CPSO based LFC for a Two-area Power System with GDB and GRC Nonlinearities Interconnected through TCPS in Series with the Tie-Line

R. Arivoli
Associate Professor
Department of Electrical Engineering, Annamalai University, Annamalainagar – 608002, Tamilnadu, India

Dr. I. A. Chidambaram
Professor
Department of Electrical Engineering, Annamalai University, Annamalainagar – 608002, Tamilnadu, India

ABSTRACT

In this paper the design of Proportional Integral (PI) controller is proposed using Craziness Particle Swarm Optimization (CPSO) based Integral Square Error (CPISOISE), CPSO based Apex Stability Verge (CPSOASV) and Multi-Objective based CPSO (MOCPSO) are used to design the controller for a two-area power system considering Governor Dead Band (GDB) and Generation Rate Constraint (GRC) nonlinearities coordinate with Super Conducting Magnetic Energy Storage (SMES) units and interconnected through Thyristor Controlled Phase Shifter (TCPS). CPSO algorithm is a powerful optimum search technique, the salient advantage is that it is highly insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities under load following variations. For the proposed method, two types of controllers namely, Mutual Aid Criterion (MAC) based Integral Square Error (ISE) and Apex Stability Verge (ASV) controllers are designed first and then the proposed MOCPSO controller is designed. Simulation results of the proposed MOCPSO controller is not only effective in damping out frequency oscillations, but also capable of alleviating the transient frequency swing caused by the disturbances. From the dynamic responses it reveals that the MOCPSO based controller for the two area reheating power system with SMES, interconnected with TCPS ensures better transient performance and faster settling time than that of the CPISOISE based controller.

General Terms
Load-Frequency Control (LFC), PI controller, Mutual Aid Criterion (MAC), Craziness Particle Swarm Optimization (CPSO), Integral Square Error (ISE), Super Conducting Magnetic Energy Storage (SMES), Thyristor Controlled Phase Shifter (TCPS), Governor Dead Band (GDB), Generation Rate Constraint (GRC).

Keywords
Apex Stability Verge (ASV), Craziness Particle Swarm Optimization based Apex Stability Verge (CPSOASV), CPSO based Integral Square Error (CPISOISE), Multi-Objective CPSO (MOCPSO).

1. INTRODUCTION

Increase in Generation, Transmission and Utilization of modern power system has led the system to more complex. Hence the power supply with stability and high reliability is essential. Load-Frequency Control (LFC) is a very important problem in power system operation and control by which a balance between electric power generation and power consumption is maintained. Existing power system consists of many control areas interconnected together and power is exchanged between control areas through tie-lines by which they are connected. LFC plays a significant role in the power system by maintaining scheduled system frequency and tie-line flow during normal operating condition and also during small load perturbations. The stability of the inter-area oscillation mode is deteriorated by the heavy load condition in tie-lines especially due to the electric power exchange. The Load Frequency Control (LFC) problem is of vital importance in electrical power system design/operation and attention has been directed towards designing efficient controllers to ensure reliable and quality power supply. There has been considerable effort devote to LFC of interconnected power systems in the literature [1, 2]. To ensure dynamic performance of the power system, a number of control strategies have been employed in the design of load frequency controllers. The application of decentralized control strategy to the LFC problem has found wide acceptance because of its role in eliminating most of the problems associated with other centralized or multilevel control strategies [3-9].

This paper focuses on the analysis carried out for the AGC of a two-area interconnected thermal power system considering TCPS in series with the tie-line. Investigations are also carried out to examine the capability of the TCPS damping controller in two-area interconnected power system. An interconnected thermal system involves widely different characteristics for the thermal systems. The characteristics of steam turbines is that the relatively large inertia used as a source of energy causes a considerable greater time lag in the response of the change in the prime mover torque to a change in gate position, and also a non-minimum phase behaviour, that is, an initial tendency for the torque to change in a direction opposite to that finally produced. Moreover, the maximum permissible generation rate constraint for the thermal units. Further, the effects of different generation rate constraints on the selection of optimum controller settings for the thermal two areas and on the system dynamic performance considering a TCPS in series with the tie-line can be established efficiently.

In view of the above, the main objectives of the present work are:
1. To design the controller for a two-area power system considering Governor Dead Band (GDB) and Generation Rate Constraint (GRC) nonlinearities coordinate with Super...
Conducting Magnetic Energy Storage (SMES) units and interconnected through Thyristor Controlled Phase Shifter (TCPS).

