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ABSTRACT 

In this work we propose the air-gap torque as failure signature 

to detect mechanical faults in particular the eccentricity. In 

this way, we compare the proposed signature with those most 

used recently in particular the current space vector (Park 

vector) and complex apparent power. This signature is 

subsequently analysed using the classical fast Fourier 

transform (FFT). The magnitudes of spectral components 

relative to the studied fault are extracted in order to develop 

the input vector necessary for the pattern recognition tool 

based on support vector machine (SVM) approach with an 

aim of classifying automatically the various states of the 

induction motor. 
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1. INTRODUCTION 
Today, the electrical machines are the powerhouse of the 

industry. Safety, reliability, efficiency and performance are 

some of the major concerns and needs for electromechanical 

applications. In this way, early fault detection and diagnosis 

permit condition-based maintenance to be efficient for the 

electrical machines during scheduled downtimes. This 

improves the overal availability and performance while 

reducing maintenance costs. For the fault detection problem, it 

is interesting to know if a fault exists in the system via online 

measurements. For the fault diagnosis problem, it is not only 

worthwhile to detect if the system has a fault but also to 

insulate the fault and to find its origin [1]. 

Many operators use condition-based maintenance strategies in 

parallel with conventional maintenance schemes. This can 

reduce unexpected failures and downtimes, can also increase 

the time between scheduled shutdowns for standard 

maintenance and can reduce operational costs. Then, the 

operation of electrical machines in unsafe conditions can be 

avoided.  

The basic faults in three-phase induction motors, that contain 

a significant percentage of the motor faults, is the eccentricity 

of stator and rotor. The eccentricity occurs when:  

- Elliptical stator inner cross-section. 

- Relative misalignment of rotor and stator in the fixing 

and commissioning stage. 

- Wrong placement of ball-bearing. 

- Rubbing of ball-bearing.  

- Misalignment of load axis and rotor shaft.  

- Mechanical resonance in critical speed.  

- Unbalanced load and rotor axis slanting [2]. 

Between the inner stator and outer rotor circumferences, the 

eccentricity fault causes radial unbalanced magnetic pull 

(UMP). The direction of the UMP is such that it amplifies the 

eccentricity. 

Due to the eccentricity percentage and the UMP amplitude, 

the eccentricity in the motor produces a type of fault cycle. 

This gradually damages the motor due to rubbing of the stator 

and rotor, and also damages the stator winding and the rotor 

cage. Any eccentricity in the induction motor structure 

therefore generates excessive mechanical stress and more 

rubbing and fatigue of the ball-bearings which gives rise to 

another type of fault. The interaction of the UMP on the stator 

core also causes abnormal vibration of the stator winding, 

which could be dangerous. So, the motor requires eccentricity 

fault diagnosis and its remedy. 

Some consequences of the eccentricity fault in the motor 

could be [3]: 

1. Asymmetry and deviation of air-gap flux, voltages and 

line currents. 

2. Increasing torque and speed variations. 

3. Decreasing average torque. 

4. Increasing losses and decreasing efficiency. 

5. Rising temperature. 

 

For fault diagnosis, some of the above-mentioned 

consequences or   their secondary effects can be used as 

indices.  

Various methods for induction motor fault detection have been 

reported in the literature. In [2-4] authors presents a selection 

of industrial case histories that verify motor current signature 

analysis (MCSA) can diagnose problems such as eccentricity 

in three-phase induction motor drives. Besides the traditional 

current signature analysis based on one-phase current 

spectrum lines, in Ref [5] the authors deals with the use of the 

signature analysis of the complex apparent power modulus as 

a technique for the diagnostics of mixed eccentricity condition 

in operating three-phase squirrel-cage induction motors. A 

suitable fault-severity factor is also proposed as an indicator 

of the condition of the machine. 
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In [6] and [7], the air-gap torque was used for detection of 

electrical faults such as voltage unbalance, the broken rotor 

bars and the shorted stator coils in induction motors. In this 

work we propose to use this signature to detect mechanical 

faults in particular the eccentricity. In this way, we compare 

this technique to those most recently used in particular the 

current space vector (Park vector) and complex apparent 

power. 

