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ABSTRACT 
Traditional mathematical algorithms are incapable of solving 

real time engineering design problems because of its rigid 

procedure mainly due to discrete or random data and multi-

objective functions in a problem. An optimization algorithm is 

a procedure which is executed iteratively by comparing various 

solutions till the optimum or a satisfactory solution is found. 

There are two population based Swarm inspired methods in 

computational intelligence areas: Ant colony optimization 

(ACO) and Particle swarm optimization (PSO). This paper 

made an attempt to evaluate their performance of these two 

swarm intelligence techniques. A real engineering application 

of bevel gear design optimization is considered and results are 

analyzed with respect to the context. 

General Terms 

Ant Colony Optimization, Gear design, Particle Swarm 

Optimization. 

Keywords 
Ant Colony Optimization, Bevel Gear design, Multi Objective 

Optimization, Particle Swarm Optimization. 

1. INTRODUCTION 
One of the problems that obstruct the use of engineering 

optimization in design in the highly specific nature of 

commonly used numerical algorithms and their inborn 

limitations. For example, gradient based methods such as 

Newton Raphson, Bi-section and Secant methods which need 

differentiable objective function and constraints are the most 

striking examples of limitations. Also another important 

limitation is that they can hardly handle discrete variables 

which are commonly used in mechanical engineering design 

problems. 

Majid Jaberipour and Esmaile Khorram [1] have described 

about two new harmony search meta-heuristic algorithms for 

engineering optimization problems with continuous design 

variables. Lin C et al [2] proposed a new immune algorithm 

makes use of the PSO advantages to improve the mutation 

mechanism in the immune algorithm. Wang et al [3] proposed 

an improved algorithm named bi-directional convergence ant 

colony optimization (ACO) algorithm based on the graphic 

definition of the job-shop problem. Davoud Sedighizadeh and 

Ellips Masehian [4] have surveyed PSO methods and its 

application. V. Savsani et al [5] have evaluated minimum 

weight of a spur gear train using particle swarm optimization 

(PSO) and simulated annealing (SA). Ruifeng Bo et al [6] have 

analyzed, concept optimization problem based on an Ant 

Colony System (ACS) and by analyzing the similarity between 

concept solving and Traveling Salesman Problem.               

Zhou et al [7] proposed an ant colony algorithm to solve the 

prematurity and unsteadiness problem in GA for job shop 

scheduling with the objective of minimization make span. S. 

M. Kannan et al [8] have proposed a PSO for minimizing 

assembly variation in selective assembly problem. Shu-Kai S 

and Ju-Ming Chang [9] have developed a new proposal of 

using particle swarm optimization algorithms to solve multi-

objective optimization problems was presented. Ju Seok Kang 

and Yeon-Sun Choi [10] proposed a new method is to optimize 

the helix angle of a helical gear to minimize the transmission 

error. Zhang Shaojun et al [11] have describe an optimized 

model is to formulate the maximization problem on the 

capacity of V-belt drive. Yin P. Y et al [12] derived a genetic 

PSO from the original PSO. It was incorporated with the 

genetic reproduction mechanisms, with crossover and 

mutation.  Rania Hassan et al [13] attempted to examine the 

claim that PSO has the same effectiveness to finding the true 

global optimal solution as the GA.  

The classical methods are inappropriate when the solution of 

the problem is computationally intensive. To get Pareto 

optimal solution for multi objective optimization, these 

methods have to be employed, many times with different 

weight or performance vectors [14]. Also these methods can 

handle either minimization or maximization only. The above 

difficulties of classical methods can be shorted out by using 

new               Meta heuristics by adopting a Combined 

Objective Function. 

Based on the above observation, this paper has made an 

attempt to use the potential of Particle swam optimization and 

Ant colony optimization to solve the bevel gear pair design 

problem. 

2. PARTICLE SWARM OPTIMIZATION 

(PSO) 
Particle Swarm Optimization (PSO) is a population based 

stochastic optimization technique developed by Dr. Eberhart 

and Dr. Kennedy in 1995, inspired by social behavior of bird 

flocking or fish schooling. It has been applied successfully to 

wide variety of search and optimization problems. It can be 

applied to virtually any problem that can be expressed in terms 

of an objective function.  