2. To minimise the oscillations in the system frequency and tie-line power considering a TCPS in series with the tie-line of a two-area interconnected thermal power system.

3. To optimise the gain settings of the Proportional-Integral controllers using CPSOISE, CPSOASV and MOCPSO.

4. To compare the dynamic responses.

For the past several decades, lot of work pertaining to the design of classical controllers for interconnected power systems [3-7] has been carried out and in most of the cases, the mathematical model has been over simplified by ignoring the simultaneous presence of important system nonlinearities such as Governor Dead Band (GDB) and Generation Rate Constraints (GRC). All governors in the thermal reheat power system have deadbands like mechanical friction, backlash, valve overlaps in hydraulic relays, which are important for speed control even under small disturbances. So, the speed governor deadband has significant effect on the dynamic performance of load-frequency control system. Moreover, the GDB has a destabilizing effect on the transient response of the system [6, 8].

Figure 1.Two - area thermal power system with TCPS

In a power system, another most important constraint on modern large size thermal units is the stringent generation rate constraint i.e. the power generation can change only at a specified maximum rate. The GRC of the system is considered by adding a limiter to the control system. In this condition, the response will be with larger overshoots and longer settling times when compared with the system where GRC is not considered. So, if the parameters of the controller are not chosen properly, the system may become unstable. In the simultaneous presence of GDB and GRC, even with small load perturbation, the system becomes highly nonlinear and hence the optimization problem becomes rather complex. Many control strategies have been employed in the design of load-frequency controller for interconnected power systems considering GDB and GRC nonlinearities.

First Craziness Particle Swarm Optimization based PI controller on the basis of the cost functions using MAC is designed. Secondly MAC based PI controller on the basis of the settling time of the output frequency deviation response for 1% step load disturbance in area 1 is designed. The first controller is referred as CPSOISE controller and the second is referred as CPSOASV controller.

The gains K_p, K_i of CPSOISE and CPSOASV controllers will be the lower and upper or upper and lower limits of the proposed MOCPSO controller. This paper investigates the performance of the MOCPSO controller in a two-area power system interconnected with TCPS. From the simulated results the controller designed based on MOCPSO ensures better transient performance and faster settling time than that of the controller designed with CPSOISE.

2. STATEMENT OF THE PROBLEM

The state variable equation of the minimum realization model of the two-area interconnected power system is expressed as

$$X = AX + Bu + \Gamma d$$

$$X = \{ [\Delta CE_1, \Delta ACE_2, \Delta P_{G1}, \Delta P_{G2}, \Delta X_{E_1}],$$

$$\Delta \phi, \Delta P_{m}, \Delta f, \Delta P_{g_2}, \Delta X_{E_2} \}$$

$$U = [U_1, U_2]^T = [\Delta P_{C1}, \Delta P_{C2}]^T$$

$$d = [d_1, d_2]^T = [\Delta P_{D1}, \Delta P_{D2}]^T$$

Where A is the system matrix, B is the input distribution matrix, Γ is the disturbance distribution matrix, x is the state vector, u is the control vector and d is the disturbance vector due to change in load.

3. POWER SYSTEM MODEL FOR SIMULATION ANALYSIS

The AGC system investigated comprises of an interconnection of two areas, both areas comprising of a nonreheat thermal units. Fig. 1 shows the schematic of two-area interconnected thermal power system with TCPS. Two areas are connected by a weak tie-line. TCPS is placed in series with the tie-line near area-1. A TCPS is a device that changes the relative phase angle between the system voltages [14]. Therefore, the real power flow can be regulated to mitigate the frequency oscillations and enhance power system stability. The small perturbation transfer function block diagram of Fig. 1 is shown in Fig. 2. When there is sudden rise in power demand in a control area, the governor control mechanism starts working to set the power system to the new equilibrium condition. Similar action happens when there is a sudden decrease in load demand. Basically, the operation speed of governor-turbine system is slow compared with that of the excitation system. As a result, fluctuations in terminal voltage can be corrected by the excitation system very quickly, but fluctuations in generated power or frequency are corrected slowly. Since load frequency control is primarily concerned with the real power/frequency behaviour, the excitation system model will not be required in the approximated analysis [15]. This important simplification paves the way for constructing the simulation model shown in Fig. 2. The basic objective of the supplementary control in Fig. 2 is to restore balance between each area load and generation for a load disturbance. This is met when the control action maintains the frequency and the tie-line power interchange at the scheduled values.
4. STATE SPACE MODEL