This signature is subsequently analysed using the classical fast 

Fourier transform (FFT). The magnitudes of spectral 

components relative to the studied fault are extracted in order 

to develop the input vector necessary for the pattern 

recognition tool based on support vector machine (SVM) 

approach with an aim of classifying automatically the various 

states of the induction motor. 

2. BASIC CONCEPT OF AIR-GAP 

TORQUE  
Air-gap torque is the torque created by the flux linkages and 

the currents of induction motor. The rotor, shaft, and 

mechanical load of a rotating machine constitute a specific 

spring system that has its own natural frequencies. The 

attenuations of the air-gap torque components transmitted 

through the spring system are diverse for different harmonic 

orders of torque component. Commonly, the air-gap torque 

curve is different from that of the torque measured from the 

shaft. 

Air-gap torque represents the combined effects of all the flux 

linkages and currents in both the stator and the rotor of the 

entire motor. It is sensitive to any unbalance created by 

defects as well as by unbalanced voltages. Air-gap torque tells 

distinctively whether the unbalance is caused by air-gap 

eccentricity, cracked rotor bars or by stator unbalance 

associated with winding defects and unbalanced voltages. The 

theoretical foundation for this test is presented for 

understanding of how the unbalance caused by either rotor or 

stator defects is detected and distinguished [7].   

The air-gap torque equation can be written by (1) 
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Equation (1) is valid for either Y- or delta-connected motors, 

where P = number of poles, iA, iB and iC = lines currents, and 

R = half of the line-to-line resistance value. 

Since the time increment between data points is small, a 

simple Euler method is used for numerical evaluation of 

integral in this study. 

When static and dynamic eccentricities are present, low 

frequency components also appear in the line current 

spectrum, which can be given by [5]: 
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Where f is the fundamental frequency of the supply, fr is the 

rotor rotation frequency in rps and m is an arbitrary integer 

number. When analyzing (1) in the frequency domain, it is 

clear that beside the previous components, the air-gap torque 

takes other components at frequencies 2f + kfr, 2f-kfr and kfr. 

The latter one (kfr) can be called the eccentricity’s 

characteristic components.  

3. BASIC CONCEPT OF SVM 
SVM analysis seeks to find an optimal separating hyper-plane 

by maximizing the margin between the separating data. 

The regression approximation estimates a function according 

to a given data set T = {xk, yk}k
m, where xk denotes the input 

vector, yk  1;1   denotes the corresponding output value 

and m denotes the total number of data patterns, the SVM 

regression function is [8]: 

1
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Where w denotes the weight vector and b denotes the bias 

term. W and b are used to define the position of the separating 

hyper-plane by which should satisfy the constraints: 

2

( . ) 1    ,  1,2,...,

1
min

2

k ky w x b k m

w

  





             (4) 

According to Lagrangian principle, the above problem can be 

transformed to its corresponding form as follows: 
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Where αk are the Lagrange coefficients (αk >0).  

According to the condition of optimality: 
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We have the following equations: 
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Hence, from Eqs. (5) and (7), the dual problem is: 
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We define the support vectors VS any vector xk as:  

 0 0. ( . ) 1k ky w x b                (9) 
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This is equivalent to Eq. 10: 

 0k kVS x   for k = 1,2, …., m                     (10)                                                                              

The ranking function class(x) is defined by Eq. 11: 

 0 0 0( ) ( . ) ( . )
i

n

i i i

x VS

class x sign w x b sign y x x b
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If class (x) is less than 0, x is the class -1 else it is a Class 1.  

However for nonlinear cases, there is insufficient space for 

classifying the inputs. So, we need a larger space. We must 

therefore resolve Eq. 12: 
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With C is the margin parameter. 

( , ) ( ). ( )k j k jK x x x x  is a positive kernel function 

definite on Rn based on Mercy condition.  

From the above analysis, it can be concluded that SVM is 

decided by training samples and kernel function. The 

construction and selection of kernel function is important to 

SVM. But the kernel function is often given directly in 

practice.  