This PSO algorithm is initializing a number of particles 

randomly within the limits of the objective function. These 

particles are in a group known as the swarm. Each one particle 

represents a possible solution to the problem expressed by the 

objective function. While every time the objective function is 

evaluated to establish the fitness of each particle using its 

position as input. Fitness values are used to resolve which 
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positions in the search space being attracted to both their 

personal best position as well as the best position found by the 

swarm so far. The PSO algorithm has shown its robustness and 

effectiveness in solving function value optimization problems 

in real engineering design. The attractiveness of the PSO 

algorithm is due to the features stochastic move, adaptively, 

and positive feedback. 

2.1 Adaptation of PSO 
There are two versions for keeping the neighbors best position, 

namely 1best and gbest. The flow diagram for this algorithm is 

shown in Fig. 1.[15] 

In every iteration, each particle is updated by following two 

“best” values. The first one is best solution it has achieved; its 

value is called pbest. Another “best” value that is tracked by 

the particle swarm optimizer is the best value, obtained so far 

by any particle in the population. This best value is a global 

best and called gbest. When particle takes part of the 

population as its neighbors, the best value is the local best and 

called lbest. In the local population, each particle keeps track of 

the best position lbest attained by its local neighboring 

particles. For the global population, the best position gbest is 

determined by any particles in the entire swarm. Thus the gbest 

model is a special case of the lbest model. Peng- Yeng Yin 

[16]. 

 

 
Fig 1: The algorithm for Particle Swarm Optimization 

 

 

After finding the two best values, the particle updates its 

velocity and positions with following equation (1) and (2).[17] 

v[] = ω*v[]+ c l * rand( ) * (pbest []- present[] ) + c2 * rand( ) 

* (gbest []- present[] )    (1) 

present [] = present [] + v[]    (2) 

 

 

Where, 

 v [] : The velocity for the i th  particle , represents the 

distance to be traveled by this particle from the current 

position. 

 ω inertia weights usually 0.8 to 0.9 . 

 rand ( ) is a random number between (0,1) 

 c1, c2 are learning factors .Usually c1 = c2 = 2. 

 Present []: The location of the ith particle i.e., particle 

position. 

 Pbest []: The best previous position of the ith particle is 

recorded and represented as pbest[]. 

 Gbest []: The index of the best particle among all the 

particles in the population is represented by gbest []. 

 

3. ANT COLONY OPTIMIZATION (ACO) 
The natural image on which ant algorithms are based is that of 

ant colony. The cooperative search performance of ants 

inspires the new algorithm for optimizing engineering design 

system and is especially suited for solving comprehensive 

optimization problems Dorigo et al [18]. A bi-level search 

procedure such as local and global have been introduced and 

this algorithm is applied for continuous function, it is called as 

Continuous Ants Colony Algorithm (CACO) Jayaram et al 

[19]. The distribution of ants is given in Fig. 2 and the flow 

chart of Ant colony algorithm is shown in Fig. 3. [15] 

 

3.1. Global search 
The initial solutions or initial regions for ACO are classified 

into superior and inferior solutions based on their fitness 

values. Global updates are applied to inferior regions only. The 

global search for ACO is fairly different from other non-

traditional optimization algorithms. The following three steps 

are to be performed on the randomly generated initial solution.        

Baskar et al [20]. 

 Random walk (or) Crossover 

 Mutation 

 Trail diffusion 

3.1.1. Random walk (or) Crossover 
The crossover and mutation have been carried out in the “G” 

global ants, where 90% of the solutions are randomly selected 

in the inferior solutions and are replaced with randomly 

selected solutions from the superior solutions. 

 

 

Fig 2: Distribution of Ants for Local and Global search 
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3.1.2. Mutation 
Following to the random walk, at random, add or subtract the 

value to every variable of the newly created solutions in the 

inferior region with a probability equal to a properly defined 

mutation probability. The mutation size is reduced as per the 

relation 

 

Δ  T, R =  R (1 −  r 1−T b)     (3) 

 

Where r is a random number from {0,1}, R is the maximum 

step size, T is the ratio of the current iteration number to that of 

the total number of iterations, and b is a positive parameter 

controlling the degree of non-linearity. The value of b is 

considered as 10 and determined on a trial basis. 

R = Xmax - Xi     (4) 

Where   Xmax is the maximum value in the region 

Xi is the current value 

 

3.1.3. Trail Diffusion 
In Trail diffusion conducted on 10% of inferior solutions, 

which were not measured during the random walk and 

mutation step. Here, two parents are selected at random from 

the present parent superior solutions.  