For a two-area thermal reheat interconnected power system
The following equation can be written

$$\Delta F_i = \frac{k_{pl}}{T_{p1}} \left(\Delta P_{G1} - \Delta P_{D1} - \Delta P_{tie} \right) \frac{\Delta F_i}{T_{p1}} \quad (2)$$

$$\Delta P_{G1} = -\frac{1}{T_{i1}} \Delta X_{E1} - \frac{1}{T_{i1}} \Delta P_{G1} \quad (3)$$

$$\Delta P_{tie} = \frac{1}{T_{i1}} \Delta P_{tie} + \frac{1}{T_{i1}} \Delta X_{E1} + \frac{1}{T_{g1}} \Delta P_{tie} + \frac{k_{pl}}{T_{i1}} \Delta X_{E1} \quad (4)$$

$$\Delta X_{E1} = -\frac{1}{T_{g1}} \Delta X_{E1} + \frac{1}{T_{g1}} \Delta P_{tie} - \frac{1}{T_{g1}} R_1 \Delta F_i \quad (5)$$

$$\Delta P_{tie} = \frac{1}{T_{i1}} \Delta P_{tie} + \frac{1}{T_{i1}} \Delta P_{tie} - \frac{1}{T_{i1}} \Delta X_{E1} \quad (6)$$

$$\Delta F_2 = \frac{k_{p2}}{T_{p2}} \frac{\Delta F_2}{T_{p2}} \quad (7)$$

$$\Delta P_{G2} = -\frac{1}{T_{i2}} \Delta P_{D2} - a_{12} \Delta P_{tie} \quad (8)$$

$$\Delta F_1 = \frac{K_{pl}}{T_{p1}} \left(\Delta P_{G1} - \Delta P_{G1} - \Delta P_{tie} \right) \frac{\Delta F_1}{T_{p1}} \quad (9)$$

$$\Delta P_{tie} = -\frac{1}{T_{i2}} \Delta X_{E2} - \frac{1}{T_{i2}} \Delta P_{tie} \quad (10)$$

$$\Delta F_{tie} = \frac{K_{pl}}{T_{p1}} \left(\Delta P_{G1} - \Delta P_{tie} \right) \frac{\Delta F_{tie}}{T_{p1}} \quad (11)$$

$$\Delta P_{G1} = \frac{1}{T_{i1}} \Delta P_{G1} + \frac{1}{T_{i1}} \Delta P_{tie} + \frac{K_{pl}}{T_{i1}} \Delta X_{E1} \quad (12)$$

$$\Delta P_{tie} = -\frac{1}{T_{i1}} \Delta X_{E1} - \frac{1}{T_{i1}} \Delta P_{G1} \quad (13)$$
\begin{equation}
\Delta X_{E1} = -\frac{1}{T_{g1}} \Delta X_{E1} + \frac{1}{T_{g1}} \Delta P_{g1} - \frac{1}{T_{g1} R_{1}} \Delta F_{1} \tag{14}
\end{equation}

\begin{equation}
\Delta P_{ac1} = \Delta F_{1} + \Delta P_{ac1} + \Delta P_{tie1} \tag{15}
\end{equation}

\begin{equation}
\Delta P_{ac1,2} = 2 \pi T_{r2} (\Delta F_{1} - \Delta F_{2}) \tag{16}
\end{equation}

\begin{equation}
\Delta P_{G2} = \frac{K_{p2}}{T_{p2}} (\Delta P_{G2} - \Delta P_{D2} - \Delta P_{ac2} - \Delta P_{tie2}) - \frac{\Delta F_{2}}{T_{p2}} \tag{17}
\end{equation}

\begin{equation}
\Delta P_{G2} = -\frac{1}{T_{p2}} \Delta P_{G2} + \frac{1}{T_{p2}} \frac{k_{2}}{T_{p2}} \Delta P_{D2} + \frac{K_{p2}}{T_{p2}} \Delta X_{E2} \tag{18}
\end{equation}

\begin{equation}
\Delta P_{c2} = -\frac{1}{T_{c2}} \Delta X_{c2} - \frac{1}{T_{c2}} \Delta P_{c2} \tag{19}
\end{equation}

\begin{equation}
\Delta P_{c2} = \frac{1}{T_{c2}} \Delta X_{c2} + \frac{1}{T_{c2} R_{2}} \Delta F_{2} \tag{20}
\end{equation}

\section{5. INCREMENTAL TIE-LINE POWER FLOW MODEL CONSIDERING TCPS}

As the recent advances in power electronics have led to the development of the FACTS devices, which are designed to overcome the limitations of the mechanically controlled devices used in the power systems and enhance power system stability using reliable and high-speed electronic components. One of the promising FACTS devices is the TCPS. TCPS is a device that changes the respective phase angle between the system voltages. Therefore the real power flow can be regulated to mitigate the frequency oscillations and enhance power system stability.

