processor, and

enhancing the throughput with prefect reliability.

3. THE PROPOSED METHOD
A task is allocated to a processor in such a way that extensive

Inter Task Communication is avoided and the capabilities of

the processor’s suit to the execution requirement of the task.

The proposed allocation policy involves clustering of task to

the heterogeneous multiprocessor’s environment. Initially we

concentrate on the task selection for strategy cluster. With the

help of ECM algorithm different cluster are created with

respect to the number of processor’s in the system. Now these

clusters are allocated to the different processing units. This

allocation is governed by the optimistic allocation strategy.

That includes both communication cost and execution cost.

The following are the steps for solution (algorithm):

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.8, January 2012

49

Step1:

(a) Input the size of Processor’s Execution Rate PSR(,) matrix

and size of Task Matrix TS(,) respectively m and n.

(b) Input size of each Task into TS(,) matrix and Processor’s

Execution Rate of each processors into PER(,) matrix .

(c) Input inter task communication cost of each task into

ITCCM(,) matrix.

Step2: Formation of Cluster of task.

(a) Set Cluster :=k

If k=m then

Number_of_cluster := n and

K =
𝑚
−
𝑛
 task

 End if

(b) 𝐶𝑖 =[ti] , each task is like a cluster

Repeat step 2.b by m times.

(c) Store all cluster in a linear array

CLS = { Ci , 1<= i <=m}

(d) Select first task pair (tr, ts) : tr є Cr and ts є Cs

from Task Size matrix TS(,).

Step 3:

If the sum of number of task for cluster Cr and Cs is

less than or equal

 to
𝑚
−
𝑛
 then use the cluster Ci with Cs

Else

(a) Select the next task pair from TS(,) matrix

(b) Update cluster array CLS ={ } by repeating the

cluster Cr Cr U Cs { 𝑡𝑟 , 𝑡𝑠 }

(c) Update the task size matrix TS() by deleting this

task pair (𝑡𝑟 , 𝑡𝑠) also

(d) Update task size matrix TS() and Inter

communication cost time matrix ICCTM(,)

(i) Update TS(,) by adding sth row into rth

(ii) Reduce the communication time between

Tr and Ts to zero

(iii) Add the communication time Csj to Crj for

all j

(iv) Delete task Ts from inter task cost time

matrix ITCTM(,)

(e) The above procedure is repeated until and

unless we do not get number if task cluster

equal to number of processors.

End if

Step 4: Generate execution cost matrix ECM (,)

(a) Find the transpose of PSR(J)T and multiply

with TS(i) as

ECM (I,j) =

Step5: Apply the optimize algorithm to get allocation, and

store the assignment

in a linear array Tass(j). Also processor position

are stored in a another linear array Allocate (j)

Get the value of Alloc (j) if a task and inter task

communication cost from the equation.

Calculate TR, MS and TRP by using the equation

Step 6: We have the execution cost matrix ECM from where

we get the best assignment with help of Hungarian methods.

Step 7: Now we have to found the reliability of the system in

our assumption let the processors will fail after the 1000

iteration. So we get the failure by ECM/1000.

Step 8: Recursively use step 1 to 9th to calculate reliability.

Step 9: We get this by reliability probabilistic model.

Step 10: Total execution cost EC.

We can get it with the help of adding all the assigned clusters

as in step eight.

Step 11: Total Communication Cost.

Step 12: Total Execution reliability [TER], Total

Communication Reliability [TCR] and Total Processor

Reliability [TPR] is calculated by multiplying all the assigned

reliability terms.

4. RESULTS AND DISCUSSIONS
The present paper deals with a simple yet efficient

computational algorithm for reliable clustering of task.

Developed algorithm results the overall reliability of the DCS.

A simple procedure has been developed to determine the

following

i) Best Clustering Domain.

ii) Throughput of the processors.

iii) Total Execution Reliability.

iv) Total Communication Reliability.

v) Overall System Reliability.

Figure 1 shows the reliability of Distributed Computer System

with the set of seven task and three processor having

execution rate 0.248, 0.218 and 0.234 respectively with the

help of RECM algorithm we calculate the reliability of

individual processor as 0.99411, 0.99433 and 0.99462 which

is far batter in comparison to the non clustering model of

Sig05 also the throughput of the existing system will enhance

during the high load of execution.

5. CONCLUSIONS
It is conclude that algorithm is general and can accommodate

a large number of task to be clustered on any number of

processor’s to check the generality of our algorithm several

sets of input data are considered and is found that the

algorithm is suitable for arbitrary number of processor’s with

the random program structure and workable in all the cases.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.8, January 2012

50

Figure 1: Reliability of distributed computer system

6. REFERENCES
[1] A. Tom P. and Ram Murthy, C. S. 1997. An improved

algorithm for module allocation in distributed computing

Systems. Journal of Parallel and Distributed Computing

Systems, Vol. 42, pp. 82-90.