The variables of the child‟s position vector can have either 

 the value of the equivalent variable from the first parent; 

 the equivalent value of the variable of the variable form  

    second parent; 

 or, a combination arrived from a weighted average of the  

    above 

x (child) = (α).xi(parent1) + (1- α).xi(parent2)  (5) 

Where α is a uniform random number in the range [0,1]. 

 

The probability of selecting the third option is set equal to the 

mutation probability while allotting equal probability of 

selecting the first two steps. The trail value of the newly 

created child solutions is assigned a trail value lying between 

the values of the original parent solutions. The trail values and 

age of weakest regions are updated [20].  

 

3.2. Local search 
The second step in ACO is local search, which is applied as 

superior solution. The local (artificial) ants select a region i 

with a probability. 

    

Pi  t =  
τi  (t)

 τk (t)t
          (6) 

 

Where i is the region index and  τi(k) is the pheromone trail on 

region i at time t.  

 

The best function values are taken from the following steps. 

After selecting the region, the ant moves through a short 

distance, the direction of movement is retained if the fitness 

value progress is observed or else it is reversed. Likewise, the 

solutions position vector is updated and trail value is enhanced 

based on the fitness value. 

 

In the ACO algorithm, the pheromone values are decreased 

after each iteration using the relation, 

 

𝜏𝑖   𝑡 + 1 =  𝜌. 𝜏𝑖  (𝑡)     (7) 

 

Where ρ is the evaporation rate which is assumed to be 0.2 on a 

trial basis and 𝜏𝑖 𝑡  is the trail associated with solution at time 

t. The algorithm executes until the termination criteria is 

reached and it is the number of iterations by defined the user. 

 

 
Fig 3: Flow chart for the ACO 

 

4. AN APPLICATION: GEAR DESIGN 
The performance of the PSO and ACO are evaluated by taking 

Bevel gear design as the objective. The gear design problem 

are taken as, Design a Bevel gear drive to transmit 4kW with 

the Speed Ratio 4. The input shaft speed is 225 rpm, with non-

reversible. This section contains design objectives, objective 

functions and design constraints are to be discussed. 

4.1 Design Objectives 
The objective functions considered in this application are given 

below:  

 Maximization of power delivered by the bevel gear pair (f1)  

Jain et al [21]. 
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 Minimization of the overall weight – which is indirectly 

related to the volume of the gears (f2) Rao et al [22].                       

 Maximization of the efficiency of the gear pair (f3) [23]. 

 Minimization of the cone distance (f4).Kennady et al [24]. 

 

4.1.1 Objective functions   
Maximization of power transmitted by bevel gear pair. Eqn. (8) 

represents this objective function. 

 

 f1 = P      where , P(L)  ≤  P  ≤  P(U)           (8)                                          

 

Minimization of weight of the bevel gear pair. Eqn. (9) 

represents this objective function. 

 

 f2 = Weight =  

9.24 x 10−6 0.2838b3 − 1.762mt  Z1 b2 + 3.6369mt
2 Z1

2 b             (9) 

 

Maximization of efficiency of gear pair. Eqn. (10) represents 

this objective function. 

 

 f3 = 100 – PL                                        (10) 

 

PL = Power loss and it is expressed by the eqn. (11).  

 

PL = 50 f  x  
cos ϴ+cos γ

cos Φn
  x 

 Hs
2+ Ht

2 

 Hs + Ht  
                     (11) 

Hs  and  Ht  are calculated by the eqns. (12) and (13) 

respectively.  

        

HS = i + 1    
Ro

R
 

2

− cos2 Φn   −  sinΦn           (12) 

            

Ht =
i+1

i
    

ro

r
 

2

− cos2 Φn   −  sinΦn               (13) 

R0 = R + one addendum 

One addendum for 20o   full depth involute system = one 

average module = mav 

Where,  

mav = average module of gear and pinion 

ro    =  r + mav 

Ro = R + mav 

 

𝑟𝑜 =  
𝑑1

2
+ 𝑚𝑎𝑣  

 

𝑟 =  
𝑑1

2  

 

d1= Pitch diameter of the large end of bevel pinion in mm = mt 

Z1 

 

𝑅𝑜 =  
𝑑2

2
+ 𝑚𝑎𝑣  

 

𝑅2 =  
𝑑2

2  

 

d2= Pitch diameter of the large end of bevel gear in mm = mt Z2 

 

Minimization of cone distance of gear pair. Eqn. (14) 

represents this objective function. 