In this study, a two-area thermal power system interconnected by a tie-line is considered. Fig. 1 shows the schematic representation of the two-area interconnected thermal system comprising a TCPS in series with the tie-line. TCPS is placed near Area 1. Practically, in an interconnected power system, the reactance-to-resistance ratio of a tie-line is quite high (X/R≥10) and the effect of resistance on the dynamic performance is not that significant. Because of this, the resistance of the tie-line is neglected. Two Area interconnected thermal power system comprising . Without TCPS, the incremental tie-line power flow from Area 1 to Area 2 can be expressed as [25]

\begin{equation}
\Delta P_{tie1} = \frac{2 \pi f_{tie}^{0}}{s} (\Delta \delta_{1} - \Delta \delta_{2}) \tag{22}
\end{equation}

Where T'12 is the synchronising power coefficient without TCPS and \Delta \delta1 and \Delta \delta2 are the frequency deviations of Areas 1 and 2, respectively. When a TCPS is placed in series with the tie-line, as in Fig. 1, the current flowing from Area 1 to Area 2 can be written as

\begin{equation}
i_{tie1} = \frac{V_{1}}{jX_{12}} \angle (\delta_{1} + \phi) - \frac{V_{2}}{jX_{12}} \angle \delta_{2} \tag{23}
\end{equation}

From Fig. 1, it can be written as

\begin{equation}
P_{tie1} - jQ_{tie1} = V_{1}^{*} i_{tie1} = \frac{V_{1} \angle (\delta_{1} + \phi) - V_{2} \angle \delta_{2}}{jX_{12}} \tag{24}
\end{equation}

\begin{equation}
P_{tie1} - jQ_{tie1} = \frac{V_{1}^{2}}{X_{12}} \angle (\delta_{1} - \delta_{2} + \phi) - \frac{V_{1}^{2}}{X_{12}} \angle (\delta_{1} - \delta_{2} + \phi) \tag{25}
\end{equation}

Separating the real part of (25), we get

\begin{equation}
P_{tie1} = \frac{V_{1} \angle (\delta_{1} - \delta_{2} + \phi)}{X_{12}} \tag{26}
\end{equation}

In (26), perturbing and \phi from their nominal values \delta_{1} , \delta_{2} and \phi from their nominal values \delta_{1} , \delta_{2} and \phi_{0} , respectively, eqn. (22) now becomes

\begin{equation}
\Delta P_{tie1} = \frac{V_{1} \angle (\delta_{1} - \delta_{2} + \phi)}{X_{12}} \cos(\delta_{1} - \delta_{2} + \phi) + \phi_{0} \sin(\Delta \delta_{1} - \Delta \delta_{2} + \Delta \phi) \tag{27}
\end{equation}

However, for a small change in real power load, the variation of bus voltage angles and also the variation of TCPS phase angle are very small. Thus, in effect, (Δ\delta1 −Δ\delta2 + Δφ) is very small and hence

\begin{equation}
\sin(\Delta \delta_{1} - \Delta \delta_{2} + \Delta \phi) = (\Delta \delta_{1} - \Delta \delta_{2} + \Delta \phi) \tag{28}
\end{equation}

Therefore

\begin{equation}
\Delta P_{tie1} = \frac{V_{1} \angle (\delta_{1} - \delta_{2} + \phi)}{X_{12}} \cos(\delta_{1} - \delta_{2} + \phi_{0})(\Delta \delta_{1} - \Delta \delta_{2} + \Delta \phi) \tag{29}
\end{equation}

Let

\begin{equation}
T_{12} = \frac{V_{1} \angle (\delta_{1} - \delta_{2} + \phi)}{X_{12}} \cos(\delta_{1} - \delta_{2} + \phi_{0}) \tag{30}
\end{equation}
Thus (29) reduces to

$$\Delta P_{tie12} = T_{12} (\Delta \delta_1 - \Delta \delta_2 + \Delta \phi)$$

(31)

$$\Delta P_{tie12} = T_{12} (\Delta \delta_1 - \Delta \delta_2 + T_{12} \Delta \phi)$$