Some common kernel functions are shown as follows: 

 The linear Kernel function : 

  ( , ') . 'K x x x x                                             (13)                                                   

 The polynomial  kernel function:  

( , ') ( . ') dK x x x x or ( . ') dc x x                (14)          

 Gaussian radial basis function : 

  

2

2

'
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x x
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                           (15)                           

 Sigmoïd kernel function : 

  0 0( , ') tanh( ( , ') )K x x x x                     (16) 

4. EXPERIMENTAL RESULTS 

4.1 Test bench description  
The test motor used in the experimental investigation was a 

three-phase 50-Hz, four-pole, 28 rotor bars, 1.1-kW induction 

machine (Fig.1-a). The induction machine shaft is mounted 

with a powder brake in order to simulate different level of load 

torque during the tests. In order to create an air-gap 

eccentricity fault in the induction motor, a simple mechanism 

was used. Each of the two bearing housings of the rotor was 

changed to a pair of eccentric rings placed one into the other 

(Fig.1-b). 

Three phase current sensors and three voltage sensors are used 

to monitor the induction machine during operation at steady 

state. Low-pass anti-aliasing filters are implemented in order to 

set the frequency bandwidth of the analysed signals to a correct 

range. Then, the outputs of the low-pass filters are directly 

connected to a data acquisition board (dSpace DS1104 

processor board) which contains a Motorola Power PC 603e 

model and a DSP (TMS320F240 – 20 MHz). The process can 

be commanded and monitored via the Control Desk software 

of dSpace. The data sampling is performed using differential 

channels and a sampling frequency of 10 kHz. The software 

used is MATLAB™ for the data acquisition and processing. 

 

Fig.1. Experimental set-up of 1.1 kW to collect healthy and 

faulty induction machine data. 

In order to test the efficiency of the proposed diagnostics 

techniques, the proposed fault signatures are analysed in the 

frequency domain. The Blackman window is chosen because 

it gives the best compromise between the relative side lobe 

attenuation and the main lobe width, in order to differentiate 

the analysed frequency components used by the tested 

diagnosis methods. The choice of the Blackman window is 

detailed in [9]. 

4.2 Experimental results 
Analytical methods show that for eccentricity fault, the 

following harmonics exists in the above mentioned diagnosis 

media (air-gap torque, current space vector and complex 

apparent power): kωr , 2ω+kωr   and |2ω-kωr| . 

To show the efficiency of the proposed method, some selected 

spectra are presented. It can be seen that the spectral 

components coincide with the predicted values. The first step 

of the diagnosis method is the detection of rotational frequency 

fr. In figure 2, we observe the complex apparent power, space 

vector current and the air-gap torque frequencies spectrum at 

24.4 Hz (fr) with eccentricity fault. We can deduce that the air-

gap torque offers the best sensitivity. 

(a) 

(b) 
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Fig. 2. Different diagnosis media spectrum with 

eccentricity fault around rotor rotation frequency.  
 

Table 1. Frequencies components of eccentricity faults 

K kfr 

(Hz) 

2f+kfr 

(Hz) 

|2f-kfr| 

(Hz) 

1 24.4 124.4 75.6 

2 48.8 148.8 51.2 

3 73.2 173.2 26.8 

4 97.6 197.6 2.4 

5 122 222 22 

6 146.4 246.4 46.4 

7 170.8 270.8 70.8 

8 195.2 295.2 95.2 

 

Fig. 3, shows clearly the air-gap torque frequencies 

components at 2.4 Hz, 22 Hz, 24.4 Hz, 26.8 Hz and 48.8 Hz. It 

can be seen that the spectral components coincide with the 

predicted values summarized in Table.1. Theirs magnitudes are 

illustrated and compared with current space vector and 

complex apparent power magnitudes in Table.2.  

 
Fig. 3. Air-gap torque frequency spectrum with 

eccentricity fault in full load case in range [0Hz - 50Hz]  

 

It is clear that the different magnitudes of the spectral 

components have been affected by the eccentricity fault. The 

magnitudes of these components were proven to be a very 

good diagnostic index. 

In Table 2 the sensitivity of the studied diagnosis media are 

presented. We can conclude that the air-gap torque have the 

best sensitivity for the eccentricity fault in frequency range [0 

Hz -50 Hz]. 

Fig.4 confirms the weakening effect of the motor loading on 

the amplitudes of some components, particularly the low 

frequency components. It also shows that for the low level of 

loads the characteristic frequencies of eccentricity faults will 

be not easily detectable because they approach until the 

coincidence with the spectral lines characteristic of the power 

supply. 