 

𝑓4 = 𝑅 = 0.5 mt  Z1   i2 + 1                          (14) 

 

4.1.2 Design Constraints  
The constraints [25] considered in this gear design are given 

below: 

The crushing stress constrain is represented by the expression 

(15)  

 

Crushing stress : σc <  σc                 (15) 

The value of induced crushing stress is represented by the 

equation (16)  

        

σc =  
0.72

R−0.5b
  

  i2±1 3  E Mt  

ib
                  (16) 

 

The bending stress constrain is represented by the expression 

(17) 

 

Bending stress: σb <  σb                (17) 

  

The value of induced bending stress is represented by the 

equation (18) 

   

σb =  
R  i2+1    Mt  

 R−0.5b 2  bmy
 x 

1

cos Φn
                (18) 

 

Equation (19) represents the gear ratio constraint 

Gear  ratio:  

 

𝑖 = 4 =  
Z2

Z1
  𝑜𝑟  

d2

d1
                 (19) 

 

Equation (20) represents the cone distance constraint 

 

Cone distance :    𝑅 ≥  𝑅𝑚𝑖𝑛             (20) 

Where, 

Rmin = Minimum cone distance calculated by the formula based 

on surface Compressive stress. 

The minimum cone distance is represented by the eqn. (21). 

𝑅𝑚𝑖𝑛 =  𝜓𝑦  i2 + 1     
0.72

 𝜓𝑦−0.5  σc  
 

2
E Mt  

𝑖

3

          (21) 

Ψy = Ratio between the cone distance and face width to 

calculate the value of „Rmin‟. 

 

The number of teeth constraint is represented by the equation 

(22)   

 

The number of teeth must be integer: 

 

 Zi ε I, for i = 14,15,16,17,18,19,20                      (22) 

  

The module constraint is represented by the expression (23) 

mav ≥ mav min                                                                  (23) 

Where, 

mav      = average module 

mav min = minimum average module calculated by the formula 

based on  bending stress 

The minimum average module „mav min‟ is represented by the 

eqn. (24). 

 𝑚𝑎𝑣𝑚𝑖𝑛 = 1.28  
 Mt  

𝑦 σb  𝜓𝑚 Z1  

3
                           (24) 

Ψm =  Ratio between the face width and the average module 

to calculate the value of „mav min’.  
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4.2. Design Objective Function  
In this gear pair design problem has four different parameters: 

maximization of power, minimization of weight of material, 

maximization of efficiency and minimization of center 

distance. Since all this parameters are on different scales, in 

multiple-criterion objective function it is normalized to the 

same scale [26]. For maximizing criterion value, it is 

normalized by dividing its value with the normalizing factor, 

maxi, which is the maximum value of this criterion obtained 

from the solutions that have been explored by PSO / ACO so 

far and for a minimizing criterion value, it is normalized by 

dividing the normalizing factor, mini, with its value. The 

maximum and minimum value of the criterion will be updated 

whenever the algorithm finds another feasible solution. In 

addition, to ensure the overall objective value will fall between 

0 and 1, the weight of each criterion is also normalized. The 

normalized objective function can be obtained as follows: 

 

𝐶𝑂𝐹 =   𝑁𝑊𝑖 ∗ 𝑛
𝑖=1 𝑁 𝑋𝑖                    (25) 

 

Where, 

COF  Combined objective function  

Wi    prenormalized weight of criterion i. 

NWi   normalized weight of criterion i. 

 

Where  𝑁𝑊𝑖 =  
𝑊𝑖

  𝑊𝑖
𝑛
𝑖=1  

   

 

N(Xi) normalized value of criterion i of solution X. 

Where, 

 

 𝑁 𝑋𝑖 =  
𝑋𝑖

𝑚𝑎𝑥 𝑖
  for maximizing criterion.              (26) 

𝑁 𝑋𝑖 =  
𝑚𝑖𝑛 𝑖

𝑋𝑖
  for minimizing criterion.                (27) 

Xi   pre normalized value of criterion X.  

maxi best maximum   pre normalized  value of criterion i of all 

solutions so far . 

mini   best minimum   pre normalized  value of criterion i of all 

solutions so far . 

N   number of criteria. 