(32)

It is known

$$\Delta \delta_1 = 2\pi \int \Delta f_1 dt$$

and

$$\Delta \delta_2 = 2\pi \int \Delta f_2 dt$$

(33)

From (32) and (33)

$$\Delta P_{tie12} = 2\pi T_{12} \left(\int \Delta f_1 dt - \int \Delta f_2 dt \right) + T_{12} \Delta \phi$$

(34)

Laplace transformation of (34) yields

$$\Delta P_{tie12}(s) = \frac{2\pi T_{12}}{s} \left([\Delta F_1(s) - \Delta F_2(s)] \right) + T_{12} \Delta F(s)$$

(35)

As per (35), tie-line power flow can be controlled by controlling the phase shifter angle $\Delta \phi$. Assuming that the control input signal to the TCPS damping controller is $\Delta \text{Error}_1(s)$ and that the transfer function of the signalling conditioning circuit is $K_\phi C(s)$, where K_ϕ is the gain of the TCPS controller

$$\Delta \phi(s) = K_\phi C(s) \Delta(s) \Delta \text{Error}_1(s)$$

(36)

And

$$C(s) = \frac{1}{1 + sT_{ps}}$$

(37)

Hence, the phase shifter angle $\Delta \phi(s)$ can be represented as

$$\Delta \phi(s) = \frac{K_\phi}{1 + sT_{ps}} \Delta \text{Error}_1(s)$$

(38)

where T_{ps} is the time constant of the TCPS and $\Delta \text{Error}_1(s)$ the control signal which controls the phase angle of the phase shifter. Thus (35) can be rewritten as

$$\Delta P_{tie12}(s) = \frac{2\pi T_{12}}{s} [\Delta F_1(s) - \Delta F_2(s)] + T_{12} \frac{K_\phi}{1 + sT_{ps}} \Delta \text{Error}_1(s)$$

(39)

5.1 TCPS control strategy

ΔError_1 can be any signal such as the thermal area frequency deviation Δf_1 or the area control error of the thermal area ACE1 (i.e. $\Delta \text{Error}_1 = \Delta f_1$ or ACE1) to the TCPS unit to control the TCPS phase shifter angle which in turn controls the tie-line power flow. Thus, with $\Delta \text{Error}_1 = \Delta f_1$

$$\Delta \phi(s) = \frac{K_\phi}{1 + sT_{ps}} \Delta f_1(s)$$

(40)

and the tie-line power flow perturbation as given by (39) becomes

$$\Delta P_{tie12}(s) = \frac{2\pi T_{12}}{s} [\Delta F_1(s) - \Delta F_2(s)] + T_{12} \frac{K_\phi}{1 + sT_{ps}} \Delta \text{ACE}_1(s)$$

(41)

However, from the practical point of view, as TCPS is placed near Area 1, measurement of Δf_1 will be easier rather than ACE1, which requires measurement of tie-power also. Hence, in the present work, the frequency deviation of the thermal area Δf_1 is chosen as the control signal. The parameter T_{ps} and K_ϕ of the TCPS are given in Appendix 1.

However, from the practical point of view, as TCPS is placed near Area 1, measurement of Δf_1 will be easier rather than ACE1, which requires measurement of tie-power also. Hence, in the present work, the frequency deviation of the thermal area Δf_1 is chosen as the control signal. The parameter T_{ps} and K_ϕ of the TCPS are given in Appendix 1.

6. SUPER CONDUCTING MAGNETIC ENERGY STORAGE (SMES) DEVICE

Superconducting Magnetic Energy Storage (SMES) unit with a self-commutated converter is capable of controlling both the active and reactive power simultaneously and quickly, increasing attention has been focused recently on power system stabilization by SMES control [11]. The schematic diagram in Figure 3 shows the configuration of a thyristor controlled SMES unit. The SMES unit contains DC superconducting Coil and converter which is connected by Y–D/Y–Y transformer. The inductor is initially charged to its coil is superconducting. Neglecting the transformer and the converter losses, the DC voltage is given by

$$Ed = 2Vd0 \cos \alpha - 2ldRc$$

(43)
The deviation in the inductor real power of SMES unit is expressed in time domain as follows
$$\Delta P_{\text{SMES}} = \Delta E_d(s) + \Delta I_d(s)c(t)$$

In a two-area interconnected thermal power system even due to sudden small disturbances will continuously disturb the normal operation of power system. As a result the requirement of frequency controls of areas beyond the governor capabilities SMES is located in the area under disturbance absorbs and supply required power to compensate the load fluctuations.