[2] Kafil, M. and Ahmad, I. 1997. Optimal task assignment

in heterogeneous computing systems, In Proceeding of

Sixth Heterogeneous Computing Workshop, pp. 135-

146.

[3] Peng, D. T., Shin, K.G. and Abdel, Zoher, T.F. 1997.

Assignment scheduling communication periodic tasks in

distributed real time system. IEEE Transactions on

Software Engineering, SE-13, pp. 745- 757.

[4] Chu, W.W. Holloway, L.J., Lan, M.T., and Kfe, K. 1980.

Task allocation in distributed data processing. IEEE

Concurrency, pp.57-69.

[5] Richard, P.Y., Edward, M., Lee, Y.S., and Tsuchiya, M.

1982. A task allocation model for distributed computing

systems. IEEE Transactions on Computers, Vol.C-31,

pp. 41- 46.

[6] Shen, C. C., and Tasi, W.H. 1985. A graph matching

approach to optimal task assignment in distributed

computing systems using a minimax criterion. IEEE

Transactions on Computers, Vol. C- 34, pp. 197-203.

[7] Stone, H.S. 1978. Critical load factors in two- processor

distributed system. IEEE Transactions on Software

Engrg. Vol. 4, pp. 254- 258.

[8] Muhammad, I.A., Dhodhi, K., and Ghafoor, A. 1995.

Task assignment in distributed computing systems. IEEE

Concurrency, pp.49-53.

[9] Lee, C.H., Lee, D. and Kim, M. 1997. Optimal task

assignment in linear array networks. IEEE Transactions

on Computers, Vol.41, No. 7, pp.877-880.

[10] Shatz, S.L., Wang, J.P., and Goto, M. 1992. Task

allocation for maximizing reliability of distributed

computer systems. IEEE Transactions on Computers,

Vol.41, 9, pp.

[11] Kartik, S., and Ram Murthy, C.S. 1997. Task allocation

algorithms for maximizing reliability of distributed

computing system. IEEE Transactions on computers,

Vol.46, No. 6, pp. 719-724.

[12] Chen, D.J., Chen, R.S., Hol, W.C., Ku, K.L. 1995. A

heuristic algorithm for the reliability- oriented file

assignment in a distributed computing system.

Computers Math. Applic., Vol. 29, No.10, pp. 85- 104.

[13] Yin, P.Y., Yu, S.S., Wang, P.P., Wang, Y.T. 2007. Task

allocation for maximizing reliability of a distributed

system using hybrid particle swarm optimization. The

Journal of Systems and Software, Vol. 80, pp. 724-735.

[14] Srinivasan, S., and Jha, N.K. 1999. Safety and reliability

driven task allocation in distributed systems. IEEE

transactions on Parallel and Distributed Systems, Vol.10.

No. 3, pp.238-251.

[15] Vidayarthi, D.P., and Tripathi, A.K. 2001. Maximizing

reliability of distributed computing system with task

allocation using simple genetic algorithm. Journal of

System Architecture, Vol. 47. pp. 549-559.

[16] Kng, Q.M., He, H., Song, H. M., Deng, R. 2010. Task

allocation for maximizing reliability of distributed

computing system using honeybee mating optimization.

The Journal of Systems and software, Vol.83, No. 2.pp.

[17] Woo, S.H., Yang, S. B., Kim, S.D., and Han, T.D. 1997.

Task scheduling in distributed computing systems with a

genetic algorithm. Doi.0- 8186- 7901- 8/97 10.000, IEEE

p.p. 301-305.

[18] Lu, H. 1996. Load balanced task allocation in locally

distributed computer sciences. Technical report# 633.

[19] Elsadek, A.A., and Wells, B. E. 1999. A heuristic model

for task allocation in heterogeneous distributed

computing systems. International journal of computers

and there applications, Vol.6, No.1, March 1999. pp. 1-

35.

[20] Lo, V.M. 1988. Heuristic algorithms for task assignment

in distributed systems. IEEE Transactions on computers,

Vol.37. No. 11, pp. 1384- 1397.

[21] Kfe, K. 1982. Heuristic models of task assignment

scheduling in distributed systems. Computer, Vol. 15, pp.

50- 56.

[22] Ellis, H., Sahni, S. and Rajsekaram, S. 2005.

Fundamentals of computers algorithm. Galgotiya

publication Pvt Ltd.

y = 0.0193x2 - 0.1119x + 1.0758

R2 = 1

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

TER TCR TSR

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4432