Table 2. Amplitude of different frequency components of 

eccentricity faults in range [0Hz – 50Hz]. 

f(Hz) A(dB) 

Complex 

apparent 

power 

A(dB) 

Air-

gap 

torque 

A(dB) 

current 

space 

vecteur  

2.4 -56.9 -48.61 -56.8 

22 -66.25 -63.16 -66.24 

24.4 -65.55 -51.11 -65.79 

26.8 -81.2 -75.6 -81.31 

48.8 -49.12 -44.42 -49.05 

 

 
Fig. 4. Effect of the load level on the eccentricity fault 

frequency component detection 

 

In fig. 5 it can be observed that two side-bands frequencies 

components are present in the air-gap torque spectrum around 

100Hz, their magnitudes reflect the severity of the rotor 

asymmetry, in this case we have an inherent or incipient rotor 

fault. The left-side component (2f-2fs) is caused directly by the 

rotor fault while the right-side component (2f+2fs) is caused by 

the consequent speed ripple.  The eccentricity fault frequency 

component 97.6 Hz (4fr) coincide with the left side-band 

component caused by the rotor asymmetry. 

 
Fig.5. Air-gap torque frequency spectrum with eccentricity 

fault around 100 Hz 

124.4 Hz 95 Hz 

122 Hz 

(2f+2fs) 
(2f-2fs) 

(75% of full load) (50% of full load) 

(25% of full load) (0% of full load) 

2.4 Hz 
48.8 Hz 

24.4 Hz 

22 Hz 26.8 Hz 
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Figs. 6, 7, 8 and 9 show clearly the air-gap torque frequencies 

components at 73.2 Hz, 75.6 Hz, 95.2 Hz, 122 Hz, 124.4 Hz, 

148.8 Hz, 195 Hz, 197.6 Hz and 295.2 Hz. It can be seen that 

the spectral components coincide with the predicted values 

summarized in Table.1.  

 
Fig. 6. Air-gap torque spectrum with eccentricity fault in 

range [50Hz - 90Hz] 

 

 
Fig. 7. Air-gap torque spectrum with eccentricity fault in 

range [125Hz - 175Hz] 

 
 

Fig. 8. Air-gap torque spectrum with eccentricity fault in 

range [190Hz - 230Hz]  

 
 

Fig.9. Air-gap torque spectrum with eccentricity fault in 

range [290Hz - 320Hz] 

 

The magnitudes of the frequencies components related to 

eccentricity fault for different diagnosis media are summarized 

in Table 3. We can deduce that the air-gap frequencies 

components have the best sensitivity for the eccentricity fault 

in frequency range [70 Hz -300 Hz].  

 

Table 3. Amplitude of different frequencies components of 

eccentricity faults in range [50Hz – 300Hz] 

f (Hz) A(dB) 

Complex 

apparent power 

A(dB) 

Air-gap 

torque 

A(dB) 

Current 

space vector  

73.2 -75.18 -75.84 -75.22 

75.6 -88.03 -83.4 -87.76 

95.2 -84.22 -76.9 -82.69 

122 -80.44 -83.4 -80.71 

124.4 -84.65 -77.92 -87.46 

148.8 -86.7 -83.5 -89.25 

195 -76.63 -79.63 -76.22 

197.6 -76.71 -76.18 -76.34 

295.2 -62.3 -59.11 -62.37 

 

4.3 Induction motor faults classification 

based on SVM  
According to this comparative study, we propose to use the 

spectrum of the air-gap torque in the frequency range [0Hz, 

300Hz] like failure signature for the eccentricity fault because 

it offers the best sensitivity. In this interval, we can observe the 

frequencies components coming from kfr, 2f+kfr and |2f-kfr|. 

Initially we detect the rotational frequency component fr and its 

amplitude, and then we calculate the frequencies components 

kfr, 2f+kfr and |2f-kfr| and we determine their amplitudes in the 

interval [0Hz, 300Hz]. The amplitudes of these components 

can be a good index for the eccentricity fault detection.  

The magnitudes of air-gap torque spectral components relative 

to the studied faults are extracted in order to develop the input 

vector necessary for the pattern recognition tool based on 

support vector machine (SVM) approach with an aim of 

classifying automatically the various states of the induction 

motor. 