7. CPSOISE CONTROLLER DESIGN

Craziness Particle Swarm Optimization (CPSO) is a population based on stochastic optimization technique developed by Kennedy and Eberhart in 1995 [20]. This method finds an optimal solution by simulating social behaviour of bird flocking. The population of the potential solution is called swarm and each individual solution within the swarm is called a particle. Particles in CPSO fly in the search domain guided by their individual experience and the experience of the swarm. Each particle knows its best value so far (pbest) and it's x, y position. This information is an analogy of the personal experience of each particle. More over each agent knows the best value so far into group (gbest) among pbests. This information is an analog of the knowledge of how the other particles around them have performed. Each particle tries to modify its position using this information: the current positions (x1, x2,..., xd), the current velocities (V1, V2,...Vd), the distance between the current position and pbest and the distance between the current position and gbest. The velocity is a component in the direction of previous position fluctuations. The movement of the particle towards the optimum solution is governed by updating its position and velocity attributes. The velocity and position update equation are given as [21].

$$v_{i}^{t+1} = v_{i}^{t} + c_1 r_1 (p_{i}^{t} - x_{i}^{t}) + c_2 r_2 (g_{i}^{t} - x_{i}^{t})$$

7.1. Craziness Particle Swarm Optimization

CPSO algorithm was also introduced by Kennedy and Eberhart to allow the CPSO algorithm to operate in problem spaces [21]. It uses the concept of velocity as a probability that a bit (position) takes on one or zero. In CPSO updating a velocity attributes. The velocity and position update equation are given as [21].
\[
\text{sig}(v_i^t) = \frac{1}{1 + \exp(-v_i^t)}
\]

(50)

Where \(S(v) \in (0,1) \) , \(S(0) = 0.5 \), and \(r3 \) is a quasi random number selected from a uniform distribution in \([0.0, 1.0]\). For a velocity of 0, the sigmoid function returns a probability of 0.5, implying that there is a 50% chance for the bit to flip.

The control area performance in any interconnected power system is analyzed with the interchange power flow, system frequency and other standards [22]. Apart from the standard deviation of Area Control Error (ACE) another way of measuring the control performance standard which is denoted as MAC is being adopted in this paper. When there is no correlation between the ACEs of the interconnected power system, the standards deviation of ACE which should be proportional to the square root of its capacity divided by the total capacity of the interconnected power system called as permitted values of the standard deviation of ACE of the entire system was found to be less than the permitted value [22]. To over come this drawback, CPSOAMAC criterion was expressed by the following equation

\[
\text{MAC} = \int \alpha \cdot \Delta f \cdot \Delta P_T \; dt
\]

(51)

In MAC, since the positive/negative of \(\int \Delta f \Delta P_T \) is judged, (51) is equivalent to the following equation.

\[
\text{MAC} = \frac{\sum (\Delta f \cdot \Delta P_T)}{\sqrt{\sum \Delta f^2 \cdot \sum \Delta P_T^2}}
\]

(52)

From (31), the discrimination by MAC is equivalent to judging the area of \(\Delta f \Delta P_T \).

Mathematically, MAC can be transformed into the following equation from (50) using ACE\(_A\) and ACE\(_B\) and it is assumed that \(P, P_A \) and \(P_B \) are constant [18]

\[
\text{MAC} = \frac{\sum N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B)}{N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B) \text{MAC} = \frac{\sum N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B)}{N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B)} = \frac{N K_P^2 \sigma_{\Delta P T}^2 P}{\sigma_{\Delta P T}^2 P_A \text{ACE}_A + \sigma_{\Delta P T}^2 P_B \text{ACE}_B}
\]

(53)

\[
\frac{\sum N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B)}{N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B)} = \frac{\sum N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B)}{N \text{ACE}(P_A \text{ACE}_A + P_A \text{ACE}_B)} = \frac{N K_P^2 \sigma_{\Delta P T}^2 P}{\sigma_{\Delta P T}^2 P_A \text{ACE}_A + \sigma_{\Delta P T}^2 P_B \text{ACE}_B}
\]

(54)

If MAC is smaller than 0, then equation (54) will be expressed by the following equation

\[
\text{MAC} = \frac{P_A \text{ACE}_A^2 + P_A \text{ACE}_B^2 + PR_{\text{ACEAB}}}{P_A \text{ACE}_A^2 + P_A \text{ACE}_B^2 + PR_{\text{ACEAB}}}
\]

(55)

When there is no correlation between the ACEs, the evaluation by MAC becomes the same as the evaluation by the standard deviation of ACE. However, as there is no reference value to evaluate a generation control in MAC, the evaluation by MAC becomes a relative one between control areas.