 

Hence the COF for bevel gear design is,  

COF =  

 
power

max. power
  x NW1 +   

min. weight

weight
  x NW2 +

  
efficiency

max. efficiency
  x NW3 +   

min. cent. dist

cent. dist
  x NW4 

 

                            (28) 

Where NW1, NW2, NW3 and NW4 = 0.25      

 

5. RESULTS AND DISCUSSION 
Mathematical models for the complete problem of bevel gear 

pair have been formulated in terms of design variables. The 

optimum values of the objective functions for Power, Weight, 

Efficiency and Center distance and the design variables (m, b, z 

and P) influencing the objective functions are obtained with 

respect to the minimum COF value by implementing the input 

data provided in Table 1.  

 

 

 

 

 

 

                       

         Table.1. Data considered in design 

Parameter/Constraint 
Values for bevel 

gear pair 

Material of gear and pinion 40Ni2Cr1Mo 28 

Density of the material 8.836×106 

kg/mm3 

Gear ratio 4 

Power delivered 4 to 6 kW 

Allowable bending stress 400N/mm2 

Allowable crushing stress 1100N/mm2 

Input speed 225 rpm 

Young‟s modulus of the material 2.15x105 N/mm2 

Normal pressure Angle 20° 

Co-efficient of friction 0.08 

Ratio between cone distance and face 

width to calculate the value of  „Rmin‟ 

(Ψy) 

4 

Ratio between  face width and average 

module to calculate the value of  „mav min’   

(Ψm) 

10 

                                                                      

The test bevel gear problem is carried for the module range 

4mm to 6mm and the bevel gear design optimization carried by 

the tools PSO and ACO.  The optimized values of required 

functions are tabulated in the Table 2. From the optimum 

results, power and weight are compared for ACO and PSO and 

the chart shown in the figures 4 and 5.  

 

 
 

Fig 4: Comparison of Power Transmitted 
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Fig 5: Comparison of Weight 

It is clearly understood from the figure 4 and 5 that ACO gives 

the higher Power and lesser Weight while comparing with 

PSO. The Power gained by 5.5% and 3.5% with respect to 

5mm and 6mm modules respectively. Similarly, Weight 

reduced by 3.9% and 8.7% with respect to 5mm and 6mm 

modules respectively. Both the tools give the same maximum 

Efficiency and minimum Cone distance. 

 

6. CONCLUSION 
In this paper an attempt has been made to evaluate the 

performance of Ant Colony Optimization and Particle Swarm 

Optimization with a real time engineering application. As part 

of this, bevel gear design is considered and to obtain optimal 

solution of bevel gear design problem. Within the various 

design variables available for a gear pair design, the power, 

weight, efficiency and center distance have been considered as 

objective functions and bending stress, crushing stress as vital 

constraints to get an efficient compact and high power 

transmitting drive. Among the algorithms ACO has produced 

convincing results for the test problems when compared with 

the PSO algorithms in the power transmitted and weight 

reduction of the bevel gear. As a future work, the above tools 

can be evaluated by optimizing various design application like 

springs, epicyclic gear train and gear box etc. 
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Notations 

PSO  : Particle Swarm Optimization 

ACO  : Ant Colony Optimization 

CACO  : Continuous Ant Colony Optimization 

P  : Power transmitted in kW 

Hs  : Specific sliding velocity at start of approach action 

Ht  : Specific sliding velocity at end of recess action. 

i  : Gear (or) transmission ratio 

z1, z2  : Number of teeth in pinion, gear 

d1, d2 : PCD of large end of pinion, gear in mm 

Ro  : Outside radius of large end of bevel gear in mm 

R2  : Pitch radius of large end of bevel gear in mm 

Ro : Outside radius of large end of bevel Pinion in mm 

r  : Pitch radius of large end of bevel Pinion in mm 

ρ  : Density of the material in kg/mm3 

E  : Young‟s modulus in N/mm2 

mt  : Transverse Module in mm 

σc  : Induced crushing stress in N/mm2 

[σc]  : Allowable crushing stress in N/mm2 

σb  : Induced bending stress in N/mm2 

[σb]  : Allowable bending stress in N/mm2 

b  : face with of gear and pinion in mm 

R  : Cone distance in mm. 

PL  : Percent power loss 

[Mt]  : Design twisting moment in N mm 

η  : Efficiency, % 

y  : Form factor 

f  : Average coefficient of friction 

Φn  : Normal pressure angle in degrees 

θ  : Pitch cone angle of bevel gear  

γ  : Pitch cone angle of bevel pinion 

 

 

 

 