This vector must characterize the failure signature and 

consequently the state of the machine.   It is created by the 

magnitudes of the air-gap torque spectral components relative 

to the studied faults (broken rotor bar and eccentricity). The 

vector is expressed by (17). 

148.8 Hz 

295 Hz 

195 Hz 
197.6 Hz 

75.6 Hz 

73.2 Hz 
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The first stage in the recognition process is to create a 

database. It can be accomplished by analysing the magnitudes 

of the air-gap torque spectral components for the classes 

which represent the states of the induction machine. Here, 

there are three possibilities examined as following: machine 

operating without defect, machine operating with broken rotor 

bar and machine operating with an air-gap eccentricity fault, 

All these situations have been tested under 0%, 25%, 50%, 

75% and 100% of the rated load. The data are divided into 

two data sets: the training data set (60 samples) and the testing 

data set (40 samples).  

As shown in Fig. 10, the diagnostic model includes two SVM 

classifiers which are used to identify the three states: normal 

state, electrical fault (broken rotor bar) and mechanical fault 

(eccentricity). With all the training samples of the states, 

SVM1 is trained to separate the normal state from the fault 

state. When input of SVM1 is a sample representing the 

normal state, output of SVM1 is set to +1; otherwise -1. With 

the samples of single fault, SVM2 is trained to separate the 

mechanical fault from the electrical fault. When the input of 

SVM2 is a sample representing electrical fault, the output of 

SVM2 is set to +1; otherwise-1.  

Table 4. Codification output of SVM. 

 svm1 svm2 

Normal condition +1  

Broken rotor bar -1 +1 

eccentricity fault -1 -1 

 

All the two SVMs adopt polynomial and Gaussian as their 

kernel function. In SVM, the parameters σ and C of SVM 

model are optimized by the cross validation method. The 

adjusted parameters with maximal classification accuracy are 

selected as the most appropriate parameters. Then, the optimal 

parameters are utilized to train the SVM model. So the output 

codification is presented in table 4. 

 
 

Fig. 10. Induction motor fault diagnostic model based 

on SVM classifiers 

 

Fig. 11. Proposed method implementation basic steps 

The training procedure and choice of SVM parameters for 

training are very important for classification. Fig. 11 presents 

the process of optimizing the SVM parameters with the cross 

validation method. The false alarm rate and the non-detection 

rate of diagnostic systems for different membership functions 

are illustrated in table 5. From table 5, we note that the 

Gaussian kernel function shows highly accurate classification 

of fault diagnosis procedure. A classification rate of the fault 

diagnosis is 92.5%. 

Air-gap torque spectral 

components magnitudes 

SVM1 

Normal condition Faulty condition 

SVM2 

Electrical fault 

(Broken rotor bar) 

Mechanical fault 

(Eccentricity fault) 

Air-gap torque spectral 

components magnitudes 

 
Initialization 

(Initial parameters) 

Training SVM model 

Cross validation 

Optimal values of C and σ 

parameters obtained 

 

Training data set Testing data set 

Learning SVM 
Testing and 

identification 
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Table 5. The SVM classification performance. 

SVM kernel 

function 

False alarm rate 

(%) 

Non-detection rate 

(%) 

Polynomial 5% (2 / 40) 10%  (4 / 40) 

Gaussian  0% (0 / 40) 7.5% (3 / 40) 

 

5. CONCLUSION  
In this work we propose to use the air-gap torque to detect 

mechanical faults in particular the eccentricity. In this way, 

we compare this technique with those most used recently in 

particular the current space vector (Park vector) and complex 

apparent power. This signature is subsequently analysed using 

the classical fast Fourier transform (FFT).The proposed 

failure signature shows its effectiveness and its robustness in 

both electrical and mechanical fault detection. In order to 

obtain a more robust diagnosis, it is proposed a support vector 

machine (SVM) suitable to online identification of induction 

machine faults: broken rotor bar (electrical fault) and 

eccentricity fault (mechanical fault). The input patterns to 

train the SVM are obtained using experimental data related to 

healthy and faulty machines under several load rates. The 

inputs of the SVM are very important for successful fault 

detection. In this work, we extract only the air-gap torque 

spectral components magnitudes relative to the studied faults. 
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