Decentralized optimum proportional and integral controllers for the interconnected power systems are designed by suitably adopting the Integral Performance Index criterion. A characteristic of this criterion is that it weights large errors heavily and small errors lightly [7]. To obtain the optimum decentralized controller gain \(k_i \) \((i=1, 2 \ldots N)\), the following quadratic performance index is considered.

\[
j_i = \int (x_i^T w_i x_i) \; dt \quad i=1,2, \ldots, N
\]

(57)

Where \(x_i = [\Delta f_i] \)

7.2 Decentralized Proportional Controllers Design

In the absence of the integral control one can sharply increase the gain of the closed loop system and thereby improve the system response. If the feedback gain of the integral controller is sufficiently high, overshoot will occur, increasing sharply as a function of the gain, which is highly undesirable. Thus, the integral controller gain cannot be higher because it leads to instability in the transient region [26]. Therefore the design of decentralized proportional controller considered first.

The optimum proportional controller feedback gain \(k_{\text{P, CPSOIS}} \) is obtained by plotting the cost curve for various values of \(k_p \) against the cost function of area \(i, J \). The cost function of area \(i, J \) is obtained by simulating the closed loop system for various values of \(k_p \) and keeping \(k_i \) equal to zero throughout.

7.3 Decentralized Proportional Plus Integral Controller Design

Following the procedure discussed in the section 5.1, the integral controller is also designed. The cost function of area \(i, J \) is obtained by simulating the closed loop system for various values of \(k_i \) and keeping \(k_p \) equal to \(k_{\text{P, CPSOIS}} \).

Following the procedure discussed in the section 5.1, the integral controller is also designed. The cost function of area \(i, J \) is obtained by simulating the closed loop system for various values of \(k_i \) and keeping \(k_p \) equal to \(k_{\text{P, CPSOIS}} \).

8. CPSOASV CONTROLLER DESIGN

The closed stability of the system with the decentralized controllers are assessed using the settling time of the system output response. It is observed that the system whose output response settles fast will have minimum settling time and the apex stability verge. The minimum settling time or apex stability verge can be expressed as \(f(k_p, k_i) = \min (\tau_i) \) (58) where \(\tau_i \) is the settling time of the output response of \(\Delta f_i \) frequency deviation of the “\(i^\text{th}\)" area

8.1 Decentralized Proportional Controller Design

The Proportional Controller feed back gain \(K_{\text{P,ASV}} \) is obtained on the basis of the Apex Stability Verge criterion by plotting the maximum stability curve for various values of \(k_p \) against the settling time of \(\Delta f_i \). The integral feed back gain \(K_i \) is treated as zero throughout this design.
8.2 Decentralized Proportional Plus Integral Controller Design
The Proportional plus Integral Controller feed back gains are obtained by plotting the settling time curve for various values of Ki keeping Kp = Kp(ASV)

9. DECENTRALIZED CONTROLLER USING MULTI-OBJECTIVE CRAZINESS PARTICLE SWARM OPTIMIZATION DESIGN
The success of the Particle Swarm Optimization (CPSO) algorithm as a single objective optimizer [20, 21] has motivated to extend the use of optimization algorithm Multi-Objective problems for the load frequency control problems. In problems with more than one conflicting objective, there exist no single optimum solution rather there exists a set of solutions which are all optimal involving trade-offs between conflicting objective (pareto optimal set)[23-25].
If an element in archive is dominated by a new solution, the corresponding element in archive is removed. If new solution is not dominated by any element in archive, new solution is added to archive. If archive is full, crowding, distance between elements in archive are computed according to [21] and then one element in archive is selected to remove according to diversity.
In (48) each particle need to gbest for motioning in search space. In Multi-Objective CPSO a set of gbests that called archive there exists many different ways to select gbest. In our method, gbest is selected from archives based on crowding distance to maintain diversity. If an element in archive has more diversity, it has more chance to be selected as gbest. Roulette wheel selection is used to do it. So the particles motion to pareto optimal set and diversity is maintained with roulette wheel selection for selecting gbest

9.1 Particle Swarm Optimization Algorithm
Step 1: Initialise searching point and velocity are randomly generated within their limit.
Step 2: pbest is set to each initial searching point. The best-evaluated values among Pbest is set to gbest.
Step 3: New velocity are calculated using the equation.

\[v_{k+1} = w v_k + c_1 r_1 (p_{best_k} - x_k) + c_2 r_2 (g_{best_k} - x_k) \]

Step 4: if \(v_{kd} \) < \(v_{dmin} \) then \(v_{kd} = v_{dmin} \) and if \(v_{id} > v_{dmax} \) then \(v_{id} = v_{dmax} \)
Step 5: New searching point are calculated using the equation.

\[x_{k+1} = x_k + v_{k+1} \]

Step 6: Evaluate the fitness values for new searching point, if evaluated values of each agent is better than previous pbest then set to pbest, if the best pbest is better than gbest then set to gbest.
Step 7: If the optimal solution is reached stop the process, otherwise goto step 3.

10. SIMULATION RESULTS AND OBSERVATIONS
With the consideration of Mutual Aid criterions (MAC) the CPSO based load frequency controller for the two area power system with SMES units considering GDB and GRC nonlinearities interconnected through TCPS are designed and implemented. Simulation is carried out to design the Proportional plus Integral controller for 0.01 p.u MW step load change in area 1 and corresponding responses for change in frequencies, change in tie-line power flow and change in input power are obtained. From simulation results as shown in figure 4 it is found that the controller designed using MOCPSO for areas interconnected with TCPS exhibit better transient and steady state performance when compared with the output response obtained with the controllers designed using CPSOISE for areas interconnected with TCPS.

Table 1. Controller Design using CPSOISE, CPSOASV and MOCPSO criterion.

<table>
<thead>
<tr>
<th>Controller Design using CPSOISE criterion</th>
<th>Controller Design using CPSOASV criterion</th>
<th>Controller Design using MOCPSO criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kp=2.01</td>
<td>Kp=1.26</td>
<td>Kp=1.42</td>
</tr>
<tr>
<td>Ki=1.24</td>
<td>Ki=0.96</td>
<td>Ki=1.03</td>
</tr>
</tbody>
</table>

Fig. 4. Frequency Deviations, Control Input Deviations and Tie-Line Power Deviation of a Two area Power System with SMES Interconnected coordinated with TCPS in the tie-line for 1% Step Load Change in Area 1.
11. CONCLUSIONS
Analysis of load frequency control models of interconnected power systems considering SMES units using SMES units considering GDB and GRC nonlinearities interconnected through TCPS show better improved system performance than that of controller designed using CPSOISE criterion.

12. ACKNOWLEDGEMENT
The authors wish to thank the authorities of Annamalai University, Annamalainagar, Tamilnadu, India for the facilities provided to prepare this paper.

13. REFERENCES
APPENDIX – A

(i) Data for Thermal Power System with Reheat Turbines considering GDB and GRC nonlinearities [6].
Rating of each area = 2000 MW, Base power = 2000 MVA, \(f^0 = 60 \) Hz, \(R_i = R_p = 6.0 \) Hz / pu MW, \(T_{11} = T_{12} = 0.1 \) sec, \(T_{d1} = T_{d2} = 10 \) sec, \(T_{i1} = T_{i2} = 0.3 \) sec, \(K_{pl1} = K_{pl2} = 120 \) Hz / pu MW, \(K_{i1} = K_{i2} = 0.5 \), \(T_{pl1} = T_{pl2} = 20 \) sec, \(t_i = 0.1675 \) pu MW / Hz, \(T_{d2} = 0.5 \) pu MW / Hz, \(a_{12} = -1 \), \(P_{01} = 0.01 \) pu MW, \(N_i = 0.8 \), \(N_2 = -0.2 \),
\[\Delta P_{\text{max}} = 0.1 \text{ pu MW} / \text{min}, T=2\text{sec (normal sampling rate)} \]

(ii) Data for SMES[10]
\[I_{d0} = 5\text{KA}. \]
\[k_0 = 50\text{kV/unit ACE}. \]
\[\text{kid} = 0.20\text{kV/kA}. \]
\[L = 2\text{H}. \]

(iii) Data for TCPS[18]
\[T_{PS} = 0.1\text{s}. \]
\[K_s = 1.5 \text{rad/Hz}. \]
\[\phi_{\text{max}} = 10^9 \]
\[\phi_{\text{min}} = -10^9 \]

NOMENCLATURE

- \(a_{12} \) - \(Pr_1 / Pr_2 \)
- ACE - Area control error of area